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THE FAMILY OF LINES ON THE FANO THREEFOLD Vs
MIKIO FURUSHIMA anp NOBORU NAKAYAMA

Introduction

A smooth projective algebraic 3-fold V over the field C is called a
Fano 3-fold if the anticanonical divisor — K, is ample. The integer
g=28(V)=3(— K;)*® is called the genus of the Fano 3-fold V. The
maximal integer r > 1 such that O(— K,) = #" for some (ample) inver-
tible sheaf s ¢ Pic V is called the index of the Fano 3-fold V. Let V be
a Fano 3-fold of the index r = 2 and the genus g = 21 which has the
second Betti number 6, (V)= 1. Then V can be embedded in P¢ with
degree 5, by the linear system ||, where O(— K,) = #* (see Iskovskih
[5]). We denote this Fano 3-fold V by V.. ‘

V, can be also obtained as the section of the Grassmannian G(2, 5)
=—> P* of lines in P* by 3 hyperplanes in general position.

There are some other constructions of the Fano 3-fold V; (cf. Fujita
[1], Mukai-Umemura [9] and Furushima-Nakayama [3]). But so obtained
Vs are all projectively equivalent (cf. [5]).

The remarkable fact on V; is that V; is a complex analytic compacti-
fication of C*® which has the second Betti number one (see Problem 28 in
Hirzebruch [4]).

Now, in this paper, we will analyze in detail the universal family of
lines on V; and determine the hyperplane sections which can be the
boundary of C* in V..

In §1, we will summarize some basic results about V, obtained by
Iskovskih [5], Fujita [1] and Peternell-Schneider [6]. In § 2, we will con-
struct a P!-bundle P(&) over P?, where & is a locally free sheaf of rank
2 on P? and a finite morphism +: P(§) — V= P°® of P(&) onto Vi
applying the results by Mukai-Umemura [9]. Further, we will show that
the P'-bundle P(¢) in fact the universal family of lines on V. In §3, we
will study the boundary of C*® in V; and the set {He|0,(1)|; V\H = C*.
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§1. Basic facts on V;

Let V:= V, be a Fano 3-fold of degree 5 in P* (see Introduction)
and £ = P' is a line on V. Then the normal bundle N,, of £ in V can
be written as follows:

(@ Ny=0,®0, or

(b) NuV = @z(" ]-) S @e(l)

We will call a line ¢ of the type (0,0) (resp. (— 1,1)) if N, is of
the type (a) (resp. type (b)) above.

Let 6: V' — V be the blowing up of V along the line ¢, and put
L' :=¢"'(¢). Then L’ = P'x P' if £ is of type (0,0), and L’ = F, if ¢ is
of type (— 1,1). Let £, f, be respectively fibers of the first and second
projection of P! X P' onto P!, and let s, f be respectively the negative
section and a fiber of F,, Let H be a hyperplane section of V. Since
the linear system |¢*H — L’| on V’ has no fixed component and no base
point and since A%0(¢*H — L)) = 5 and (¢*H — L)’ = (¢*H — L')*-L’ = 2,
the linear system |¢*H — L’| defines a birational morphism ¢ := ¢, y_z:
V' — We=— P* of V' onto a quadric hypersurface W in P* in particular,
Q := ¢(L’) is a hyperplane section of W. Let E := E, be the ruled sur-
face swept out by lines which intersect the line ¢ and E’ the proper
transform of E in V'.

Lemma 1.1 (Iskovskih [5], Fujita [1]). W is a smooth quadric hyper-
surface in P* and Y := ¢o(E) is a twisted cubic curve contained in Q. In
particular, o: V' — W is the blowing up of W along the curve Y. Further,
we have the following.

(@ If ¢ is of type (0,0), then ¢|,: '’ 3 Q=P X P, and Y ~ f, +
2f, in L.

(b) If ¢ is of type (— 1,1), then ¢|.: L’ - Q = Q} (¢ quadric cone) is
the contraction of the negative section s of L' = F,, and Y ~ s + 3f in L.

In (a) and (b), we denote the proper transform of Y=—> @ in L’ by
Y.

CororrarY 1.1. (a) If ¢ is of type (0,0), then E’ = F,.

(b) If ¢ is of type (— 1,1), then E' = F,.
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Proof. Let Ny be the normal bundle of Y in W. Then N, =
0y(3) @ 0y(4) if ¢ is of the type (0,0), and Ny, = 0,(2) ® 0,(5) if Y is of
type ( —1,1). Q.E.D.

CoroLLARrY 1.2. (a) If ¢ is of type (0,0), then there are two points
q, #+ q. of £ such that (i) there are two lines in V through the point q,
(t=1,2), and (i) there are three lines in V through every point q of
N\{q,, g2}

(b) If ¢ is of type (— 1, 1), there is exactly one point q, of ¢ such that
(1) ¢ is the unique line in V through the point q, and (ii) there are two
lines in V through every point q of ¢\{q.}.

Proof. (a) Let p;y @ = P' X P' — P' be the projection onto the sec-
ond component. Since Y ~ f, + 2/, ply: Y — P! is a double cover over
P'. Thus there are two branched point b, #+ b, in P'. We put gq, :=
00 (pl) ' (2elr) 7' (B) (G =1,2). Then ¢ =a(Y) and ¢, :=a(p " (pi'(by) (i =
1,2) are two lines through the point g, for each i. For be P"\{b, by},
¢ =a(Y) and a(p~'(p7'(b))) are three lines through the point g e £\{q,, ;},
since p;'(b) consists of two different points. This proves (a).

(b) We put ¢, :=a(YNs)e £{. Then £ = o(Y) = o(s) is the unique line
through the point g,€ 4. For ye Y\¢(s), ¢ = o(Y) and a(p~'(y)) are two
lines through a point of /\{q,}. This proves (b). Q.E.D.

CoroLLARY 1.3 (Peternell-Schneider [6]). Let E be a non-normal hy-
perplane section of V. Then the singular locus of E is a line £ on V, in
particular, E is a ruled surface swept out by lines which intersect the line
¢. Further V— E = C® if and only if the line ¢ is of type (— 1, 1).

Proof. By Lemma (3.35) in Mori [8], the non-normal locus of E is a
line £ on V. Since A%0,(1) ® #?) = 1 and Pic V = Z, the linear system
|0y(1) @ F}| consists of E, where .#, is the ideal sheaf of ¢. By Lemma
1, ¢ must be the singular locus of E. Assume ¢ is of type (0,0). Then,

by Lemma 1, V— E = {(x,y,2,u)e C*; x* + ' + 2" + u* = 1} & C".
Q.E.D.

§2. Construction of the universal family

1. Let (x:y), (u:v) be respectively homogeneous coordinates of the
first factor and the second factor of S := P' X P'. Let us consider the

diagonal SL(2; C)-action on S, namely, for ¢ = (g 3) e SL, := SL(2; C),
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{x":ax—i—by u’ = au + bv
y° =cx + dy, v =cu+dv.

Let z: § — P* be the double covering of P* given by

X, =xQu
X ={x Qv+ yQu
* X, =y®v

where (X;: X,: X,) be a homogeneous coordinate on P:. We can also de-
fine SL,-action on P? as follows:

X = a*’X, + 2abX, + b*X,
X7 = acX, + (ad + bo)X, + bdX,
X; = X, + 2cdX, + d*X,

for ¢ = (g 3) c SL,.

Then, the morphism ¢ is SL,-linear, that is, «(p°) = #z(p)’ for pe S and
g€ SL,. Further, 7 is branched along the smooth conic C := {X} = X X}} =
7(4), where 4 := 4p, is the diagonal in P! X P* = S. Let f, be a fiber of
the projection P;: S — P! onto i-th factor (I = 1,2). Let n: M := P(§)
—> P? be the P!-bundle over P? associated with the vector bundle & :=
7405(4f) of rank 2 on P2

Lemma 2.1. (1) det(r,04(kf)) = Op(k — 1) and cy(z4O(kf)) = L k(k — 1)
for all k = 0.

Q) E€® 0y = 0p(3) ® Opu(3), where C = z(d).

(8) The natural morphism S — M corresponding to the homomorphism
*& — O4(4f) is a closed embedding, hence, S can be considered as a di-
visor on M.

1) 0,S) = 0,2) @ x*0p:(— 2), where 0,(1) is the tautological line bun-
dle on M with respect to &.

(B) 0,Q1) is nef, i.e., & is a semi-positive vector bundle

6) We put 0,,(1) := 0,1) ® 7¥0ps(1). Then

H(M, 0,(1)) = H(S, 0554, + £))
= HAP', 0p(5)) ®@c HAP', 0p:(1)) .

Proof. (1) Let us consider the exact sequence:

0 —> 7, 04(kf) —> . 04((k + Df) —> 7304 —> 0.
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Now ¢4, = «(f,) is a line on P* and 0, = ,0f,. Thus, det (c,0s((k + 1)£)
= det (c,04(kf) ® O(1)  and ¢z, 0s((k + DA)) = (det (c,04(kL)- 1) +
eyt 05((kfy)). Since t,0; =~ 0 ® O(— 1), we are done.

(2) Let us consider the following diagram:

0
)
¢ 0,3f, — )

|

00— @s(zfz V“ 21(2) —> 05(4/1) —> 0,[(4f) —> 0

| l

0 —> Os(3f, — f) —> Os(4f) —> O4f) —> 0

|

Y

@4(3]! 1 /l 2) 0
0
Since t*C = 24, we have 7,0,,(4f,) = & ® 0, and the exact sequence:

0—> 30,3/, — f) — ER Oy —> t40,4f) —> 0
Ul U
ag pz(2) 0}’1(4) .

To show that ¢ ® (% = Op(3) @ Upi(3), it is enough to prove that
H(C, (6 ® 0c) ® Op(— 4)) = HYO:2f, — 2})) = 0.

By the above diagram, we have the exact sequences:

0 —> Po0s(— 4f) =25 Pu0y(2f, — 2f) —> Pul,(2f, — 2/) —> 0,
Ul Ul
@Pz(“ 4) (91’1('— 2)63

and

0—> Pz*@d(/z - 3/[2) —> Pz*@u(zfx - 2112) — Pz*@@fx - 2f2) —>0.
Ul Ul
Op{ — 2) Op

Hence Pu0,/(2f, — 2f) is locally free and the dual homomorphism ¢*:
Op(2)® — 0p(4) is surjective. Therefore ¢* is obtained from the natural
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surjection H(P!, O(2)) ® Op, —» Op,(2) by tensoring 0p,(2). Thus we have
PO, 2f, — 2£) = Op(— 1) ® Op(— 1). Therefore we have HY0,,(2f, — 2},))
= 0.

(8) It is enough to show that the natural homomorphism Sym* & —
t405(4kf,) is surjective for k> 0. Since r is finite morphism, r,0,(4kf) ®
tx05(4f) — 4,054k + 1)f) is always surjective. Thus we are done.

(4) Since r: S — P’ is a double covering, there is a line bundle %
on P? such that 0,2) ® 0,(— S) = z*¥. By the exact sequence:

00— 1*% —> 0,(2) —> 0,(2) ® O3 = O48f) —> 0,

we have det (Sym’¢) = £ ® det (r,0484)). Therefore, by (1), L = 0p(2),
hence, 0,(S) = 0,2) ® 1*Op( — 2).

() We put D:=z"(C). Then, by (2), D= P!'x P' and 0,(1)® 0,
= 0,(s, + 3s,), where s, is a fiber of D — C and s, is a fiber of another
projection D — P!. By (4), we have 0,2) = 0,(S + D). Assume that
there is an irreducible curve 7 on M such that (0,1)-7) <O0. Then,
Yy D or 7S S Since 0,(1)® 05 = O4(4f) and 0,1) ® O, = Oy(s, + 3s,),
this is a contradiction.

(6) By the exact sequence

0—> 0, Oy(— S) —> 04(1) —> 0,(1) ® O3 —> 0,
Ul Ul
0,(— 1) @ 7*0ps(3) 0551, + £,)
we have 7,0,(1) = t,045f, + f,). Therefore H(M, 0,(1)) = H(S, 045%, + £.))-
Q.E.D.

Remark 2.1. There is a SL,-action on (M, 0,(1)) compatible to z: S —
P2 The last isomorphism in (6) is an isomorphism as a SL,-module.

2. Let us consider the subvector space L & HY(S, 045f, + f,)) gener-
ated by the following 7 elements (cf. Lemma (1.6) in [9]):

e :=xQRu

e =xyQu+ ¥ Qv

g :=xyQu+ ixy®@u
de, =2 Qu + 2y v
e,:=3xy'Qu+ ¥ Qv
e =1y Qu+ xy*Qu

e =y Qv
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Then L is an SL,-invariant subspace. By the isomorphism H°(M, @,(1))
= HYS, 04554, + £.)), L can be considered as a subspace of H'(M, 0,(1)).

Lemma 2.2. (1) The homomorphism L ® 0, — 0,(1) is surjective. Es-
pecially, we have a morphism : M — P(L) = P®, which is SL,-linear.

(2) The image V := (M) is isomorphic to the Fano 3-fold V; of de-
gree 5 in P°,

Proof. (1) We have only to show that g: L® Op, — & ® 0p(1) is
surjective. Since SL, acts on g, the support of Coker (g) is SL,-invariant.
Now SL, acts on P* with two orbits P\(C and C. First, take a point
pePNC. Then g® C(p): L — (€ ® 0p(1)) ® C(p) is described as follows:

Let a: L® 03— 0454, + f.) be the natural homomorphism and let
a(@): L— 045%, + ) ® C(q) = C be the evaluation map for ge S. Then
g® C(p): L — C® is nothing but «a(q,) ® a(q,): L — C®, where {q,, ¢.} :=
z7(p). For example, take a point p = (0:1:0)e P.. Then q, = ((1:0),
(0:1)) and ¢, = ((0:1), (1:0)) in S = P* X P. Then the calculation is as
follows:

{al(eo) =ae) = - =afe) =0, afe) = %
afe) = -+ = afe) = a(e;)) =0, axe) = %,
where a, 1= a,(q), o, := ,(qy)-

Therefore g ® C(p) is surjective for any Pe PX\C.

Next take p :=(1:0:00e C, ¢ = ((1:0), (1:0) e S. Let z = y/x, z, =
v/u be the local coordinate around g. Then m,05 = (2, + 2, 2,-2,) S 1,
The evaluation map ¢ ® C(p): L — C®* is now the composition

B: L—>L® O;—> Og/m,0s = C1®D C3,.

Since we have isomorphisms

@S(/l)q = @S,q @S(,{Z)q = 08,(1
© w w ©
x——->1 ur——>1
y—->0 v——>0,
B: 8®C(p) is calculated by evaluating x =u=1landy=32 = —v = — 32,

Therefore fle)) =1, ple) = £z, ple) =0, Bley) =0, Ble) =0, Bles) =0,
Ble)) = 0. Thus g ® C(p) is surjective for any p e C.

(2) Let hy, hy, -+, hye LV be the dual basis of {e,e, ---,e}. Since
P(L) = LV\{0}/C*, we denote the point of P(L) corresponding to >}%_, A,
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e LY\{0} by [>5.c2,A,]. If (M) contains the point [h, — hs] e P(L), then
Y(M) contains the SL,-orbit SL,[h, — h;] and its closure SL,[k, — k. On
the other hand, we know that the closure SL,[A, — A, is isomorphic to
V, by [§3,7]. Here A, — h, corresponds to fi(x,y) = xy(x* — ) in their
notation. Therefore we have only to show that (M) contains [h, — 5]
eP(L). Let P:=(0:1:0)eP®. Then by (1), the evaluation map g®
C(p): L>CO®C with (g® C(p)(e) =3, 0), (g® C(p))es) =(0,3), and
(g ® C(p))e,) = (0,0) (j # 1,5). Therefore the point q € ~%(p) = P corre-
sponding to the linear function C® C3(a,b) —a — be C is mapped to
[h, — hs] by . Q.E.D.

Remark 2.2. (1) By Lemma (1.5) in [8], V := (M) has three SL,-
orbits Y(MNV(S), V(S)\V(dp), and y(dp,), in particular, v(dp.) is a
smooth rational curve of degree 6 in V.

@ st S— (S) is the same morphism as in Lemma (1.6) in [8].
Especially, |s is one to one and Singy(S) = y(45.), where Sing ¢(S) is
the singular locus of (S).

Let us denote v(S) and +(4p,) by B and 2.

Lemma 2.3. (1) + is a finite morphism of degree 3.

(2) + is étale outsides B

) ¥*B =S + 2D, hence + is not Galois.

4) We put M,:=z"'(t) for teP’. Then ¢, := (M, is a line of
V Z P® and Viy,: M, — ¢, is an isomorphism.

(b6) For t, + t,e P*, we have ¢, + 4,

6) Let ¢ be a line in VZ P®. Then there is a point te P* such that
(=4,

Proof. (1) By Lemma (2.1)~(5), 0,(1) is ample. Therefore + is a
finite morphism and *0,(1) = 0,(1). Thus degy = (0,(1))*/(0,(1))* = 15/5
= 3.

(2) Since V\B is an open orbit of SL,, + is étale over V — B,

(8) Since (0,(1)-B) = (Ox(1)*-S) = (U5(5f, + £))s = 10, we have 0,(B)
0,(2). Therefore 0O,(y*B — S) = n*0p,(4). Since *B — S is a SL,-
invariant effective divisor, its support must be D. Thus +*B = S + 2D.

(4) It is clear since (y*0,(1)-M,) = (0,,(1)-M,) = 1.

(6) Assume that ¢, = ¢,,. Since v |s: S— B is one to one, we have
M, NS=M,NS. Hencet =t,.

(6) Let ¢ be a line of V. If ¢ ¢ B, then £ contains a point pe V\B.
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By Corollary (1.2) in §1, we have #{lines through p} < 3. Thus by (4),
(5) above, {lines through p} = {4,, ¢,, 4.}, where {t, ¢, t,} = n(y"(p)).
Therefore ¢ = 4,,. If ¢ S B, then £ = ¢, for some te C, because +|p:
D — B is one to one by (3) and 0,(1) ® 0, = Oy(s, + 5s,) by Lemma 2.1-

2).

THEOREM I. The P'-bundle n: M — P* is the universal family of lines
on V=1V,

Proof. Let T be the space of lines on V, that is, T is a subscheme
of the Grassmannian G(2, 7) parametrizing lines of V & P®. Since N,, =
0@ 0 or O(— 1)@ 0Q) for any line ¢ on V, we have H'(¢, N,,) =0 and
H°(4, N,y) = C* Therefore T is smooth surface. By the universal prop-
erty of T, we have a morphism §: P* — T corresponding to the family
(z,¥): M= P* X V. By Lemma (1.3)<(5), (6), § is one to one surjective.
Therefore § must be isomorphic.

We put U, := {x e V; there is at most n lines through x}. Then,

CororLLArY 2.1. U, =YV, U, =B and U, = 2.

§3. Compactifications of C*

Take any point te C=— P* and put ¢, := y(z7'(£)). Then ¢, is a
line of type (— 1,1). Let ¢ :V/— V be blowing up of V along the line
¢, and E, be the proper transform in V’ of the ruled surface E, swept
out by lines which intersect the line ¢,. Then, by Lemma 1.1-(b), we
have the birational morphism ¢:V’ — W, of V’ onto a smooth quadric
hypersurface W, = @* in P!, a quadric cone Q, := ¢(¢7'(¢,) = @i, and a
twisted cubic curve Y, :=¢(E) =—> @,. Let g, be the unique generating
line of @, such that Y, N g, = {v,}, where v, is the vertex of @,. Take
any point ve g,\{v,} =C. Let @, be the quadric cone in W, with the
vertex v, and put HY := (o %(Q,)).

Then, by (4.3) in [2] and [6] (see also § 1), we have the following

Lemma 3.1. (1) For any te C, (V, E,) is a compactification of C* with
the non-normal boundary E,.. Conversely, let (V, H) be a compactification
of C® with a non-normal boundary H. Then there is a point te C such that
H=E,.

(2) For any te C and any veg\{v} = C, (V, H?) is a compactifica-
tion of C*® with the normal boundary HY. Conversely, let (V, H) be a com-
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pactification of C* with a normal boundary H. Then there is a point te C
and a point ve g \{v,} such that H = H}.

Remark 3.1. Let Z, be the line P’ which is tangent to C at the point
te C. Then E, = y(z~'(Z,))) and = '(Z)\(s, U=z '(?)) = E\¥4,, where s, is
the negative section of z~(Z,) = F,.

We put

4, :={1e P*; H, is a non-normal hyperplane section of V such that

V\H, = C°}, and
A, = {1e P¢; H, is a normal hyperplane section of V such that V\H,
~C%,
where P* := P(L).

Then we have

CoroLLARY 3.1. dimg 4, = 1 and dim¢ 4, = 2.

CoRrOLLARY 3.2. For each teC, {ie 4,; ¢, S H;} = {one point} and
{2edy; 6, S H} = C.

Now, take a point ¢, = (1:0:0)e C. Then ¢, = P® is written as
follows:

€t°={h2=h3=h4=h5=h6=0}

(see the proof of Lemma 2.2—(1)).

Since V is SL,invariant, 4, and 4, are also SL,-invariant

By Lemma (1.4) of [9], the 2-dimensional SL,-orbits are SL,x%?
SL,x'y* = SL,x**, SL,xy = SL,xy°, and further SL,y* = SL,x* is the only
one SL,-orbit of dimension one on P°® Therefore we have A, = SL,y°.
By an easy calculation, we have

{Ae SLyx%*; ¢, S H}=CUC,
{Ae SLx*; ¢,, S H}=CUC,
{2e SLyxxy*; ¢,, S H} = C.

Thus, by Corollary 3.2, we must have A, = SL,xy’. We put 4 := 4,
U4, Then A = SL,xy*. Therefore, by Lemma (1.6) of [9], 4 is the image
of P' X P' with diagonal SL,-operations by a linear system L of bidegree
(5,1) on P' X P

Thus we have

THEOREM 3.1. 4, = SL,y*, 4, = SL,xy* and A = Si,xy’. In particular,
4, = P! and 4, = P' X P"\{diagonal}.
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We will show explicitly below that for any 1e 4, V\H, = C*
By p.505 in [9], V := V, = P® can be written as follows:

hoh, — 4hh; + 3h; =0
hohs — 3hhy 4 2hh; = 0
hohg — Ohsh, + 8h3 =0
hhg — 3hshy + 2hh, = 0
hshg — 4hshy + 3R =0,

where (Ay: h,: hy: hy: by by hy) is the homogeneous coordinate of PS.
We have (0:0:0:0:0:0:1)e SL,»*. In VN {hs + 0}, we consider the
following coordinate transformation

X, = hy — 9hoh, + 8h2
%, = hy — 3h,hs + 3hsh,
X, = hy — dhghy + 32

Xy = hy
x, = h,
X5 = hy
Vg = 1.

Then we have
VNihs 0 = {xy=x=x, =0} = C*,

and the line {h, = h, = h, = h, = h, = 0} is the singular locus of the
boundary VN {h, = 0}.

We have (0:0:0:0:0:1:0) e SLyxy*. In VN {h; == 0}, we consider the
coordinate transformation

X, = hy — 3h,h, + 2h,h,
x = h

Xy, = 3hy, — hhy — 2h;h,
<x; = 4hy; — hyhy — 3h}

x, = h,
x6=h6
hy=1.

Then we have

VNi{h; #0} = {x, = x, = x, = 0} = C?,

and the boundary V N {h, = 0} has a singularity of A,type at the point
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(1:0:0:0:0:0:0).
Therefore, for any 1€ SL,y* (resp. SL,xy®), H, is non-normal (resp.
normal with a rational double point of A,type), and further V\H, = C°.
Since 4, and 4, are SL,-orbits, we have the following

CoroLLARY 3.3 (cf. [6]). Let (V,H) and (V,H’) be two compactifica-
tions of C* with normal (resp. non-normal) boundaries H and H'. Then
there is an automorphism « of V such that H' = a(H).
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