
J. Functional Programming 5 (1): 51-64, January 1995 © 1995 Cambridge University Press 51

Defining data structures via Bohm-out1

(To Corrado Bohm on the occasion of his 70th birthday)

ENRICO TRONCI
Dipartimento Matematica Pura ed Applicata, Universita di L'Aquila,2

Via Vetoio, Coppito, 67100 UAquila, Italy
(e-mail: tronci@smaq20.univaq.it)

Abstract

We show that any recursively enumerable subset of a data structure can be regarded as the
solution set to a Bohm-out problem.

Capsule review

If D is the data structure determined by a free algebra, then an element d in D can be
represented in a natural way by a lambda term d. The paper gives a representation of the data
structure itself by constructing a single lambda term <<D>> such that M represents an element
of the data structure D iff M is a solution of the following two equations:

(Kz)M = z.
This follows from corollary 4.4.

Statman (1989) had proved already that every recursively enumerable set of closed lambda
terms which is closed under P-conversion is the solution set of a combinatory equation.
However, for the given data structures the solution above is without coding.

1 Introduction

It is well known that data structures can be specified using anarchic heterogeneous
term algebras (e.g. see Bohm and Berarducci, 1985, and Leivant, 1983. For example,
the natural numbers are the universe of the term algebra Nat = <{Nat}, {s : Nat->
Nat, 0 : Nat}> (i.e. Nat = {0, s(0), s(s(O)),...}). Moreover, such specification yields
immediately a representation in the X-calculus for the constructors and the elements
of the data structure.

Is it possible to represent the set of elements of a data structure as the solution set
to a system of equations in the ^.-calculus?

Statman (1989) showed that any P-closed and recursively enumerable (RE) set of
closed A.-terms is the solution set to a combinator equation. Thus the answer to the
1 This paper is a revised version of Tronci (1991 a, Section 3).
2 This paper was written when the author was a Post-Doct at LIP ENS Lyon, 46 Allee d'ltalie, 69364 Lyon

cedex 07, France.

https://doi.org/10.1017/S0956796800001234 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001234

52 E. Tronci

above question is affirmative. However, the equation in Statman (1989) involves
coding and is difficult to study.

We show that if we restrict ourselves to data structures the situation can be
considerably improved in the following sense.

Let D be a data structure, deD, 3eA° a closed .̂-term representing d and
D = {3\deD}. Then (4.3) there is a closed A.-term « D » s.t. (/= (Xt. /)):

z5] and

Thus the solution set to the Bohm-out problem specified by the equation
«D»(taz .z)X = z (unknown X) can be regarded as D (up to the filtering « D » I)
and the A.-terms representing the elements of the data structure D are exactly the "k-
terms Bohming-out z from <<D>>(A,a. z). Moreover, the definition of the X,-term
<<D>> closely follows the definition (type structure) of D. Hence, in some sense,
<<D>> is the definition inside the ^.-calculus of the type definition of the data
structure D.

As an easy corollary we have (4.8) that any RE subset of a data structure can be
regarded (up to the filtering <<D>>I) as the solution set to a Bohm-out problem.

These results do not achieve the full strength of Statman (1989) since, in general,
for each deH there are infinitely many (non-P-convertible) Me A0 s.t.:
<<D>>(taz.z) M = z and <<D>>IAf = d. This, however, does not yield any problem
since the data 'coded' in Mcan be read computing « D » \ M . On the contrary, this
feature suggests a uniform approach to modularity (since no reference is made to the
structure of M) and to data compression (since M can be much smaller than

2 Basic definitions

We assume the reader to be familiar with Barendregt (1984) of which, unless
otherwise stated, we use notations and conventions. Var is the set of variables of A.

Let Se S A. The elements of Form (J£?) = {M = N \ M, Ne <£} are called formulas
(on jSf). From the context, it will be easy to decide if M = N is a formula or stands
for M = ^N.

Here are a few famous k-terms: 1 = Xt.t: \J" = 'kt1...tn.ti, where 1 ^ i sg n.
If/: A -+B is a partially defined function and aeA, we write \J{a) = | (or/(a)j) for

' / is defined' and_/(a) = f (or j{a)\) for ' / i s undefined'.
When defining a set by induction we omit the part ' . . . the smallest set...'.
If L is a list we write a e L for a occurs in the list L and L = nil for L is empty.
In the presence of binding operators, we assume that there are no name clashings

{hygiene condition as that in Barendregt, 1984, Section 2.1.13).

Definition 2.1 0. A system of {equations) is a pair (F, X) where F is a finite set of
formulas on A {the equations) and X is a finite subset of War {the unknowns).
1. Let if = (F, X) be a system. A formula M = Ne F is said to be an equation of if.
By abuse of language we write also M = NeSf. A variable xeX is said to be an
unknown of y. Unless otherwise stated, equations are considered up to ^-conversion,

https://doi.org/10.1017/S0956796800001234 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001234

Defining data structures via Bohm-out 53

e.g. &[= ({Xz.xz)z = x}, {x}) = ({xz = x},{x}) is a system with one equation and one
unknown (namely x).
2. A system if = (T, {x 1 ; . . . , xj) is said to be ^-solvable iff there exist Dlt... Dn e A0 s.t.
for all equations M = N in Sf we have M[x1 ••= Dx, ...,xn — Dn] = pN[xx ••= Dv

...xn~ Dn] (i.e. M and N are made ^-convertible by replacing the variables xv...xn

with closed X-terms Du... Dn).
The substitution D[] = (Xx,,...xn.[])D1...Dn(s.t.D[Q] = Q[x, ••= Dlt...xn = DJ)

is said to be a ^-solution for Sf.

Solutions (Sf) = {(£>!,...Dn)e(A0)"\D[] = (XXl...xn.[])D1...Dn is a ^-solution

for Sf}.
3. An SL-system (separation-like system) is a system Sf = (F,X) with equations
having form (up to ̂ -conversion) x M = z where xeX and z$X, e.g. <9£ = ({xz — z},{x})
is an SL-system (with unique solution I), but 9[is not an SL-system. Thus an
SL-system is a (simultaneous) Bohm,-out problem. SL-systems are studied in Tronci
(1991). •

We give the definition of data structure. All the definitions in (2.2) come (or are
inspired) from Bohm and Berarducci (1985), Leivant (1983) and Burris and
Sankappanavar (1981).

Definition 2.2 0. GndType = {a0, a15...} is the set of ground types (or basic types).
We use the letters A, B, with or without subscripts, as syntactic variables of GndType.
1. The set Type (of types) is defined as follows: GndType ^ Type; if Ax,...An,
B e GndType then Atx ...xAn^-Be Type.

We use the letters a, a, y, with or without subscripts, as syntactic variables on Type.
2. A function declaration is a pair f: a, where f is any alphanumeric identifier and
a e Type.
3. A language (or type) of data F is a finite list of pairwise distinct function
declarations, i.e. iff^.a^f^.a.^ are in F thenfx andf2 are distinct identifiers and ar, a2

are distinct types.
4. Let F be a language of data and A e GndType. A is said to be a parameter in F iff
[A occurs in F and there is no function declaration in Fhaving form f. Ax x ...x An->A],
A is said to be a nonparameter in F iff [A occurs in F and A is not a parameter in F].
5. Let F be a language of data with exactly k (k~^0) parameters and Card(F) = n.

0. We denote with F(l),... F(k) the parametric types of F and with F(k + 1),... F(n)
the nonparametric types of F. Since the order in which types are considered matters we
choose it as follows:
F(i) = case 1 < / < k then the i-th parameter encountered scanning F;

k < i ^ n then the (i—k)-th nonparameter encountered scanning F;
end.

1. We define: univ(F) = <F(l),...F(n)}, param(F) = <F(l),...f(A:)>,
nonpar (F) = (F(k+ 1),... F(n)} (see the example below, point 2).
6. The set DS of data structures is defined as follows: if F is a language of data s.t.
param(F) is empty then FeDS; if F is a language of data s.t.
Card(param(F)) = k > 0 and D 1 ; . . . D k e D S then ((AF(l)...F(k).F)D1...Bk)eDS.

(Here A has nothing to do with X-conversion or polymorphic X-calculus.)

https://doi.org/10.1017/S0956796800001234 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001234

54 E. Tronci

A data structure of language F is a data structure D having form
(k = Card (param(F))) ((AF(1)... F(k) .F)D1...Dk)(the case k = Ois allowed and then
D = F).
7. An assignment of generators # is a map that assigns to each element A e GndType
a set p(A) s.t.MA, Be GndType [A + B => #(A) (] ?(B) = 0] .

We write g-eGAfor # is an assignment of generators.
8. Let F be a language of data, #eGA and A euniv(F).

0. The set T(F,g,A) of terms of type A in F is defined as follows: ?(A)\J{f\f:
AeF}cT(F,?,A); if f: Atx ...xAn^AeF and V ie{l,...n}[p(eT(F,?,Af)] then
f[Pl,...pn)eT(F,?,A).

1. T(F,?) = U{T(F,?,A)\Aenonpar(F)}.
9. Let D = ((A: F(\)... F(k).F)D1...Dk)eDS and Card (univ (F)) = n. The function
[D] with domain {0, \,...n) is defined as follows {we write [D, ij for [DJ (0):

[D, ij = case i = 0 then (P>,k+ 1] U ... U [D,n]);
1 ^ i «£n then T(F,?,F(f)); end,

where: ?(A) = if A = F(J)eparam(F) then fD.,,01 else 0.
[D, 01 defines the set of elements of a data structure D. This set is obtained instancing

(via T(F,p,F(i))) the parameters of F (i.e. F(l),...F(k)) with the elements of the
parametric data structures ofT) (i.e. D1;...Dk). We write |D|/or [D,0] and deDfor
fe |D| and we call d an element o/D. •

Example 0. The following are types: ax, a1xaox a13 -*• a7.
1. The following are function declarations: cons: A x L ->• L, nil: L.
2. F= <egxp:Z,Xy4 xB^L, gp:L> is a language of data s.t. univ(F) = (A,B,L),
param (F) = (A,B}, nonpar (F) = <L>.
3. D = ((Av4. <cons:^ x L^Z,, nil:L))(s:N-^N, 0:N}) is a data structure
(representing lists over natural numbers).
4. Let Boole = <tt:2?, ff:5> be a language of data and Boole = Boole a data
structure. Then: |Boole| = [Boole,0] = [Boole, 1] = {tt,ff}.
5. Let Nat = (s:N-+0:N} be a language of data and Nat = Nat a data structure.
Then: |Nat| = [Nat,0] = [Nat, 1] = {0,s(0),S(J(0)), . . .}.
6. Let L = (cons:AxL^L, nil:L> be a language of data and
List(Nat) = ((A :A. L) Nat) be a data structure (i.e. the one in point 3 above). Then:
|List(Nat)| = [List, 0] = [List, 2] = {nil, cons (0, nil),...} and [List, 1] = |Nat|. •

Notation Let D1;...Dn+1eDS. A function / from D ^ . ^ x D , to Dn+1 (written
/ : Dx x ... x Dn -> DB+1) is a function from |DX| x ... x |Dn+1| to |Dn+1|. Moreover,
we write deD1x...xDn((dl,...dn)eD1x...xDn) for
de|DJ x ... x |DJ((dx,...dn)e|DJ x ... x |DB|}. D

3 Representing data structures in the ^.-calculus

Given a data structure D (see Definition 2.2(6)) we want to represent its elements in
the ^.-calculus. This can be done in many ways (e.g. see Bohm and Berarducci, 1985;
Tronci, 1991, Section 8.2), but the representation given here has nice properties for
what follows.

https://doi.org/10.1017/S0956796800001234 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001234

Defining data structures via Bohm-out 55

Any element of a data structure can be represented in the ^.-calculus.

Definition 3.1 Let D be a data structure of language F = <6f: F(h(i,
1))x ... xF{h{i,q{i)))->F(h(i,q{i)+\))\i = {\,...m)> with Card(univ(F)) = N. We
define:
0. I>1=Xt1...tgmb1...bm.b(t1...tgm,ie{\,...m}.

2. caseF = caseD = Xt.tVf+?U• • •

When there is no ambiguity we will also write case for caseF.
3. Let b(tly ...tr)eB. We define: b(tv...tr) = W1...Tr.
4. D = {d\deD}. D
Example 0. Let Boole be as earlier. Then Tt = Xbl b2.b1,ff= Xb1 b2.b2.
1. Let Nat be as earlier. Then s = Xtb1b2.b1t,0 = Xb1b2.b2, J^l = p = Xt.t\i\,
case = Xt.tV\\J\,sjG) = s0 = Xb1b2.0, etc.
2. Let List(Nat) be as earlier. Then: cons = Xt112 b1 b2. bx tx t2, nil = Xb1 b2. b2,
cons(0,nil) = Xbxb2.b10nil, etc.

Proposition 3.2 Let F and D be as in Definition 3.1. Vie{l,...m}Vje{l,...q(i)} we
have:
0.

Proof o. b^ib,t,...tgm) = bttx...tqmnt...n<_1 u f » n (+ 1 ...nm = vyx...tQ(i) = tr

1. case(b (t , . . . tg m) = btt1...tgwU«<l>:rVIZ?• • • U « S H ™ = VT+Th...tgm = U4
m.

D

4 Data structures as solutions to SL-systems

The elements of a data structure D can be represented inside the ^-calculus as in
Definition 3.1; however, such a technique does not yield a definition of D inside the
^.-calculus. Can we find a A.-term that somehow represents D? In Statman (1989) we
find a positive answer to such a question. More specifically, it is proved that given a
P-closed and recursively enumerable set of closed A.-terms <S it is possible to find a
closed A.-term G s.t.: Ms'S iff GM = G. However, the construction of G involves
coding; thus the equation G x = G is very difficult to study. We show (Section 4.8) that
if we restrict ourselves to data structures an easy and natural (without coding)
representation can be found. In particular, we show that a data structure D can be
represented as the set of solutions to a Bohm-out problem, i.e. to an SL-system.
However, unlike usual representations, each element of D will have infinitely many X-
terms representing it.

Example 4.1 0. Let Boole be as earlier. Define: <<Boole>> = Xzt.t(zIt)
^ a = ({«Boole» {Xa.z)x = z}, {x}) = ({xzz = z}, {*}). Thus

Boole = {tt,J} = {U?,U^}£ Solutions (SQ and V Me Solutions (<$g[M = tt or
M = J\. Note that [VrfeBoole «Boole»zd = zd] and VMeA0 [«Boole»
(Xa.z)M — z=>3deBoole[<<Boole>>IM = d]]. Thus, up to P-conversion, Solutions

can be regarded as Boole.

https://doi.org/10.1017/S0956796800001234 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001234

56 E. Tronci

1. Let Nat be as in earlier and <<Nat>> any closed X.-term satisfying the equation
« N a t » = A.zf.f(«Nat>>(Xf.z(r0))O0) (e-g- obtained using the construction in
Barendregt, 1984, Section 6.5.2).

The Bohm tree for «Na t)> is shown in Fig. 1.

At.t

Fig. 1.

Define: ^N = ({ « N a t » (la.z)x = z}, {*}). It is easy to check that Nat £ Solutions
(&%). Moreover, we have: [VneNat«Nat»zn = zn] and VMeA°[«Nat»
(la. z) M = z => 3 n e Nat [« N a t » IM = «]]. Thus if M is a solution to SfN then we
can regard M as a representation of the (unique) natural number n
s.t. <<Nat>>IM = n. Moreover, for each natural number n there is a solution to £fN

representing n (namely n). Note, however, that unlike Boole, each element of Nat has
infinitely many non-P-convertible representations, e.g. let Z = Xab.a\Jlb. Then
ZeSolutions(5^), « N a t » \z = 0 (i.e. Zrepresents 0) and VNeNlt[Z #= N]. The X.-
term <<Nat>>I maps any solution to yN into an element of Nat. This allows us to
regard any solution to SfN as (a representation for) an element of Nat.
2. Let List(Nat) be as earlier and «List(Nat)>> any closed X-term satisfying the
equation «List(Nat)» = ^./(«Nat»(X/1.«List(Nat)»(X,rg.z(con5f1/ i !))))
(ziul).

The Bohm tree for <<List(Nat)>> is as shown in Fig. 2.

At.t

At.t

At.r

At. t

«List(Nat)»

At.t

A(./

Fig.

'At.t

'At.t

*

'z(cons

2.

.-Azi.t

z nil

z (cons 0

0 (cons (s 0)

nil)

Si))

Define: SfL = ({«List(Nat)»(Xa.z)x = z},{x}). We have: List(Nat) S Sol-
u t ions^) . Moreover, we have: [V de List(Nat) «List(Nat)» z 5 = z 5]
and V Me A°[«List(Nat)» (Xa. z) M = z => 3 rfe List(Nat) [«List(Nat)» IM = 5]].
Thus if M is a solution to &"L then we can regard M as a representation of

https://doi.org/10.1017/S0956796800001234 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001234

Defining data structures via Bohm-out 57

the (unique) list d s.t. <<List(Nat)>>IM = d. Moreover, for each list d there
is a solution to yL representing d (namely 3). Note, however, that each element of
List has infinitely many non-P-convertible representations, e.g. let Z be as in
4.1(1). Then Ze Solutions (5^), «List(Nat)» I Z = iul (i.e. Z represents nil) and
VLeList(Nat)[Z 4= L\. The X-term «List(Nat)>>I maps any solution to SfL into an
element of List(Nat). This allows us to regard any solution to yL as (a representation
for) an element of List(Nat).

Example 4.1 leads to the following general definition.

Definition 4.2 Let D and F be as in Section 3 with Card(param(F)) = k(^ 0).
0. We denote with «D>> any function from {0,1,...«} to A0 satisfying the following
equations {we write <<D,/>>/or <<D>>(/)):

Vie{0,1,...«}«D,«» = ^ . r (« A 1 , j » z) . . . (« * „ , / » z);

where: V/e{l,.../w}ViE{l,...«}

x a{h(J, 2))y}(kt2...

« V » = if Kj,q{j)+\) = i then

else Xz.Q; (the role o/Q is illustrated in the example below)

a(i) = if 1 «S i! < k then 0 else i; Gt = if 1 ^ / ^ k then D(eke D.

The X-terms <<D,/>> can be found, e.g. using the construction in Barendregt (1984,
Section 6.5.2).

In the following we write <<D>> for <<D, 0>>. This ambiguity will be harmless.
1. STB = ({«D»(Xa.z)x = z},{x}]. D

Example 4.3 0. The k-terms «Boole», «Nat>> and «List(Nat)» in Section 4
are constructed according to the definition previously given.
1. Let Woods = <bic: AxF^T, join: FxT^F, emp: F} and Woods = ((AA.
Woods) Nat) (Nat as earlier). We have:

«Woods,0» = krt .f(«Nat,O»(to1 .« Woods, 2»(A./2.z(bTcr1r2))))
x («Woods, 2 » (Xt,. «Woods, 3 » (Xt2. z (jom t, t2))))
x(zemp);

«Woods, 1 » = Xzt.tQDD.,
«Woods,2» = Xzr.lQ(«Woods,2»(X/1.« Woods, 3}}(Xt2.z (Join txt2))

x(zemp);
«Woods,3» = Xzr./(«Nat,0»(X/1.«Woods,2»(Xr1.z(Bic/!

Woods is the data structure defining trees (type T and set of terms [Woods, 2]) and
forests (type F and set of terms [Woods, 3]) over the parameter Nat.

Roughly speaking, we represent sets via Bohm-out properties. Thus, intuitively,

https://doi.org/10.1017/S0956796800001234 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001234

58 E. Tronci

any A.-term Bohming-out z from (((Woods, z>>z) represents an element of the set
[Woods,i](i = 0,... 3). More specifically, the following properties are satisfied: for
each Me A0 [«Woods, / » (Xa. z) M = z => 3 de [Woods, /J [< (Woods, i}}zM = zd\];
for each de [Woods, i] 3 Me A0 [«Woods, i}}zM = zd\

The sets [Woods, i] are always defined as the union of the codomains of the
appropriate constructors, e.g. [Woods, 0] (being the union of [Woods, 2] and
[Woods, 3]) is the union of the codomains of bic, join and emp. The codomain of bic
is formed with terms having form bic(fl5t2), where t1 is in Nat (i.e. [Nat,0J) and t2 is
in [Woods, 2] (i.e. t2 has type F). Such a set is represented with the A.-term
« b i c , 0 » = A,2.«Nat,0»(^1.<<Woods,2»(^2.z(blc/1<2))). An analogous
reasoning leads to the definition of ((join, 0>> and ((emp, 0>>. A .̂-term represents
an element of [Woods, 0] iff it represents an element in the codomain of bic or join or
emp. Thus a X.-term M represents an element of [Woods, 0] iff M can Bohm-out z from
(((bic,0>>z) or from (((join,0>>z) or from (((emp,0>>z). Thus we define:
((Woods,0» = Xzt. f («bic, 0 » z) («/o/«, 0 » z) « (emp ,0» z). The set [Woods, 1]
is a parameter and no constructor has its codomain contained in [Woods, 1]. Thus
((Woods, 1 » = Xzt.tQOn (thus Q represents the empty set). The set [Woods, 2] is
the union of the codomains of join and emp. Reasoning as before yields the definition
for ((Woods, 2>>. The set [Woods, 3] is the codomain of bic. Reasoning as before
yields the definition for ((Woods, 3 » .

Note that the sets [Woods, 2] (trees) and [Woods, 3] (forests) are not themselves
data structures. Thus, for example, lists of trees (forests) do not form a data structure
but are a subset of the data structure list of woods. This is in agreement with the fact
that to define a function / by recursion on trees (forests) we have to define / by
recursion on woods (i.e. trees and forests).
2. Languages of data not defining anything are also handled. Let Empty = (empty:
E^Ey and Empty = Empty. Then ((Empty, 0 » = Xzt.t (((Empty, 0}>(\a.z
(empty a))) =
Xzt.t

I
Xt.t

I
Xt.t

Thus Solutions(({((Empty»(A.a.z)x = z},{x})) = 0 = Empty.
Up to the filtering « D » I , Solutions^) can be regarded as D.

Proposition 4.3 Let D be a data structure.
0. VrfeD[«D»z<?=3].

= 3]].

Proof Intuitive justifications are given in the previous example. Here are more
formal proofs.

Let D and Fbe as in Section 3 with Card(param(F)) = fc($s 0). Let deT>.
0. The proof proceeds by induction on size(d)(= the number of function symbols

in d).

https://doi.org/10.1017/S0956796800001234 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001234

Defining data structures via Bohm-out 59

Case 0. size(</) = l. Then d=bt where bt:F(h(i, 1)) is in F. Thus
= Fi = Xb1...bm.b(. We have:

, 0 » zd = Q,zt. t(«bv 0 » z)... («6m , 0 » z)) zd

1. s ize(O>l . Let d = bt(d1,...dm) where A(:F(li(U))x...xf(/i(/,?(!)))
/,4(0 + 1)) i s inF . Thus d = Fia\...~dQ~^ = 'kbl...bm.bia\...dq~^. We have:

(, u ,
... (XtqM_v

Moreover, size^) < size(fi?).
Case 1.0. 1 < /;(/, 1) < A:. Thus F(h(i, 1)) is a parameter and d1 is in DA(< X), hence

= « D W i l) , 0 » . We have:

= «Dft(t, „, 0 » Q,tx.

x «G f t ((]qm,a(h(i,q(i)))»(XtgM.z^t,... tgm)))...)a\...

= (kt1...) ~a\... dQ(() (by induction hypothesis).

Thus « D » zd = «GW<, 2)s fl(A(i, 2))»(X/2 . . . (Uqw_x. «Gft<(, 9(())! a(//(/5
(A.?9(I).z(5^^r2...^(())))...)^2---^(«- Using the induction hypothesis repeatedly (to
take care of d~2...d^ we have: <<D>>zd = zQj^d^...dg(i)) = z3.

Case 1.1. h(i, 1) > k. Thus F(h(i, 1)) is not a parameter, ^ is in D, and
there is a js.t.h(i,l) = h(J,q(j)+l) and ^ = bj{dl t ...dlgU)). Hence

^ = ^ < I • • • di.au) = Ul...bm.bjd^~l...dlQU). Moreover <<Gft(i>1),a(A(/,
«D,A(i, 1)» = «D,hU,q(j)+ !) » • We have:

.z(F (t x . . . tqU))))...)a\...

/x •••))... («bm, h(j, q{j

By Definition 4.2(0) we have: ((bph{j,q{j)+\yy = « 6 , , 0 » . Thus

(by induction hypothesis).

Thus « D » zd = <<G»(I.2), fl(A(i, 2))»(X/ 2 . . . {Xtqm_,. «GW<>,(<)), a(A(/,
(X/4(0.z(6(d1t2... tQW)))...)d2...dQ{(). Hence using the induction hypothesis repeatedly
(to take care of d~2...a\^) we have: <<D>>zd = z(p^d^d2...d^) = zd.

https://doi.org/10.1017/S0956796800001234 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001234

60 E. Tronci

1. Notation: if Me A we define head(M) = if M = Xy.zL then z else f-
We prove that VaeSeq [if head((«D» z)J = z then 3rfeDs.t.(«D»z)a = zd\

Examples are given in Example 4.1. From this property the thesis follows. In fact, let
MeA°s. t .«D))(k.z)M = z. Then there exists i /eAs. t .«D»zM = zH. Thus
there exists aeSeqs.t.: head(«(D>>z)a) = z and M Bohm-outs («D>>z)a from
« D » z , i.e. «D>>zM^p(«D»z) a . . .^pz/ / . Hence there exists
rfeDs.t. («D>>z)a = zdand <<D» zM^(zd)... ^?zH. This implies H = rfand the
thesis follows.

The proof goes by induction on length(a). Let as.t. head(«<D>>z)a) = z. Then
oc = <7>*9 and 0^j<m. Let i=j+l. We have « D » z = Xt.K«*i,0»z)...
(«6m ,0»z).Thus

(« D » z) a = («fe (,0»z)9= («GMlil),a(A(i> l))»(Xr1.«GMI,S),a(A(i,

x 2))» (Xt2... (Xt^. «GW i r t <)) , a(h(i, ?(0))» (Km .z(Fitl... tqm))).. .))9.

Case 2. 0 = <>. Then q{i) = 0 and («D»z)B = («61,0»z) = zFt.
Case 1. G * <> and 1 ^ h(i, 1) < k. Thus «G,(i, „, a(h(i, 1))» = «D w , 1) ; 0» . We

have:

head((«D»z)a) = z and («D»z) a =

Thus there exists a < Os.t.: 9 = a*p and head((«DA(j 1); 0 » z)o) = z. This, by
induction hypothesis, implies that there exists ^eDs.t.«<D f t (j 1),0>>z)o = zdv

Thus:

j, u, 0 » (Xt,. «G M i , „, a{h{i, 2))» (Xr2... (H«,-i • «G»(I, ,ro,

x «(0))> > (^^<i, • ̂ *x • • • W)) • • •)VP,
iJ,, a(h(i, 2)))>(Xt2... {Xtgm^

= («GA(ti 2), a(/z(/, 2))> (Xt2... (^9((>-i • «G»(<. ,(0), a(/i(j, q(i)))}}(XtQm .

Hence, using the induction hypothesis repeatedly (to get rid of Gn(i 2),... Gft(j 5(()))
we have the thesis.

Case 2. B * <> and A(i, 1) > A:. Thus «G»(<il),a(A(i, 1))» = « D , / » . We have:

(« D » z)a = («6 (, 0 » z\ = («D, i » (Xt,.

x «GkW,8W),a(A

= ((Xzt. K«61 , i » z) • • •
= (Xt.r(«61,i»

By Definition 4.2 for r=\,...m we have: « 6 r , / » = if h{r,q{r) + \) = i then
« A r , 0 » else X.Z.Q. Since head((«D» z)J = z we have: 0 = <r-l>*o,
h{r,q(f)+ 1) = / and 0 < r < m. Thus:

Since head((«D» z)J = head((«D, 0 » (X^.. .))e) = z there exists T < 0 s.t.:
0 = x*p and head(«<D, 0>>z)T) = z. Thus, by induction hypothesis, there exists

https://doi.org/10.1017/S0956796800001234 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001234

Defining data structures via Bohm-out 61

4eDs.t . («D,0»z) t = z^. Thus («D»z) o =

(A./g(0.z(btdlt2... tqm)))...))p. Hence, using the induction hypothesis repeatedly
(to get rid of Gft((2),... GA((9(i))) the thesis follows. D

Corollary 4.4 Let D be a data structure. Then:
0.

2. D s Solutions (^,).
3. V Me Solutions^) 3 < /eD[«D»IM = d\.

Proof 0. Let rfeD. We have (by 4.3.0): «D»(a.a.z)5 = (Xa.z)d = z.
1. Le/ rfeD. We have (by 4.3.0): « D » l 5 = \d = d.
2. From 4.4.0.
3. It is just a restatement of Proposition 4.3(1). •

Propositions 4.3 and 4.4 suggest the following definition:

Definition 4.5 Let D be a data structure and de D.
0. Me A0 is said to represent an element o /D {or, by abuse of language, to be an
element o/D) #f[<<D>>(A.a.z)M = z]. We write MeD for M is an element o/D.
1. Me A0 is said to represent deD (notation: rep(D,M) = d) iff [MeD and
«D>>IM = 3]. By Proposition 4.3(1) rep(D,M) is well defined.

Equation <<D>>(A,a.z)M = z defines the set of ^.-terms representing elements of
D. This is the set {MeA°| «D>>(^.a.z)M = z}. However, given a k-term M
representing an element of D how can we know which element of DM is representing?
This question is answered by the ̂ .-term («D>> I). In fact, by Proposition 4.3(1), for
each MeD there exists (a unique) deDs.t. <<D>>\M = d. Thus we can use <<D>>I
to read which element of D the ^.-terrn M e D is representing.

This state of affairs is quite different from usual notions of representation for data
structures. In fact, for each deT) we have infinitely many non P-convertible Me A0

representing d, i.e. s.t. «D>>IM = d, (e.g. see Example 4.1(1, 2) whereas usual
notions of representation for data structures assign exactly one A.-term (up to P-
conversion) to each de D. However, this ' many-representatives' situation is harmless
since for each Me A0 representing deD we have <<D>> IM = d. Thus using <<D>> I
we can map all the X-terms representing d to d.

Alternatively, we could prune the set of possible representations from the
beginning. To do this it is sufficient to replace [«D>>(A.a.z)M = z] in 4.5.0 with
[«D»(>.a.z)M = zand « D » I M = M] .

From a mathematical point of view, these two approaches are equivalent and it is
just a matter of taste which one to follow. However, they are not equivalent from a
computer science point of view. Suppose we want to represent a list of length 1000
having all elements equal to 0. With the first approach (many representatives) we
could represent our list with a program that generates it (thus avoiding repeating the
same information (i.e. 0) 1000 times). However, this possibility is ruled out by the
second approach, since we would be forced to write down a list with 1000 elements

https://doi.org/10.1017/S0956796800001234 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001234

62 E. Tronci

(even though they are all equal). For this reason we prefer to adopt the first approach
(i.e. Definition 4.5 as it was given). However, the reader that prefers to think of an
element of a data structure as having exactly one representation (thus adopting the
modified version of Definition 4.5(0)) can do so in reading the rest of the paper. The
only change is that it will be no longer true that data structures are denned via Bohm-
out, since the new version of Definition 4.5(0) involves a fixed point equation, namely
«D»IM = M.

Propositions 4.3 and 4.4 show that any data structure D can be denned via the
Bohm-out problem (SL-system) yD. In Proposition 4.6 we show that with such
representation any partial recursive function can be represented.

Proposition 4.6 Let D1;... Dn+1 e DS an df: Dx x ... x Dn -»- Dn+1 be a partial recursive
function. Then IFeA^M^.-.M^A0 [i/Vie{l,...«}M,eD, then FM1...Mn

= if /(rep (D15 Mx),... rep (Dn, MJ) |

then / (rep (D1; Mx),... rep (Dn, MJ)

else unsolvable].

Proof Using the data structure representation in Section 3 and denning / with a
system of equations ^ (e.g. as sketched in Tronci, 1991, 0.0, 0.1, 8.2) we can obtain
a closed X-termf representing / b y solving £f (e.g. with the algorithm in Tronci 1991,
8.0). This is possible since we have a representation for the inverses of the
constructors (bi}) and the case function. Defining F= Xt1...?n./«<D1>>Ir1)...

the thesis follows by Proposition 4.3(1). •

Notation 4.7 Let /be as in Proposition 4.6. We write <</>> for Fas constructed in
the proof of 4.6. •

Any recursively enumerable (RE) subset of a data structure can be represented as
the set of solutions to an SL-system.

Proposition 4.8 Let DeDS and S be an RE subset of\D\. Then there exists an SL-
system SfsX. VMeA0 [M is a ^-solution to if iff[MeB and rep(D,M)e<f]].

Proof Let / : D -> Boole a partial recursive function s.t. $ = dom(/) and VrfeD
\Ad) = tt or f[d) = f]. Define 9> = ({«D»(Xa.z)x = z, « / » x z f i = z},{x}).

Let Me A". We have: M is a P-solution to Sf iff [«D»(X,a.z)Af = z and
= z] iff [MeD andy(rep(D,M)) = tt] iff [MeD and rep(D,M)e<?]. •

Example 4.9 0. Let Boole be as earlier and True = {tt} £ |Boole|. The set True is
defined by the SL-system £fB tt = ({«Boole>> (ka. z) x = z, xzQ = z}, {x}) = ({xzz = z,
xzQ. = Z),(JC)}. Let False = {#} S |Boole|. The set False is defined by the SL-system
«.// = ({«Boole» QM .Z)X = Z, xilz = z}, {x}) = ({xzz = z, xQz = z}, {}).

1. Let Nat be as earlier and / : Nat -> Boole a partial recursive function
s.t. VneNat[/(«) = tt or /(«) = f]. The set dom(/) is defined by the SL-system
I $ ^ / = ({«Nat»(A.a.z)x = z , « / » x z Q = z},{x}). We have: VMeA0

[MeSolutions(S^N f) iff [MeNat and/(rep(Nat, M)) = tt]. •

Since equality over data structures is decidable systems of equations over data

https://doi.org/10.1017/S0956796800001234 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001234

Defining data structures via Bohm-out 63

structures can be transformed into SL-systems (i.e. into a Bohm-out problem). An
example will be sufficient to clarify the matter.

Example 4.10 Let / , g: Nat -> Nat be total recursive functions. The equation
J[n) = g(n) (unknown n) can be transformed into an SL-system as follows, let Eq:
Nat x Nat-^ Boole the equality function on Nat, i.e. the (recursive) function satisfying
the equations: Eq(0,0) = «, Eq(0,s(n)) =ff, Eq(s(m),0) =ff, Eq(s(m),s(n)) =
Eq(i»i,«). Let S? = ({«Nat» (la .z)x = z, « E q » (« / » x) (« s » x) z Q = z},{x}).
Note that the first equation in y states that the unknown x is a natural number and
the second represents the constraint/(x) = g(x). We have: 3neNat[/(n) = g(«)]iffy
has a P-solution. Moreover any solution to Sf yields a solution for the equation
A") = Sin), i.e.

VMeA°[MeSolutions(y)=>[MENatand/(rep(Nat,M)) = #(rep(Nat,M))]]. Q

5 Conclusions

This paper shows that any RE subset of a data structure can be naturally specified as
the solution set to an SL-system (i.e. to a Bohm-out problem). With this approach the
type definition and the type checking algorithm for a data structure D come to be the
same object (namely <<D>» and the elements of a data structure are exactly the P-
solution to a Bohm-out problem (i.e. to the system ifD = ({<<D>>(A.a.2)x = z},{x})).
Defining a type a as the solution set to a system of equations yields a type definition
independent from the structure of the ^.-terms inhabiting a, since the only thing that
matters is their operational behaviour (i.e. their ability to Bohm-out z). On the other
hand, more traditional type systems rely on the structure of the ^.-term to give a type
judgement. Thus typing with equations seems to be a natural way to allow modular
reasoning. Data compression is also easily accommodated, e.g. large numbers with a
pattern on their digits could be represented with a program generating their digits,
and this would still be accepted as a number.

Unfortunately, at this time the author does not know how to extend in a natural
way this approach to functions over data structures.

Acknowledgements

I am grateful to Rick Statman for the helpful discussions we had on these topics and
for his useful remarks and suggestions. I am also grateful to Peter B. Andrews and
Corrado Bohm for their useful comments and suggestions about a preliminary
version of this paper. Comments from an anonymous referee helped me to improve
the presentation of this paper.

References

Barendregt, H. P. (1984) The Lambda-calculus. North-Holland.
Bohm, C. and Berarducci, A. (1985) Automatic synthesis of typed A-programs on term

algebras. Theoretical Computer Science, 39, 135-154.
Burris, S. and Sankappanavar, H. P. (1981) A Course in Universal Algebra. Graduate Texts in

Mathematics 78. Springer-Verlag.

https://doi.org/10.1017/S0956796800001234 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001234

64 E. Tronci

Leivant, D. (1981) Reasoning about functional programs and complexity classes associated
with type disciplines. 24th Ann. Symp. on Foundation of Computer Science, pp. 460-469.

Statman, R. (1989) On sets of solutions to combinator equations. Theoretical Computer
Science, 66, 99-104.

Tronci, E. (1991a) Equational programming in A.-calculus. Proc. LICS 91, Amsterdam, July
15-18, IEEE Computer Society, pp. 191-202.

Tronci, E. (1991b) Equational programming in X-calculus via SL-systems. PhD thesis,
Department of Mathematics, Carnegie Mellon University.

https://doi.org/10.1017/S0956796800001234 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001234

