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1. Introduction

Stirling numbers of the first and second kind play an important part in many
branches of mathematics, in particular in combinatorial analysis and statistics.
For their definition and properties we refer to (5) where a whole chapter is
devoted to their study. Stirling numbers have been generalized in many ways.
One generalization is given in (1). In this paper we generalize the results of
(1) to n dimensions. In order to simplify the notation we use methods of linear
algebra.

Let xux2, ...,xn be n independent complex variables and X a vector in
the w-dimensional vector space V, i.e.

X = [pcl,x2,...,xn\ XsV. (1)

Let / be the set of positive integers and zero and let pk el, k = 1, 2, ...,«.
We define P e Fby

P = iPuPi, -,Pnl (2)
and the norm of P to be

P= \\P\\ =Pi+Pz + -+Pn- (3)
We next introduce several summation symbols. First

E , (4)
p = a

means a summation where p = \\ P \\, a g p ^ /?, a, ft el, a and j? being fixed
positive integers or zero. It should be noted that in this case it may happen that
pk«x for some k, provided that/? ^ a. In particular, if a = 0, (4) becomes

I , (5)
p = 0

where all pk ^ 0, and p = || P \\ g /?. Also if a = P, (4) becomes

i = z, (6)
p = a p - tt

which means that p = || P || = a = constant.
Another kind of summation is defined by the symbol

t . (7)
P = A

where A = \au a2, ..., aB], B = \bu b2,..., &„], and ak g pk g bk, for k = 1,
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2, . . . ,«, and ak, bk, pk e /. The summation (7) can also be written in one of the
following forms:

£ £ ... f; =&n)pila1,b1lp2{a2,b2],...,pnlan,bn-]). (8)
Pi = <"1 P2 = O2 Pn = »n

Finally, let m el; we consider the functions M{m), Nk(m), k = 1, 2, ..., n,
defined for m e / and the vector

N(m) = [N^m), N2(m), ..., Nn(m)], (9)

and the scalar product

N(m).X= £ Nk(m)xk. (10)
k = 1

2. ^-polynomials and ^-numbers
Using the notation of Section 1 we define the ^-porynonnd

Q{X, r) = Q(r) = ft [«M(m) + 7V(m). Z ] (11)
m = 1

= t *(r,P) ft xP,
p = 0 fc = 1

with A(r,P) = 0, forpk>r, r<0, orpk<0, k = 1,2, ...,n.
The coefficients y4̂ r, P) are called} (generalized) n-dimensional Stirling

numbers of the first kind, the M-dimensions corresponding to the polynomial Q
which is in n variables.

We first find a recurrence relation for the ^-numbers. We clearly have

Q(r +1) = n [nM(m) + N(m). X] = Q(r)[nM(r +1) + N(r +1). X]
m = 1

p = 0 t = l p=O

By equating the coefficients of equal monomials in jct, x2, •••, xn, we obtain

A(r+1, P) = «M(r + l)A(r, P)+ N(r+1). A(r, Ps), (12)
where

-Ps =[>i,/>2> •••.A-1.A+1. •••»/'„]
and

A(r, Ps) = [A(r, Pt), A(r, P2), ..., A(r, PJ ] ;
thus

A(r, P) = nM(r)A(r-1, P)+ N(r) . A(r-1, Ps), (13)
which is the recurrence relation for the ^-numbers.

3. Examples and special cases
(i) For n = 1 we have

A(r,p) = M(r)A(r-l,p) + N(r)A(r-l,p-l)
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i.e.

which is the same as (8) of (1). In particular, for M(m) = —m + l, N(m) = 1,

Q(r) = (x)r = x(x - l)(x - 2).. .(* - r +1),

A'r = St? = (-r + l)Sf,p_, + St'Zl

i.e. the Stirling numbers of the first kind.

(ii) For M(m) = 0, Nk{m) = 1, k = 1, 2, ...,«,

uPi> ••••>PJ

i.e. the multinomial coefficients as studied in (2) and (3).

4. Inversion problem

Using the results of (1) we can write, using the notation B(pk, rri) for B™k

corresponding to Nk(m),
Pk

* r = E B(pk,m)Qk(xk,m), (14)
m = 0

where

*,m)= fl [ ] £
5 = 1 ( = 0

and
Bk(pk, m) = 0 for pfc<0, m<0, and pk<m.

It follows that

n * p = n C £ BkO'*. ^ ) Q * ( ^ . ™*)1
* = 1 t = 1 |_mk = 0 J

= (^"VCO, p j , m2[0, p2], ..., mn[0, ̂ D^fl^^P*. mk)Qk{xk, mk)

£ ft Qk(xk,mk),£ ft
M = 0 k = 1

n
where f] Bfc(pfc, mk) = B(P, M), P = lpltp2, —,P^\, M = [wl5 m2, ..., mB].

t = i

(15) gives the inversion of (11), i.e. the expression of an arbitrary monomial in
xux2,..., xn in terms of one-dimensional (^-polynomials. The coefficients
B(P, M) will be called (generalized) «-dimensional Stirling numbers of the fourth
kind. The name will be justified later.

5. Generalized quasi-orthogonality

For the definition of orthogonality and quasi-orthogonality we refer to (4).
It is necessary to generalize these definitions for n dimensions.
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We consider the two sets of numbers A(P, Q) and B(Q, S), where

P=lPl,P2>—,Pn], 2 =0l>?2> ••-,?„], S = [>!, S2, ..., •*„],

ii p ii = P , ii e ii = 9, ii s ii = s,

and define quasi-orthogonality between the two sets of numbers by the relation

£ B(P, Q)A(Q, S) = 5S
P = f [ «%• (16)

Q = S k = 1

where the summation is to be understood as in (7) and where A(Q, S) = 0 for
qk<sk, gk<0, sk<0, and B(P, 0 = 0 for pk<qk, pk<0, qk<0, k = 1, 2, .... «.

We next consider the two sets of numbers /4(p, 0 and 2?(Q, s). We define
their quasi-orthogonality by the relation

t A{p,Q)B{Q,s) = 8%, (17)
q = s

where the summation is to be interpreted as in (4) and the property is com-
mutative.

The definition given by (10) in (2) does not fit either definition given here
since the meanings are different.

We shall prove the following theorem that will be important in what follows.

Theorem. / / the numbers B{P, Q) are quasi-orthogonal to the numbers
A(Q, S) and to the numbers C(Q, S) then A(Q, S) = C(Q, S).

Proof. According to the definition we have, with sk ^ qk = pk,

£ B(P, Q)A(Q, S) = df,
Q = S

£ B(P, Q)C(Q, S) = ds
P.

Q = S

By subtracting these two relations from each other we obtain

£ B(P,Q)tA(Q,S)-C(Q,S)l = 0, (18)
Q = S

where B(P, Q) ^ 0. Thus for P = Q = S, B(P, P)lA(P, P)-C(P, P)] = 0, so
that A(P, P) = C(P, P). We now generalize the notation of (12a) by writing

Pat.bu.cv = [Pl>P2> •••> Pt-U Pt~a> Pt+1> • • •» P u - l , P u - b , Pu+1, . . . ,

where a, b, eel and a ^ pt, b ^ pu, c ^ pv. It is clear that we can change
a, b, c into —a, —b, —c, with the obvious interpretation. If then, in (18), we
take S = P, we obtain

B(P, P)[A(P, Pt)-C(P, Pty]+B(P, Pt)[_A(Pt, P,)-C(Pt, /•,)] = 0.
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Since A(Pt, Pt) - C{Pt, Pt) = 0, it follows that A(P, Pt) = C(Pt, Pt), and general-
izing by induction with 0 ^ a ^ pt, we obtain

A(P, P J =

Continuing the proof we can fairly easily establish first that

A{P,Pa,,v)=C(P,PaUv)
and from there by induction that A{P, Pa,t bv) = C(P, Patt bB), where O ^ A g p , .
It follows that

A{P.at _ta, P) = C(P-m. -btt, P),

where a, bel without other Umitation. From there we finally obtain

A(Q, S) = C(Q, S),
which holds for any Q and 5 provided that qk, skel, Q, S e V,{k = 1,2,..., ri),
since for qk<sk both A and C numbers are zero.

This is actually a uniqueness theorem concerning the quasi-orthogonality
as defined by (16).

6. Quasi-orthogonality relations
According to (1) and the notation used here, we have

m) = S:; (19)
s = m

thus
Pk

X Bk(pk, mk)A(mk, sk) = 5%, fc = 1, 2, ..., n
mi,

and

so that

£ \ f T n£ \ fi
M = s L* = iL JL*

or

f B{P,M)A(M,S) = d%, (20)
M = S

where

f l Ak(mk,sk) = A(M,S). (20a)
* = i

It can be easily checked by constructing a numerical example that, in general,
A{M, S) * A(m, S).

It follows according to the uniqueness theorem that B(P, M) and A(m, S)
are not quasi-orthogonal. On the contrary the numbers B(P, M) and A(M, S)
are quasi-orthogonal. We shall call the numbers A(M, S) the (generalized)
«-dimensional Stirling numbers of the third kind. It is clear that the Stirling

https://doi.org/10.1017/S0013091500012955 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500012955


296 SELMO TAUBER

numbers of the third and fourth kind are quasi-orthogonal to each other.
According to (19) and (20) the quasi-orthogonality property is commutative for
the B(P, M) and A(M, S) numbers.

7. Generalized //-dimensional Stirling numbers of the second kind
Since the numbers B(P, M) are not quasi-orthogonal to the numbers

A(m, S) we look for a set of numbers B(S,p) that is quasi-orthogonal to the set
A(m, S) in the sense of (17). As before we assume that B(S,p) = 0 for p<0,
and for || 5 || = s<p. We thus can write

£ A{m, S)B(S, p) = SS,, m,pel. (21)
s = p

In (21) put/? = m = 0; then A(0, §)B{<$>, 0) = 1, where <j> is the zero vector,
so that since A(0, <f>) = 1, B(<j), 0) = 1. We next put m = 1, p = 0 in (21);
with

Ek = [_5\, SI .... 5k
k.u 61 5Uu ..., tf], k = 1, 2, .... n,

we have

£ A(l, Ek)B(Ek, 0)+A(l, <t>)B{<t>, 0) = 0.
* = I

This relation shows that the numbers B(S, p) are not defined unless we make an
additional assumption. We shall therefore assume that B(S, p) = P(s,p), where
s = || 5 ||. This means, for example, B(Ek, 0) = jff(l, 0), k = 1,2, ..., n. Under
these conditions we can find the B(S, p) numbers and their recurrence relation.
Since these numbers are quasi-orthogonal to the (generalized) /z-dimensional
Stirling numbers of the first kind we shall call them (generalized) /z-dimensional
Stirling numbers of the second kind.

We introduce the notation £ ^(r> P) = a(r> P)> where || P || = p and q
p = q

is a given positive constant or zero. Starting from (13), we have

A{r, P) = nM(r)A(r-1, P)+N(r).A{r-\, Ps),

N(r).A(r-l,PJ= £ Ns(r)A(r-l, Ps).
s = 1

By summing both sides of this, we obtain

£ A(r, P) = <z(r, p) = /iM(r) I A(r-

Since
£ i4(r-l,/») =

p = q

and

s — I P = 4

t
s = 1
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where \\PS\\ = | |P | | —1 = p—1, it follows that the a numbers satisfy the
recurrence relation

<t{r,p) = nM(r)a(r-l,/>)+|| N(r) || « ( r - l , p - l ) . (22)

On the other hand we see that (21) can be written

t Mjn, S)B(S, p)= £ [ £ Mm, S)B(S, p)l = f /?(<?, p) £ il(m, S)
s = P q = p\_s = q _\ 9 = P s = q

= £ aim, q)Kq, p) = %,
« = p

so that the numbers u(m,q) and fi(q,p) are quasi-orthogonal in the one-
dimensional sense. It follows therefore from theorem I of (1) that the /?(r, p)
numbers satisfy the recurrence relation

P(r,p)= -[«M(p+l)/ | | JV(p+l) | |Mr-l ,p) + j J ( r - l , p - l ) / | | N(p+l)\\. (23)

8. Summary of relationships
There are four kinds of generalized n-dimensional Stirling numbers. The

first kind defined by (11) is quasi-orthogonal in the sense of (17) to the second
kind defined in Section 7. The fourth kind defined in Section 4 is quasi-
orthogonal to the third kind defined in Section 6, in the sense of (16).

In addition we have defined in Section 7 the a numbers and have shown that
they are quasi-orthogonal in the one-dimensional sense (cf. (4)) to the generalized
n-dimensional Stirling numbers of the second kind, i.e. the /? numbers.

For n = 1 the numbers of the first and third kind become the numbers of the
first kind of (1) and the numbers of the second and fourth kind become the
numbers of the second kind of (1).

9. Generating functions
Equation (11) defines the generalized n-dimensional Stirling numbers of the

first kind. At the same time it defines Q(X, r) as the generating function of
these numbers.

(i) The generalized n-dimensional Stirling numbers of the second kind are
defined in Section 7 and satisfy the recurrence relation (23). We find their
generating function by the method given on p. 175 of (5). Let

GpXr, p) = ftp, 0 = t Kr,p)f,
r = p

then
Gfi(r, p+l) = ftp + 1, 0, G/J(r+1, p + 1) = ftp + 1, 0/*,

and by substituting into (23) we obtain the difference equation satisfied by <j>,

ftp+1, 0 0 N(p+2) D + rJI/(p+2)]-/ftp, 0 = 0.
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The general solution of this equation is given by

<t>(p, i) = co(t) f l tl[\\N(k+2)\\ + tM(k + 2y],
k = 0

where co(t) is an arbitrary periodic function of period 1. To find co(f) we use
the boundary condition

<Ki, 0 = Z Pir, \y = m(0//[| iv(2)|| + ?M(2)].
r = 0

The same procedure can be applied to the generating function of the a
numbers.

(ii) Referring to Section 4 we can write
n n mit M

11 QkOk> "ik) = I I Z Ak(mk, sk)t"k
k = £ A(M, S)TS = < (̂M, T),

) £ = 1 k = I Sk = 0 S = 0

where, symbolically,

This relation defines the generating function <f>(M, T) of the numbers A{M, S).

(iii) According to (12) of (1) for each k (which we leave out in order to
simplify the notation)

B(p, m) = -M(m+l)B(p-l, m)IN(m + l)+B(p-l, m^l)/N(m + l). (24)
On the other hand

GB(p, m) = 4>(m, t) = £ B(p, m)
p-m

GB(p, m +1) = <f>(m + 1,0

GB(p+l, m + 1) = (̂ (m + 1, f)A.

since B(0, m+1) = 0. Substituting into (24) we obtain

<l>(m +1 , 0 [Mw+2)+*(m+2)] - t<t>(m, t) = 0,

which is readily solved to give

4>{m, 0 = «»(0 "fl
k = 0

where

P = I
which defines co(t).

It follows that

fl Umk,tk)= f[ CDt(on
k = 1 k = 1 s = 0

= ri 2
k = 1 pit =
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where 4>(M, T) is the generating function for the generalized n-dimensional
Stirling numbers of the fourth kind, since

<KM,T)= £ B(P,M)TP,
P = M

where

Tp= II 'I*. P = iPuP2,-,Pnl
k = 1

Remark. Special cases of the preceding numbers have been studied. One
complete example will be found in (6).
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