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THE FAMILY OF LINES ON THE FANO THREEFOLD Vβ

MIKIO FURUSHIMA AND NOBORU NAKAYAMA

Introduction

A smooth projective algebraic 3-fold V over the field C is called a

Fano 3-fold if the anticanonical divisor — Kv is ample. The integer

g = g(V) = i ( - KVY is called the genus of the Fano 3-fold V. The

maximal integer r >̂ 1 such that Θ(— Kv) ^ 3d?r for some (ample) inver-

tible sheaf 3d? e Pic V is called the index of the Fano 3-fold V. Let V be

a Fano 3-fold of the index r = 2 and the genus g = 21 which has the

second Betti number ό2(V) = 1. Then V can be embedded in P 6 with

degree 5, by the linear system \3d?|, where d)(— Kv) ^ jf2 (see Iskovskih

[5]). We denote this Fano 3-fold V by V5.

Vs can be also obtained as the section of the Grassmannian G(2, 5)
c=—> P* of lines in P 4 by 3 hyperplanes in general position.

There are some other constructions of the Fano 3-fold V5 (cf. Fujita

[1], Mukai-Umemura [9] and Furushima-Nakayama [3]). But so obtained

F5's are all protectively equivalent (cf. [5]).

The remarkable fact on V5 is that V5 is a complex analytic compacti-

fication of C3 which has the second Betti number one (see Problem 28 in

Hirzebruch [4]).

Now, in this paper, we will analyze in detail the universal family of

lines on V5 and determine the hyperpiane sections which can be the

boundary of C3 in V5.

In § 1? we will summarize some basic results about V5 obtained by

Iskovskih [5], Fujita [1] and Peternell-Schneider [6]. In § 2, we will con-

struct a P^bundle P{$) over P2, where $ is a locally free sheaf of rank

2 on P\ and a finite morphism ψ:P(<?)-> V5 <=—> P6 of P{£) onto V5

applying the results by Mukai-Umemura [9]. Further, we will show that

the P^bundle P(£) in fact the universal family of lines on V5. In § 3, we

will study the boundary of C3 in V5 and the set {He\Θv(l)\; V5\H ^ C3}.
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§1. Basic facts on V5

Let V: = Vb be a Fano 3-fold of degree 5 in Pδ (see Introduction)

and £ = P 1 is a line on V. Then the normal bundle NilT of £ in V can

be written as follows:

(a) Nw^OsQΘs, or

(b) Neιv^Θe{-l)®ΘlD

We will call a line £ of the type (0,0) (resp. ( - 1,1)) if Ne]V is of

the type (a) (resp. type (b)) above.

Let σ: V -> V be the blowing up of V along the line £, and put

U : = σ~\£). Then L' ̂  P 1 X P 1 if £ is of type (0, 0), and L' ̂  F2 if £ is

of type (— 1,1). Let fu /2 be respectively fibers of the first and second

projection of P 1 X P 1 onto P1, and let s, / be respectively the negative

section and a fiber of F2. Let H be a hyperplane section of V. Since

the linear system \σ*H — Lf\ on V has no fixed component and no base

point and since h°(Θ(σ*H - I/)) = 5 and (<Λff - LO3 = (<J*J5Γ - LO' t ' = 2,

the linear system |σ*iί— L'\ defines a birational morphism ψ : = ^ I ^ ^ - ^ I :

y ; —> VFC=—>P4 of V onto a quadric hypersurface W in P4, in particular,

Q : = 9(L') is a hyperplane section of VF. Let E := Eέ be the ruled sur-

face swept out by lines which intersect the line £ and Ef the proper

transform of E in V7.

LEMMA 1.1 (Iskovskih [5], Fujita [1]). W is a smooth quadric hyper-

surface in P4 and Y: ~ φ(E) is a twisted cubic curve contained in Q. In

particular, φ: V -> W is the blowing up of W along the curve Y. Further,

we have the following.

(a) If £ is of type (0, 0), then ψ\v\ V ^ Q s P 1 X P\ and Y ~ f, +

2/2 in V.

(b) // £ is of type (— 1,1), then φ\L,: Lf -> Q s Qo (o quadric cone) is

the contraction of the negative section s of Z/ ^ F2> «̂ c? F — 5 + 3/ m ZΛ

In (a) and (b), we denote the proper transform of Y c=—> Q in L' by

Ϋ.

COROLLARY 1.1. (a) // £ is of type (0, 0), then Ef ^ Έv

(b) // £ is of type ( - 1, 1), then Ef ^ F3.
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Proof Let Nγ[w be the normal bundle of Y in W. Then NY[W ^

ίV(3) Θ 0r(4) if i is of the type (0, 0), and NY{W s 0r(2) θ 0y(5) if Y is of

type (-1,1). Q.E.D.

COROLLARY 1.2. (a) 7/ ^ is o/ type (0, 0), then there are two points

Qi Φ Qι of £ such that (i) there are two lines in V through the point qt

(i = 1,2), and (ii) there are three lines in V through every point q of

(b) If £ is of type (— 1, 1), there is exactly one point qQ of £ such that

(i) £ is the unique line in V through the point qQi and (ii) there are two

lines in V through every point q of £\{qo}

Proof (a) Let p2\ Q ^ P1 X P1 -* P1 be the projection onto the sec-

ond component. Since Ϋ ~ f1 + 2/2, p2\γ: Y -> P 1 is a double cover over

P1. Thus there are two branched point bλ Φ b2 in P1. We put qt : =

^ ( p W - ' t e W ' W ) (i - 1, 2). Then 4 - σ(Ϋ) and ^ -.-σ^-Xp^Xb,)) (ί -

1, 2) are two lines through the point qt for each i. For b e Pι\{bi, b2),

£ = <T(Y) and σiφ'Xpϊ^b))) are three lines through the point q e A{#i, 2̂}̂

since pϊXb) consists of two different points. This proves (a).

(b) We put q0 : = σ(Ϋf]s) e £. Then £ = σ{Ϋ) = σ(s) is the unique line

through the point q0 e £. For ye Y\φ(s), £ = σ(Y) and σ(φ"\y)) are two

lines through a point of ^\{g0}. This proves (b). Q.E.D.

COROLLARY 1.3 (Peternell-Schneider [6]). Let E be a non-normal hy-

perplane section of V5. Then the singular locus of E is a line £ on V, in

particular, E is a ruled surface swept out by lines which intersect the line

i. Further V - E ^ C3 if and only if the line ί is of type ( - 1,1).

Proof By Lemma (3.35) in Mori [8], the non-normal locus of E is a

line £ on V. Since h°((Pv(ΐ) ® ./J) = 1 and Pic V ^ Z, the linear system

\ΘV(1)®J)\ consists of E, where ft is the ideal sheaf of β. By Lemma

1, £ must be the singular locus of E. Assume £ is of type (0, 0). Then,

by Lemma 1, V - E s {(x,y, z, u) e C4; x2 + y2 + z2 + u2 = 1} £ C3.

Q.E.D.

§ 2. Construction of the universal family

l Let (x\y), (u:υ) be respectively homogeneous coordinates of the

first factor and the second factor of S : = P 1 X P\ Let us consider the

diagonal SL(2; C)-action on S, namely, for σ = (* ^\ e SL2 : = SL(2; C),
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{ xσ = ax + by (uσ = au + bv

yσ = ex + dy , \ Ϊ / = cu + dv .

Let r: £—>P2 be the double covering of P 2 given by

(τ*X0 = χ(g)u

lτ*X1 = ±(x®v + y®u)
[τ*X2 =y®v

where (Xΰ: Xx: X2) be a homogeneous coordinate on P2. We can also de-

fine SL2-action on P 2 as follows:

(Xζ = a2X0 + 2abX1 + 6 %

\ ί = acXQ + (ad + bc)X, + bdX2

°2 = c2XQ + 2cdXι + d*X2

Then, the morphism τ is SL2-linear, that is, t(pσ) = τ(p)σ for p e S and

σ e SL2. Further, τ is branched along the smooth conic C : = {XI = -XΌ-̂ } =

τ(J), where J : = J P 1 is the diagonal in P1 X Pι = S. Let ft be a fiber of

the projection Pt: S-+P1 onto i-th factor (£ = 1, 2). Let π: M := P(δ)

->P 2 be the P^bundle over P 2 associated with the vector bundle S : =

fd of rank 2 on P2.

L E M M A 2.1. (1) det (τ*0s(kfj) ^ ΘP%(k - 1) and c2(τ*Os{kfύ) = ik(k- 1)

for all k^O.

(2) S ® Θc ^ ί?pi(3) Θ 0Pi(3), ^Λβrβ C = τ(J).

(3) The natural morphism S -> M corresponding to the homomorphίsm

τ*$ -> Φsi^fi) is a closed embedding, hence, S can be considered as a di-

visor on M.

(4) ΘM(S) = 0,(2) (x) τr*0p2(— 2), z /̂iere 0,(1) is £&e tautological line bun-

dle on M with respect to S.

(5) 0 (̂1) is nef, i.e., £ is a semi-positive vector bundle

(6) We pid 0^(1) : = 0,(1) ® π*0Pa(l).

1, 0P 1(5)) ® c fl^P1, 0

Proof. (1) Let us consider t h e exact sequence:

0 • r*0β(JfeA) > τ*0β((Λ + 1)Λ) • τ # 0 / 1 • 0 .
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Now A = r(/,) is a line on P2 and φh s r*<?/r Thus, det (r^ftA + 1)/,))

S det (r,Φβ(kβd) ® 0(1) and c2(t^s{(k + 1)/,)) = (det (τ*Θs(kfJ) • &Q)) +

Φ*Φs((kfd). Since r*0s ^ ί ) ® t f ( - l ) , we are done.

(2) Let us consider the following diagram:

0

0 — * ^(2/ ; - 2Λ) — >

I
0 > <P3(3A - A) > Θs(4f,)

1
0

Since τ*C = 24, we have r*02J(4/,) = £ ® ®c and the exact sequence:

0 • r*(PX3/, - /2) —_• ^ (g) ίPc • ̂ ^ 4 / , ) > 0

ill ill
W) (ΰPι(4).

To show that t ® Θc s <?pi(3) Θ <PW(3), it is enough to prove that

tf (C, {f ® <P0) ® <P,,(- 4)) s H0(^X2A - 2/2)) = 0 .

By the above diagram, we have the exact sequences:

0 > P^0s(- 4/2) JU P2^S(2Λ - 2/2) > P ^ ^ / , - 2/,) • 0 ,

ill ill

and

0 > PitΘ4{h - 3Λ) > PA(2A - 2/z) • P»Φd{2h - 2Λ) > 0 .

«ι ίii
« P » ( - 2) ^

Hence P«tΦu(2f, - 2/2) is locally free and the dual homomorphism ψ*\

ΘP1{2)®S -* ΦP1(4) is surjective. Therefore φ* is obtained from the natural

https://doi.org/10.1017/S0027763000001719 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001719


116 MIKIO FURUSHIMA AND NOBORU NAKAYAMA

surjection H°(P\ 0(2)) ® 0P 1 —*• 0P1(2) by tensoring 0pi(2). Thus we have

P^2j(2/i - 2/2) s 0Px(- 1) θ Θpι(- 1). Therefore we have H°(Φ2/2fi - 2/2))

= 0.

(3) It is enough to show that the natural homomorphism Symfc g ->

τ^Θs(4kfι) is surjective for k > 0. Since τ is finite morphism, τ*Θs(4kfϊ) ®

τ*Θs(^f\) ~* r*0s(4(& + l)/i) is always surjective. Thus we are done.

(4) Since τ: S —> P 2 is a double covering, there is a line bundle ϋf

on P 2 such that 0/2) ® 0M( — S) = π*J£f. By the exact sequence:

0 !>,( 2) (x) 0 5 s 0β(8A) > 0 ,

we have det (Sym2 δ) ^ if (x) det (τ*<9s(9>fo) Therefore, by (1), if ^ 0pβ(2),

hence, ΘM(S) ^ 0/2) (x) τr*0p 2(- 2).

(5) We put D := π~\C). Then, by (2), D s P 1 X P 1 and 0/1) ® 0Λ

= ^D(SI + 3 2̂), where s2 is a fiber of D -> C and Sj is a fiber of another

projection D -> P1. By (4), we have 0/2) ^ ΘM{S + D). Assume that

there is an irreducible curve ΐ on M such that (0/1) ϊ) < 0. Then,

ί g ΰ o r r g S , Since 0/1) ®ΘS^ Θs(φ and 0/1) ® ΘD s ^ ( s , + 3s2),

this is a contradiction.

(6) By the exact sequence

0 o,
III

0 / - 1) (g) π*0p2(3)
ill

h + A)
we have ^ 0 / 5 / , + /2). Therefore H°(M, 0^(1)) s //°(S, 05(5/x + /2)).

Q.E.D.

Remark 2.1. There is a SL2-action on (M, 0^(1)) compatible to τ: S->

P2. The last isomorphism in (6) is an isomorphism as a SL2-module.

2. Let us consider the subvector space L g ίίo(S, 0s(5/j + /2)) gener-

ated by the following 7 elements (cf. Lemma (1.6) in [9]):

= x4y u + -^r5 ® u

Λ:3/ ® u + %x4y (x) i;

x2y3 ® u + x3y2 ® i;
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Then L is an SL2-invariant subspace. By the isomorphism H°(M, ΘM{1))

^ H°(S, Θs{hfx + /2)), L can be considered as a subspace of H°(M, ΘM{1)).

LEMMA 2.2. (1) The homomorphism L®0M-+ ΘM{1) is surjectίve. Es-

pecially, we have a morphism ψ: M-±P(L) ^ P6, which is SL2-lίnear.

(2) The image V: = ψ(M) is isomorphίc to the Fano 3-fold V5 of de-

gree 5 in P6.

Proof (1) We have only to show that g: L®ΘP^->i® 0p2(l) is

surjective. Since SL2 acts on g, the support of Coker (g) is SL2-invariant.

Now SL2 acts on P2 with two orbits P\C and C. First, take a point

p e P\C. Then g(g) C(p): L-*{δ® 0Pa(l)) ® C(p) is described as follows:

Let a: L ® Θs -> Θs(δf1 + /2) be the natural homomorphism and let

α(g): L-ϊΘsφfi + /2) ® C(g) ^ C be the evaluation map for qeS. Then

g® C(p): L-+C®2 is nothing but a(qd © «(%): L-> C®2, where {g1? q2} : =

r '^p). For example, take a point p = (0: 1: 0) e P\ Then ^ = ((1:0),

(0:1)) and q2 = ((0:1), (1: 0)) in S = P 1 X P1. Then the calculation is as

follows:

ίβo) = ai(e2) = = or̂ eβ) = 0 , α f̂o) = I

(β0) = = a2(e4) = αr2(β5) = 0 , a2(eb) = ^ ,

where ^ : = ^(QΊ), α2 : = a2(q2).

Therefore g® C(p) is surjective for any PeP\C.

Next take p := (I: 0: 0)eC, q = ((1: 0), (1: 0)) € S. Let zx = J/Λ:, ^2 =

υ/u be the local coordinate around q. Then m ^ = (z1 + z2, zrz2) g m

The evaluation map g ® C(p): L -> C®2 is now the composition

β: L • L ® Θs > ΘslmvΘs ^Cl® Czx.

Since we have isomorphisms

?.

j8: g®C{p) is calculated by evaluating JC = u = 1 and y = zx — — v = — £2

Therefore 0(eo) = 1, ^ β ^ = fe, β(e2) = 0, j3(β8) = 0, j8(e4) = 0, β(e5) = 0,

]3(eβ) = 0. Thus g ® C(p) is surjective for any p e C.

(2) Let Λo, hί9 - -, h6 e L v be the dual basis of {β0, e1? , β6}. Since

P(L) ^ Lv\{0}/C*, we denote the point of P(L) corresponding to Σι*=*hhi
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e Lv\{0} by [Σ5= o λsh^ If ψ(M) contains the point [hx - Λ5] e P(L\ then

ψ(M) contains the SL2-orbit SL^ — Λ5] and its closure SL2[hx — Λ5]. On

the other hand, we know that the closure SL^ —~7ΐJ is isomorphic to

V, by [§ 3, 7]. Here h, - h, corresponds to fe(x9y) = xy(x4 - / ) in their

notation. Therefore we have only to show that ψ(M) contains [hx — Λ5]

eP(L). Let P : = (0:1: 0)e P2. Then by (1), the evaluation map g®

C(p): L-^C®C with (g® Cί^Xβ,) = (|, 0), (g<g> C(p))(β5) = (0, *), and

(5 ® CipyKe,) = (0, 0) (j ^ 1, 5). Therefore the point q e π'\p) = P 1 corre-

sponding to the linear function C Θ C 9 ( α , δ ) ^ α - δ e C is mapped to

[hx - h5] by ψ. Q.E.D.

Remark 2.2. (1) By Lemma (1.5) in [8], V:=ψ(Af) has three SL2-

orbits ψ(M)\ψ(S), ψ(S)\ψ(Jpi), and ψ(JPi), in particular, ψ(άpi) is a

smooth rational curve of degree 6 in V.

(2) ψ | s : S->ψ(S) is the same morphism as in Lemma (1.6) in [8].

Especially, ψ\s is one to one and Singψ(S) = ψ(JP1), where Singψ(S) is

the singular locus of ψ(S).

Let us denote ψ(S) and ψ(Άpi) by JB and I7.

LEMMA 2.3. (1) ψ is a finite morphism of degree 3.

(2) ψ is έtale outsίdes B

(3) ψ*B = S + 2Z), Λerace ψ is noί Galois,

(4) Wfe pwί Λ f ί ^ π " 1 ^ ) for teP\ Then ^ : = ψ ( Λ f t ) is α /me o/

F g P 6 αzzcί ψ\Mt: Mt-> £t is an isomorphism.

(5) For *! ^ h e P2, ^ Λα^ £tl Φ &tr
(6) Lei £ be a line in V g P6. T7ie7i ίΛere is α point te P 2 si/c/i

Proo/. (1) By Lemma (2.1)-(5), ^M(l) is ample. Therefore ψ is a

finite morphism and ψ*0F(l) = ^jf(l). Thus deg ψ = ((P^(1))3/(^Γ(1))3 = 15/5

= 3.

(2) Since V\B is an open orbit of SL2, ψ is etale over V — B.

(3) Since (Θv(ΐ)2-B) = (^(1)2 S) = (0fi(5Λ + /2))| = 10, we have ΘV{B)

Θv{2). Therefore 0u($*B - S) ^ π*(PP.(4). Since ψ*β - S is a SLr

invariant effective divisor, its support must be D. Thus ψ*B = S + 2Z).

(4) It is clear since (ψ*0r(ΐ).Mt) = (^(lJ MJ = 1.

(5) Assume that £tl = £t%. Since ψ | s : S^> B is one to one, we have

M t i n S = MH Π S. Hence tx = ί2.

(6) Let ^ be a line of V. If £ <£ B, then ^ contains a point p e V\B.
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By Corollary (1.2) in § 1, we have # {lines through p] <L 3. Thus by (4),

(5) above, {lines through p] = {£tl, £tΛ, £h}9 where {tl9 t2, t3} = πiψ'Xp)).

Therefore £ = £t%. If ^ g B, then ^ = £t for some ίe C, because ψ\D:

D -> JB is one to one by (3) and 0^(1) <g) 0^ ^ ί^fo + 5s2) by Lemma 2.1-

(2).

THEOREM I. The Px-bundle π: M-+P2 is the universal family of lines

on V= V,.

Proof Let T be the space of lines on V, that is, T is a subscheme

of the Grassmannian G(2, 7) parametrizing lines of V g P6. Since Neιv =

Θ®Θ or Θ{— 1) 0 0(1) for any line ^ on V, we have H\£, Neιv) = 0 and

H°(£,N£IV) ^ C2. Therefore T is smooth surface. By the universal prop-

erty of T, we have a morphism δ: P2 —> T corresponding to the family

(π,ψ): M^—>P2 X V. By Lemma (1.3)-(5), (6), δ is one to one surjective.

Therefore δ must be isomorphic.

We put Un : = {x e V; there is at most n lines through x}. Then,

COROLLARY 2.1. U, = V, U2 = B and Ux = Σ.

§ 3. Compactifications of C3

Take any point teC-=—>P2 and put £t : = ψίπ"1^)). Then ^ is a

line of type (— 1,1). Let a :V -+ V be blowing up of V along the line

£t and Et be the proper transform in Vf of the ruled surface Et swept

out by lines which intersect the line £t. Then, by Lemma l.l-(b), we

have the birational morphism φ: V -> Wt of V onto a smooth quadric

hypersurface Wt ^ Q3 in P4, a quadric cone Qt : = φ(σ'\£t)) = Qo> and a

twisted cubic curve Yt :=φ(Et)
cz—> Qt. Let gt be the unique generating

line of Qt such that Yt Γ\ gt = {vt}, where vt is the vertex of Qt. Take

any point v e gt\{vt} = C. Let Qυ be the quadric cone in Wt with the

vertex v, and put if" : = a((p~XQv)).

Then, by (4.3) in [2] and [6] (see also § 1), we have the following

LEMMA 3.1. (1) For any teC, (V, Et) is a compactification of C3 with

the non-normal boundary Et. Conversely, let (V, H) be a compactification

of C3 with a non-normal boundary H. Then there is a point te C such that

H=Et.

(2) For any te C and any vegt\{vt} = C, (V, H?) is a compactifica-

tion of Cz with the normal boundary H?. Conversely, let (V, H) be a com-
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pactίfication of C3 with a normal boundary H. Then there is a point te C

and a point v e gΛί^} such that H = H?.

Remark 3.1. Let Zt be the line P2 which is tangent to C at the point

teC. Then Et = ψ{π~\Zt)) and π~\Zt)\(st U π-\t)) ^ £ΛA, where 5, is
the negative section of π~\Zt) = F3.

We put

Ax : = {ΛeP6; if* is a non-normal hyperplane section of V such that

V\fli S C3}, and

yί2 : = {̂  € P6; iίi is a normal hyperplane section of V such that V\Hλ

where Pβ : = P(L).

Then we have

COROLLARY 3.1. dimc Aλ~\ and dimc Λ2 = 2.

COROLLARY 3.2. For eαc/i ί e C , {i e A; £tQ Hλ] = {orce pomί} α^c?

Now, take a point Jo = (1: 0: 0)e C. Then StQ <=—>P6 is written as

follows:

Aθ = {̂ 2 == 3̂ = K = 5̂ = K = 0}

(see the proof of Lemma 2.2-(l)).

Since V is SL2-invariant, yίj and Λ2 are also SL2-invariant

By Lemma (1.4) of [9], the 2-dimensional SL2-orbits are SL2x
3y\

SL2xY = SL2x
2y\ SL2x"y = SL2xy5, and further SL 2 / = SL2x

6 is the only

one SL2-orbit of dimension one on P6. Therefore we have Λx = SL2y\

By an easy calculation, we have

{λeSL2xY; £t0Q Hλ) ^ C U C ,

T h u s , b y C o r o l l a r y 3 .2, w e m u s t h a v e Λ2 = SL2xy*. W e p u t Λ \ —

U Λ2 Then A = SL2xy\ Therefore, by Lemma (1.6) of [9], -4 is the image

of P 1 X P 1 with diagonal SL2-operations by a linear system L of bidegree

(5,1) on P 1 X P1.

Thus we have

THEOREM 3.1. Ax = SL2y\ A2 — SL2xy* and A = SL2xy\ In particular,

x = P 1 and Λ £ P 1 X P\{diagonal}.
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We will show explicitly below that for any λ e Λ, V\Hk = C3.

By p. 505 in [9], V := V5 ^—> P6 can be written as follows:

/IQΓ14 — 4:/ϊιfi3 -f- όrι2 '=• 0

h0h5 - 3&Λ + 2h2h3 = 0

h0h6 - 9h2h4 + 8h2

3 = 0

hjis — 3h2hδ + 2h3h4 = 0

A2Λβ - 4h3h5 + 3h\ = 0,

where (Λo: hx\h2\hz\h4\h^\ h6) is the homogeneous coordinate of P6.

We have (0: 0: 0: 0: 0: 0:1) e SL2y\ In FΠ {h6 Φ 0}, we consider the

following coordinate transformation

χ0 = h0 —

x2 = Λ2 —

x 4 = h 4

8hl

3/14

\Λβ = 1 .
Then we have

^ {x0 = Xl = x2 = o } ^

and the line {h2 = Λ3 = h4 = /ι5 = /ι6 = 0} is the singular locus of the

boundary V Π {Λβ = 0}.

We have (0: 0: 0: 0: 0 : 1 : 0) e SL2x/. In V Π {Λ5 =̂ 0}, we consider the

coordinate transformation

xx = /ij

x2 == Sh2 — hxhQ — 2h3h4

x3 = 4h3 — h2h6 — Shi

x4 = h4

x6 = h6

\Λβ = 1
T h e n we h a v e

v n {Λ5 Φ 0} s {χ0 = χ2 = Xs = 0} ̂  c 3 ,

and the boundary VΊΊ {Λ5 = 0} has a singularity of A4-type at the point
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(1:0:0:0:0:0:0).

Therefore, for any λ e SL2y
6 (resp. SL2xy*), Hλ is non-normal (resp.

normal with a rational double point of A4-type), and further V\HX = C\

Since Λx and A2 are SL2-orbits, we have the following

COROLLARY 3.3 (cf. [6]). Let (V,H) and (V,Hf) be two compactifica-

tίons of C3 with normal (resp. non-normal) boundaries H and H'. Then

there is an automorphism a of V such that W = a(H).
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