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ISOMORPHISMS AND AUTOMORPHISMS OF WITT RINGS 

BY 

DAVID LEEP AND MURRAY MARSHALL 

ABSTRACT. For a field F, char(F) ¥= 2, let WF denote the Witt 
ring of quadratic forms of F and let (i7*) Q WF denote the 
multiplicative group of 1-dimensional forms (a), a e F*. It follows 
from a construction of D. K. Harrison that if E, F are fields (both of 
characteristic =̂ =2) and p.WE —> WF is a ring isomorphism, then 
there exists a ring isomorphism p: WE —» WF which "preserves 
dimension" in the sense that p(E*) = (F*). In this paper, the 
relationship between p and p is clarified. 

1. Preliminaries. Let R be an (abstract) Witt ring in the terminology of [6] 
and let G denote the distinguished group of units of R. For example, one could 
take R = WF where F is some field, cha^i7) ¥= 2. In this case, G = (F*). 

One needs to know something of the structure of the full unit group R*. If 
u e R* then u decomposes uniquely asw = a(\ + x) where a G G and x e I2. 
Here I Q R denotes the fundamental ideal, a = d±(u), the signed discriminant 
of u. Thus, it is enough to consider units of the form u = 1 + x, x G / . 
Computing signatures this yields ± 1 = o(u) = 1 + o(x) = 1 (mod 4) so 
o(x) = 0 for all signatures a of R. By Pfister's local-global principle, this implies 
x is nilpotent (i.e., 2-primary torsion). Conversely, if x is nilpotent then, from 
general ring theory, 1 4- x is a unit. 

For almost everything done here, the above will suffice. However to obtain 
certain refinements it is necessary to know the relationship between the additive 
order of x and the multiplicative order of 1 + x. The first half of this is fairly 
easy: 

1.1. PROPOSITION. If X e I and 2kx = 0 then (1 + x)2 = 1. 

PROOF. (1 + x)2" = (1 + 2x + x 2 ) 2* 1 = (1 + yfk~l where y = 2x + x2. By 
the Annihilator Theorem for Pfister forms, x = 2 , (1 — si)ti where tt e R and 
si e Z>( (1 , 1)*). Here, D(q) denotes the value set of the quadratic form q. 
Thus 

x2 = 2 , (i - st?t} + 2,.^. (i - *,.)(i - Sj)tfj 
= 2 , 2(1 - Si)tf + 2,<, 2(1 - *,)(! - Sj)tttj. 
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Since 2k(\— st) = 0, it follows that 2k ly = 0. By induction on k this implies 
(1 + yf " = 1. 

The second half follows from the theory of logarithms and exponentials 
developed in [5]. This does not seem to have any simple proof: 

1.2. PROPOSITION. If X e I2 and (I + x)2 = 1 then 2kx = 0. 

PROOF. See [5]. 

2. Homomorphisms. R can be described as the quotient of the integral group 
ring Z[G] obtained by factoring by the ideal generated by 1 4- (— 1) and all 
elements (1 — <z)(l — b) where a, b G; G satisfy 1 e D(a, b). 

Let R be another Witt ring and let G be its distinguished group of units. 
From the presentation of R as a quotient of Z[G], specifying a (ring) 
homomorphism p:R —» R is equivalent to specifying a group homomorphism 
p:G —> R* satisfying: 

(1) p ( - l ) = - 1 and 

(2) V û , è G G , l e D(a, b) =» (1 - p(a) )(1 - p(b) ) = 0. 

Since G may not be a ring invariant, one should not expect p(G) Q G to hold in 
general, p will be referred to as a scheme homomorphism if p(G) Q G. For 
scheme homomorphisms, condition (2) can be replaced by the equivalent 
condition: 

(2r) V a ^ e G . l e D(a, b) => 1 e 5(p(a) , p(Z>) >. 

2.1. PROPOSITION. 7/* e/f/*er G = {±1} or J 2 w torsion free then each 
homomorphism p:R -* R is a scheme homomorphism. 

PROOF. If G = {±1} then p(G) = p( {±1} ) = {±1} Q G. If T2 is torsion 
free then, by results in section 1, R* = G, so p(G) Q G holds in this case 
too. 

2.2. EXAMPLES, (i) G = {±1} holds if and only if R = Z, Z/(2), or 
Z/(4). Specific realizations of these three types can be obtained by taking 
R = WF where F is (respectively) R, C, or a finite field F , q = 3 (mod 4). If 
q = 1 (mod 4), then WFq = Z/(2)[C2] (the group ring over Z/(2) of the cyclic 
group C2) so G ^ { ± 1 } in this case, (ii) I (resp. I2) is torsion free if and only 
if Z><1, 1> = 1 (resp. D(\, -a) = G for all a G Z)<1, 1>). Thus, if 
R = WF, F a field, then I (resp. I2) is torsion free if and only if F is 
Pythagorean (resp. Quasi-Pythagorean). Elementary examples: R, C are 
Pythagorean; finite fields are Quasi-Pythagorean, (iii) If R = WF where F 
is a global field or a local field ^=R, C then / is not torsion free but / is 
torsion free. 

https://doi.org/10.4153/CMB-1988-038-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1988-038-7


252 DAVID LEEP AND MURRAY MARSHALL [June 

To obtain Harrison's map p -* p (see [2], [3], and [6] ) one needs to assume 
that R satisfies an additional property: 

(*) Va, l e C , ( l - A)(1 - i ) e / 3 ^ ( l - a)(l -b) = 0. 

This is true if R = WF, F a field, char(.F) ¥= 2, e.g., see [4]. In what follows, this 
special property is assumed whenever necessary. 

Let p:R —» R be a homomorphism. p~l(I) is an ideal of index 2 in R so 
p~\l) = I. In particular, p(I) Q I. For a G G, consider p(<z) G it*. 
This decomposes uniquely as p(a) = p(a)(l -f jc(tf) ) where p(a) ^ G and 
JC(A) G 72 . Thus p:G -> G is a group homomorphism. Since p(— 1) = 
— 1 G G, it follows that p(— 1) = — 1 . Now suppose a, b G G satisfy 
1 G Z><0, Z>>. Then (1 - p(a) )(1 - p(b) ) = 0. Since p(c) - p(c) G T2 holds for 
any c G G, this implies that (1 — p(a) )(1 — p(Z>) ) G 7 3 and hence, by (*), 
that (1 — p(fl))(l — p(Z>)) = 0. Thus p induces a scheme homomorphism 
p:R -> ,R. 

p is characterized as the unique scheme homomorphism satisfying p(x) = 
p(x) (mod I2) for all A; e it. Clearly p = p if and only if p is a scheme 
homomorphism. Also p —> p is functorial in the sense that \p o p = \p o p and 1 
= 1. In particular, if p is bijective, then p is bijective. 

2.3. NOTE. For a G G, p(a ) = p(a )(1 4- x(tf ) ) with x(a ) G 72 . 1 + x(a) is a 
unit of order 2 in i t . Thus x(a) is 2-primary torsion so p(<z) — p(a) = p(a)x(a) 
is 2-primary torsion. Since G generates it additively, this implies that 
p(x) = p(x) (mod(/2) to r) holds for all x G it. Here, (Ik)iOT denotes the torsion 
part of / . Actually, if we use (1.2), we can conclude that 2x(a) = 0 for each 
a G G so 2p = 2p. 

2.4. PROPOSITION. Suppose G ^ { ± 1 } , I2 is not torsion free, but Ik is torsion 
free for some k = 3. Then, for each scheme homomorphism a:R —> R, there exists 
a homomorphism p:R —» R such that p = a, p ¥= a. 

PROOF. We may as well assume (Tk~\OT ^ 0 so G/{±1} and (Tk~l)tOT are 
non-trivial groups of exponent 2. Thus there exists a non-trivial group homo­
morphism x:G —> (Ik~l)tOT with x(— 1) = 0. Pick any such homomorphism 
and define p:G -» R* by p(a) = a(a)(l + x(a)) \/a G G. Now 
x(a)x(b) G (J*) t o r = 0 so (1 + *(a) ) ( l + x(b)) = 1 + x(a) + *(*) = 
1 4- x(ab). Thus p is a group homomorphism. Also *(—1) = 0 and 
a ( - l ) = - 1 so p ( - l ) = - 1 . Assume 1 G D(a, b), a, b G G. Then 

(1 - p(a))(\ - p(b)) = (1 - a(a))( l - a(fc)) + (1 - a(a))a(b)x(b) 

+ (1 - a ( i ) )a(fl)x(fl) + a(a)x (a )a(i )*(*)-

The first term here is zero since a is a homomorphism. The last three terms are 
zero since (/ ) t o r = 0. Thus p induces a homomorphism p:R —> R. 

https://doi.org/10.4153/CMB-1988-038-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1988-038-7


1988] WITT RINGS 253 

3. Automorphisms. Consider a homomorphism p:R —> R satisfying p = 1. 
That is, assume p(x) = x (mod I2) holds for all x e R. 

3.1. LEMMA. Suppose k ^ 2 AIM/ //*#* p(x) = x (mod Ik) holds for all x e R. 
Then p(x) = x (mod Ii+k) holds for all x e J m , I ^ 0. 

PROOF. The result is clear if / = 0. If / ^ 1, the result follows by induction 
using 

p(xy) - xy = p(x)(p(y) - y) + (p(x) - x)j> 

with x <E J, ^ G. I1. 

3.2. LEMMA. If k ^ 2 and p(x) = x (mod Ik) holds for all x e R then 
p2(a) = a (mod I2k~l) holds for all a <= R. 

PROOF. Since G generates R we can assume a e G. Thus p(a) = a(l + x) 
with x G /*. 

p2(a) = p(p(a)) = p(a(l + x)) = p(a)(l H- p(x)) 

= a(\ + x)(l + p(x)) = a + fl(x 4- p(x) + xp(x) ). 

Thus we have to show that 

x + p(x) + xp(x) = 2x + (p(x) — x) + xp(x) G / _ 1 . 

Clearly xp(x) G I2k. By (3.1), p(x) - x e 7 2 * - 1 . Also, 1 + x has order 2 in 
#*, so 2x 4- x2 = 0. Thus 2x = -x2 e 72/:. (In fact, by (1.2), 2x = 0.) 

3.3. PROPOSITION. Suppose I is not torsion free but I is torsion free for some 
k ^ 3. Then there exists an automorphism p:R —> R such that p = 1, p =̂  1. 

PROOF. If G = { ± 1} then R = Z, Z/(2), or Z/(4) and 72 is torsion free. Thus 
G ¥" { ± 1 } . Thus, by (2.4), there is some homomorphism p:R —> R such that 
p = 1, p ¥= 1. Pick any such p and pick s so large that 2s + 1 ^ fc. Then for any 
x e # , (3.2) implies that p2\x) = x (mod 72*+1). By (2.3), p2*(x) - * is torsion 
so p (x) = x. Thus, p = 1. This implies p is bijective. 

Let Aut(jR) denote the group of automorphisms p:R —> i£. Let Aut5C(i?) ç 
Aut(.R) be the subgroup consisting of scheme automorphisms. For y i^ 1 
let Aut-(iî) Q Aut(R) be the subgroup of automorphisms satisfying 
p(x) = x (mod IJ+l) for all x G R. Harrison's map p —> p is a group 
homomorphism from Aut(i^) onto AutyC(i£) with kernel AutjCR). 
Since p = p for p e Autsc(R), Aut(/t) is a semi-direct product of Aut^i?) and 
Autsc(R). If I2 is torsion free, Aut^i*) = 1 and Aut(R) = Aut5CCR)- Sup­
pose I2 is not torsion free but Ik+X is torsion free for some k ^ 2. Then 
Au^CR) # 1 but Aut^CR) = 1. Each Auty(J?) is normal in Aut(#). Also, by 
(3.2), p G Aut-(2?) => p2 e Aut2y-CR)- Thus, in this case, AutjOR) is solvable 
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and each element of AutjCR) has finite 2-power order. 

3.4. PROPOSITION. If I is torsion free then Axxtx(R) is canonically isomorphic to 
the group Hom g r (G/{± l} , (J2) tor). {Here, "Homgr" denotes group homomor-
phisms. ) 

PROOF. If x:G —> (I2)tOT is any group homomorphism satisfying x(— 1) = 0 
then, by the proof of (2.4), x induces a homomorphism p.R —> R given by 
p(a) = a{\ + x(a) ) for all a e G. As in the proof of (3.3), p2 = 1 so p is an 
automorphism and hence p G Autj(i?). x —> p provides the desired 
isomorphism. 

R is said to be of local type if it is the Witt ring of a local field. R is said to be 
of elementary type if \G\ < oo and R is built up from Z/(2), Z/(4), Z and local 
types by forming Witt products and group rings. For elementary types, it is 
possible to give a precise inductive description of Aut5C(,R). This is an easy 
consequence of the material on quadratic form schemes developed in [6] and 
will not be given here. 

For local types, Autj(jR) and the action of Autsc(R) on AutjCR) can be 
computed explicitly using (3.4). In contrast, the structure of Aut^^R) for general 
elementary types is not at all well understood. This is because Au^CR) is not 
very well behaved with respect to formation of Witt products and group 
rings. 

Denote by Jk Q R the ideal of elements of (additive) order 2 in Ik+X. For 
elementary types it is known that Jk ¥= 0 => Jk ¥* Jk+\. For general Witt rings 
this appears to be open. Each p G Autk(R) satisfies p(x) = x (mod Jk) for all 
x G R. This follows from (1.2) (also see (2.3) ). If k ^ 1 is such that Jk ¥> 0, 
Jk+i = 0, then the element p G AutjCR), p ^ 1, constructed in (3.3), is actu­
ally in the group Autk(R). One would hope that if k ^ 1 is arbitrary then 
Jk ¥= Jk+X => Aut^CR) 7̂= Aut£+1CR). In general it is not known if this is 
true. 

3.5. PROPOSITION. If R is of elementary type, k ^ 1, and Jk ¥= 0 then there 
exists p G Aut^(jR), p £ Aut^+1(i^). 

PROOF. The proof is by induction on | G |. If R is of local type then k = \ and 
the result is clear. There are two cases left to consider. Case 1: R = R} X R2 

(Witt product). Then Jk = (Jl)k X (J2)k (ordinary product) so (Jt)k ¥= 0 
for / = 1 or 2, say (J\)k ¥= 0. Thus, by induction, there exists 
P! G Aut/t(jR_1)\Aut^+ {(RX). Take p = px X 1. Case 2: R = £[A], A = {1, g). 
Then Jk = Jk © (1 — g)Jk_Y, so Jk_x ¥* 0. Pick x G Jk_l\Jk and define 
p:R —> R by p(a) = a for a G G, p(g) = g + (1 — g)x. Then p is a ring 
automorphism, p G AutA:(i^)\AutA:+1(i^). 

If we drop the assumption that / is torsion free for some k ^ 2 then it is 
not known whether I2 not torsion free =» Autj^R) ^ 1. In fact very little 

https://doi.org/10.4153/CMB-1988-038-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1988-038-7


1988] WITT RINGS 255 

is known. If R is the Witt ring of a field then n J7 = 0 by [1]. In this case it 
follows that n Aut(R) = 1. Combining this with (3.2) one can deduce that any 
element p G Aut^i?) which has finite order has 2-power order. See example 4 
below for a case where Aut^T?) has elements of infinite order. 

4. Examples. 

(1) Take R = Z/(4)[A], A a group of exponent 2 (so G = A X { ± 1 } ). Thus, 
if |A| = 2k, then Jk ¥> 0, Jk+X = 0. We show that Aut^i?) has exponent 2. 
D(l, 1> = {±1} so JQ Q R is the ideal generated by 2. Let p G AutjOR) 
be arbitrary. Then, for a G G, p(#) has the form p(a) = a + 2r, r E I Let 
p( r) - r = 2s, s e J. Then p2(a) = p(a) 4- 2p(r) = a + 2r + 2(r + 2s) = 
a 4- 4r + 4s = a. This shows p2 = 1. 

(2) Aut/(i^)/Aut2/(^) is abelian of exponent 2. To obtain an example where 
Aut/(JR)/Aut2/+1CR) is n o t abelian one can take R = Z/(2)[A] where A is a 
group of exponent 2 with Z/(2) — basis al9 . . . , # / , b0,... , bt. Set 

/ 
p(ax) = ^ i ) = *! + I I 0 + *,-) and 

i = 0 

/ 

P(b0) = b0 + (1 + *0) I t (1 + a,-), Wo) = *o-
1 = 1 

For / ^ 2 and y ^ 1 set p(at) = *//(#, ) = at and p(Z>y) = \//(fy) = */• Then p, 
^ G Aut/(1£) but, as one can verify by direct computation, pOK^) ) =£ *KP(# i) ) 
( m o d / 2 / + 1 ) . 

(3) If J2m = 0 then each p G AutjCR) has order at most 2m. To obtain an 
example where this bound is attained take m ^ 1 and R = Z/(2)[A] where A 
has exponent 2 and Z/(2)-dimension 2W. Fix a Z/(2)-basis for A of the form 
{ai9 bt\i G Z/(2 m _ 1 ) }. Define p G Aut^jR) by 

p(at) = at + (1 + a m X l + *,-), 

p(^) = ft,.. 

A careful inductive argument shows that 

2s 

<?{at) = a, + (1 + fl|.+2.) I I (1 + 6,-4-y-i) 
7 = 1 

for ^ = 0, . . . , m — 1. Taking s = m — 1 in this formula, it follows that 
P 2 * i. 

(4) It is possible to show (for example by patching together automorphisms 
constructed in the above example) that the Witt ring R = Z/(2)[A], A countably 
infinite, has elements p G Aut^i?) of infinite order. 
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