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Covariance components for test day milk yield using 263 390 first lactation records of 32 448 Holstein cows were estimated using
random regression animal models by restricted maximum likelihood. Three functions were used to adjust the lactation curve: the
five-parameter logarithmic Ali and Schaeffer function (AS), the three-parameter exponential Wilmink function in its standard form
(W) and in a modified form (W*), by reducing the range of covariate, and the combination of Legendre polynomial and W
(LEG þ W). Heterogeneous residual variance (RV) for different classes (4 and 29) of days in milk was considered in adjusting the
functions. Estimates of RV were quite similar, rating from 4.15 to 5.29 kg2. Heritability estimates for AS (0.29 to 0.42), LEG þ W
(0.28 to 0.42) and W* (0.33 to 0.40) were similar, but heritability estimates used W (0.25 to 0.65) were highest than those
estimated by the other functions, particularly at the end of lactation. Genetic correlations between milk yield on consecutive test
days were close to unity, but decreased as the interval between test days increased. The AS function with homogeneous RV
model had the best fit among those evaluated.
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Introduction

Test day models (TDM) have been receiving considerable
attention from research studies on the genetic improve-
ment of dairy cattle (Gengler et al., 1999; Kettunen et al.,
2000; Schaeffer et al., 2000; Swalve, 2000; Misztal et al.,
2000; Jensen, 2002; Lopez-Romero and Carabaño, 2003;
Mrode and Swanson, 2004; Fischer et al., 2004; Schaeffer,
2004; Albuquerque and Meyer, 2005). The use of TDM
allows a more accurate definition of contemporary groups
(CG) and associated environmental effects, thus offering a
more specific definition of the effects of the lactation stage
and reproduction of dairy cows. Further characteristics
associated with TDM include the use of additional infor-
mation on a single animal during genetic evaluations, a
better adjustment for lactation of different durations and
the possibility of adjusting for individual differences in the
shape of a lactation curve, which permits the assessment
of lactation persistence (Jakobsen et al., 2002). Perhaps
the most important use of TDM is that it makes possible
the assessment of animals with lactations in progress,
allowing for more frequent assessments and, thus, a

reduction in the generation interval (Swalve, 1998 and
2000; Jensen, 2002).

Different models have been described for the adjustment
of TDM (Misztal et al., 2000; Swalve, 2000; Jensen, 2002).
Random regression models (RRM) allow the modeling of
the covariance structure among test day yields. They avoid
the simplicity associated to repeatability models, which
assume a correlation equal to unity and variance homo-
geneous among the yields, as well as the computational
complexity associated to multiple character models, due to
the great number of parameters that need to be estimated
(Meyer, 1998b, Misztal et al., 2000: Swalve, 2000).

The potential advantages associated with TDM have led
researchers from various countries to investigate the
implementation of these procedures in national genetic
evaluation systems (Swalve, 2000; Pool et al., 2000; Jamrozik
et al., 2001; Lidauer et al., 2000 and 2003; Samoré
et al., 2002). In such a context, Jamrozik and Schaeffer
(1997) reported very high heritability estimates using TDM,
but negative genetic correlations among test days in early
and late lactation when using Ali and Schaeffer (1987)
curve to adjust the additive genetic effect, assuming the
non-hereditary animal effect constant. Later, Jamrozik et al.
(1997a and b), using the Wilmink (1987) curve reported† E-mail: cmrmelo@cca.ufsc.br
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more realistic heritability estimates at the beginning and
end of lactation, indicating the importance of adequate
modeling of the non-hereditary animal effect in random
regression models. Brotherstone et al. (2000) reported that
the parametric curves of Ali and Schaeffer (1987) and
Wilmink (1987) were more adequate in adjusting the milk
yields first lactation Holstein cows when compared with
Legendre orthogonal polynomials.

The parametric functions of Ali and Schaeffer (1987) and
Wilmink (1987) have been used in the adjustment of RRM,
as they allow the modeling of the lactation curve and sim-
ultaneously characterise the covariance structure among
the test day yields (Jamrozik and Schaeffer, 1997; Brother-
stone et al., 2000). The implementation of RRM for genetic
evaluations of dairy cattle depends on the estimates of the
covariance components and genetic parameters for the
traits included in the breeding program. The objective of
this study is to evaluate and to compare the parametric
logarithmic function proposed by Ali and Schaeffer (1987)
and the exponential function proposed by Wilmink (1987)
and a combination of the Legendre polynomial of second
order and Wilmink function to adjust test day milk yields
of first lactation Holstein cows using RRM.

Material and methods

Data
Milk yield records were obtained from the milk recording
services of the Brazilian Holstein and their state affiliates
from 1991 to 2001. Records originated from 39 048 lacta-
tions from 531 herds located in the states of Sao Paulo,
Minas Gerais, Rio Grande do Sul, Santa Catarina and Espı́r-
ito Santo.

Test day records were edited for cows aged 18 to 48
months and 5 to 305 days after calving. It was required a
minimum of three test day records per cow. Moreover, it
was determined that each CG, defined as test herd-year-
month of calving, included at least four records. After
these edits 32 448 first lactations (263 390 test day
records) were used in the statistical analyses. Table 1 dis-
plays number of records, animals and data structure, as
well as average and standard deviations of milk yield in
the test days. There was an average of eight test days per
cow; and 80.85% of the cows had eight or more test days.

Just 9.39% of the cows presented less than five available
test days.

The pedigree data included 3737 bulls and 32 449 cows
with records. Non-informative animals were eliminated and
a total of 49 394 animals were included in the A matrix.

Models
The lactation curve and covariance structure among test
days were modeled by three functions.

(a) Ali and Schaeffer (1987) logarithmic function (AS):

a0 þ a1cþa2c2 þ a3ðln 1=cÞ þ a4ðln 1=cÞ2 ð1Þ

where c ¼ DIM/305 and DIM ¼ days in milk.
(b) Wilmink exponential (1987) function (W):

a0 þ a1tþa2expð2a3tÞ ð2Þ

where t ¼ DIM.
(c) An alternative form of the Wilmink exponential func-

tion (W*):

a0 þ a1t=100 þ a2expð2a3tÞ ð3Þ

in which the second term is divided by 100 to reduce
the amplitude of the covariate, expecting to improve
the numeric properties of the model (Jakobsen et al.,
2002).

(d) and a combination of parametric and non-parametric
function (LEG þ W):

0:7071a0 þ 1:2247xa1 þ ð2:3717x2 2 0:7906Þa2

þ expð2a3xÞ ð4Þ

where x ¼ 21 þ 2(DIM 2 5)/(305 2 5) and the
coefficients a0–a2 are coefficients of the second
order Legendre polynomial at DIM.

In the Wilmink curve, the fourth parameter (a3) is gener-
ally considered as a constant. In the present study it was
assumed equal to 20.05.

In its general expression, the RRM may be represented
by:

yit¼Fitþ
Xf21

m¼0

bmPmðtÞþ
Xk21

m¼0

aimPmðtÞþ
Xk21

m¼0

gimPmðtÞþeit:

where yit is the milk yield of cow i on day t; bm are the coef-
ficients of fixed regression for an average population curve;
aim and gim are, respectively, the additive genetic and the
non–hereditary random regression coefficients for cow i; eit

is the measurement error associated to classes of time t; Fit

represent fixed effects of the model: test herd–year–
month, season of calving, and age of the cow at calving as
a co–variable with linear and quadratic terms; Pm(t) is the
mth term of the adjusted function; f and k is the number of
coefficients of the fixed and random effects of the adjusted
function. Thus, for the AS curve in [1]: P0(t) ¼ 1, P1(t) ¼ c,
P2(t) ¼ c 2, P3(t) ¼ ln 1/c, P4(t) ¼ (ln 1/c)2 and f ¼ k ¼ 5.

Table 1 Structure of the data, average (kg) and standard deviations
(kg) of test day milk yields

No. of records 263 930 No. of animals in analysis† 49 394
No. of animals

with records
32 449 No. of sires‡ 1955

Average 20.57 No. of dams§ 9739
s.d. 5.99 No. of contemporary groups 14 537

† Including parents without records and dummy identities for unknown dams.
‡ With progeny in the data.
§ With progeny in the data, including dummy assigned for animals with miss-
ing dam identities.
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The model above can be written in matrix form as:

y ¼ Xbþ Zaþ ZDgþ e:

where y is the test day yields vector; b is the vector of
fixed effects; a and g are the vectors of random regression
coefficients for the additive genetic and non–hereditary
animal effects, respectively; e is the vector of residual ran-
dom effect; and X, Z and ZD are the matrices that associate
the observations to the fixed effects, random animal effects
and non–hereditary animal effects, respectively. Assume

a

g

e

2
664

3
775~ Nð0;VÞ; V ¼

GA^A 0 0

0 PD^I 0

0 0 R

2
664

3
775;

in which GA and PD are, respectively, the additive genetic
and non–hereditary random regression coefficients covari-
ance matrix effect; A is the relationship matrix; I is an
identity; ^ is Kronecker product between matrices; and
R ¼ diags2

en; in which n represents number of the classes
of days in milk (DIM) for adjustment of heterogeneous
residual variance. Thus, for the AS curve in [1],
n ¼ 1,. . .,29 for DIM: 5–20, 21–30,. . .,295–305;
n ¼ 1,. . .,4 for DIM: 5–45, 46–115, 116–265 and 266–
305, and n ¼ 1 residual variance (RV) was assumed hom-
ogenous or constant throughout lactation. The adjusted
models using the AS curve were identified as AS, followed
by ME (measurement error) and the number of classes of
RV (29, 4 or 1). Thus, ASME29 identifies the AS curve
adjusted with 29 classes of measurement error.

The covariance components for the random effects were
estimated using ‘DxMRR’ Meyer (1998a) with (AI)REML
average information algorithm (Meyer, 1997). The conver-
gence criterion was defined by the difference between the
value of the likelihood function of consecutive iterations
less than 1024. Each analysis was repeated with estimated
values from the previous analysis until the values of the
likelihood function were equal for two consecutive
analyses.

The evaluation of the adjusted models was accom-
plished by comparing the covariance components and the
parameters estimated by a repeatability single character
model (Melo et al., 2005). Also the following statistical cri-
teria were used: logarithm of the maximum likelihood func-
tion (log ‘); the Akaike information criteria
(AIC ¼ 22 log‘ þ 2p); and the Schwarz information cri-
teria (BIC ¼ 22 log ‘ þ p log(N 2 r(x))), in which p is the
number of estimated parameters, N is the sample size and
r(x) is the rank of the matrix of fixed effect coefficients in
the model.

Results

The log ‘ and AIC values indicate that the adjustment of
the ASME29 model is superior to the other models studied,
whereas for BIC, ASME1 proved to be superior to the other

models (Table 2). Values obtained for log ‘ and AIC tend
to favour models with a greater number of parameters,
whereas BIC, which is more likely to penalise a greater
number of parameters, tends to select more parsimonious
models. The W model exhibited a convergence difficulty.
This was probably due to the numeric problems that
occurred in function of the amplitude of the co-variables,
which was not observed using the W* model. The
LEG þ W model showed better results than models W e
W*, but inferior than the AS models.

The number of records, average and standard deviations,
and the residual variance estimates for milk yields in the
respective measurement error classes of DIM for the
adjusted models are shown in Table 3. Only results for
homogeneous residual variances are given for LEG þ W, W
e W* models, since differences among the residual var-
iance estimates assuming 29 and four measurement error
classes were rather small and similar to those observed for
the AS model. The RV values found were 5.29, 5.56 and
5.63 kg2 for the LEG þ W, W and W* models respectively;
which were larger than 4.56 kg2 obtained for the ASME1
model (Table 3).

The RV estimates obtained for the DIM through the
adjustment of the ASME29 model were similar, varying
from 4.15 kg2 for ME28 to 5.11 kg2 for ME26. The average
RV obtained from the 29 measurement error groups was
4.55 kg2, with a standard deviation of 0.26 kg. RV esti-
mates obtained through the adjustment of the ASME4
model varied from 4.78 kg2 for ME1 to 4.50 kg2 for ME2.
The average RV obtained from this model was 4.59 kg2,
with a standard deviation of 0.13 kg. The RV value esti-
mated by fitting the ASME1 model was 4.56 kg2. Overall, it
was observed similar average and small variation for RV
estimates among models with different measurement error
indicating there is no need to fit for heterogeneity of RV.

Covariance estimates and correlations among the ran-
dom regression coefficients for the additive genetic and
non-hereditary animal effects of the AS curve, as well as
the associated eigenvalues are displayed in Tables 4 and 5.
The estimates of the random regression coefficients for the
additive genetic effect were very similar regardless of the

Table 2 Rank of the matrix of random regression coefficients for
genetic additive effect (kA), number of parameters (p), the log likeli-
hood (log ‘), criteria of information of AIC and BIC for each random
regression model

Model Rank of kA p log‘ AIC† BIC†

ASME29 5 59 2 424 543.99 849 205.99 849 824.39
ASME4 5 34 2424 601.44 849 270.89 849 627.25
LEG þ W 4 21 2429 283.53 858 609.07 858 829.17
ASME1 5 31 2424 611.27 849 284.54 849 609.47
W 3 13 2445 036.06 890 098.12 890 234.38
W* 3 13 2430 912.37 861 850.73 861 986.99

† AIC ¼ 22 log ‘ þ 2p. BIC ¼ 22 log ‘ þ p log (N 2 r(x)), in which p is the
number of estimated parameters, N is the sample size, r(x) is the matrix rank
of the fixed effect coefficients in the analysis model.
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RV modeling for the AS curve. The same trend was
observed for the estimates of coefficients of the non-her-
editary animal effect.

Covariance estimates and correlations among the random
regression coefficients in the W and W* curves for the addi-
tive genetic and non-hereditary animal effects are shown in
Table 6. The variance estimates were similar for coefficients
a0 and a2 but higher for a1 with the W* curve. Some differ-
ences were observed between functions regarding the magni-
tude and meaning of the correlations among the coefficients.
This was certainly due to the scale effect related to the
co-variable (t/100) associated to coefficient a1.

The genetic variance estimates obtained from the ASME1
(Figure 1a), ASME4 (Figure 1b), ASME29 (Figure 1c),
LEG þ W (Figure 2) and W* (Figure 3a) models were similar
throughout the lactation period. In the ASME1 model, the
genetic variance (7.59 to 11.88 kg2) presented an average of
8.77 kg2, with a standard deviation of 0.63 kg (Figure 1a).
However, genetic variance estimates for the W model exhib-
ited a different trend, increasing from 9.47 kg2 on the fifth
DIM to 171.27 kg2 at the end of lactation (Figure 3b).

Variance estimates of the non-hereditary animal effect
presented a trend similar to that observed for the genetic
variance estimates in the ASME1 (Figure 1a), ASME4

(Figure 1b), ASME29 (Figure 1c) and W* (Figure 3a)
models, with the exception of an increase occurring from
the 240th DIM through to the end of lactation. With
respect to the W model, variance estimates for the non-
hereditary animal effect accompanied the same trend as
the estimates for the additive genetic effect, increasing
from the beginning to the end of lactation (Figure 3b).

Heritability estimates did not differ among the ASME29,
ASME4, ASME1 and LEG þ W models (Figure 4a). The esti-
mates decreased from 0.35 at the beginning of lactation to
0.30 on the 25th DIM and afterwards increased to 0.41 on
the 234th DIM; and again decreased through to the end of
lactation. Heritability estimates for the W* model (Figure
4b) exhibited a more stable trend, decreasing from 0.36 at
the beginning of lactation to 0.33 on the 44th DIM and
small increase at the end of lactation with a value of 0.40.
Heritability estimates in the W model (Figure 4c) began
with a value of 0.27 and was larger than the estimates
obtained from the other models, particularly at the end of
lactation (0.65). The estimates for the W model reflected
the trend of increasing genetic variance along lactation.

Genetic correlation estimates among test day yields
were similar between ASME1 (Table 7), W* (Table 8) and
the LEG þ W models (Table 10). Estimates were close to

Table 3 Days in milk (DIM), number of records (N), mean and standard deviation (s.d.) and residual variance estimates (RV) for milk yield for
classes of error measurements from fitted RR models

ASME29

DIM N Mean s.d. RV DIM N Mean s.d. RV

5–20 13 273 19.61 5.36 4.81 161–170 9027 20.95 6.01 4.47
21–30 9807 21.39 5.43 4.73 171–180 8896 20.67 5.87 4.25
31–40 9913 22.07 5.57 4.75 181–190 8832 20.28 5.93 4.20
41–50 9762 22.61 5.59 4.72 191–200 8876 20.15 5.91 4.47
51–60 9746 22.54 5.62 4.51 201–210 8526 19.89 5.81 4.58
61–70 9787 22.65 5.68 4.81 211–220 8540 19.56 5.85 4.81
71–80 10 048 22.62 5.75 4.53 221–230 8386 19.32 5.94 4.96
81–90 9751 22.36 5.72 4.51 231–240 8145 19.09 5.77 4.62
91–100 9784 22.32 5.78 4.27 241–250 7994 18.62 5.76 4.48
101–110 9758 22.11 5.83 4.24 251–260 7858 18.33 5.72 4.46
111–120 9528 21.93 5.81 4.27 261–270 7480 18.06 5.76 5.11
121–130 9597 21.80 5.86 4.37 271–280 7105 17.68 5.65 4.60
131–140 9396 21.67 6.01 4.76 281–290 6697 17.46 5.68 4.15
141–150 9148 21.29 5.91 4.62 291–305 8508 17.18 5.58 4.29
151–160 9222 21.14 5.90 4.49

ASME4 W

5–45 38 162 21.10 5.66 4.78 5–305 263 930 20.57 5.99 5.56
46–115 68 263 22.42 5.98 4.50
116–265 130 967 20.26 5.73 4.55
266–305 259 98 17.48 5.59 4.53

ASME1 W*

5–305 263 930 20.57 5.99 4.56 5–305 263 930 20.57 5.99 5.63

LEG þ W

5–305 263 930 20.57 5.99 5.29
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the unity for adjacent test day yields and decreased for
DIM in the beginning and the end of lactation. Genetic cor-
relation estimates were slightly higher for the ASME1
model between the beginning and mid-period of lactation,
whereas this trend of higher values was observed for the
W model among the test day yields in the intermediary
phase and at the end of lactation. Genetic correlation
values among the test day yields for the W* (Table 9)
model were similar to those obtained for the other models,
with the exception of negative estimates observed
between test days in the beginning and end of lactation.
Correlation estimates among test days non-hereditary ani-
mal effect were similar for the fitted models. Slightly
higher estimates were observed for the LEG þ W, W and
W* models. The same trend reported for genetic corre-
lations was observed: estimates were close to the unity for
adjacent test days and decreased for yields in more distant
DIM along the lactation period.

Discussion

Pool and Meuwissen (1999) observed that the use of data
from incomplete lactations (less than 280 days of lactation)
could affect the estimate of variance components. They
recommend only using data from complete lactations for
estimating such parameters. However, discarding data from
incomplete lactations or lactations in progress may bias

the estimates of these parameters, particularly in the man-
agement of some national production systems (Costa et al.,
2005), where cows with low yields may not have the same
opportunity to complete lactation as cows with high yields.
Thus, it was considered reasonable to use lactations from
cows with at least three tests (approx. 90 days into lacta-
tion) to avoid data selection and allow more realistic esti-
mates of the model parameters under national conditions.
This decision proved to be prudent, as the residual variance
estimates exhibited a tendency toward homogeneity
throughout the lactation period.

With respect to model selection, AIC and BIC information
criteria involved two terms: one associated to the maximum
likelihood function, which measures the lack of model fit-
ting; and another that penalises more complex models by
considering the number of parameters of the model. The
log‘ and AIC favour more parameterised models, whereas
BIC, by penalising the number of parameters in the model,
tends to favour more parsimonious models. Thus, the log‘

and AIC criteria indicated the ASME29 model, whereas BIC
indicated ASME1 as the model with the best fit.

The W model presented convergence problems and was
therefore characterised as a hard fitting model among
those evaluated. The analyses were re-initiated various
times using different values in order to attain the conver-
gence criterion. Results from one analysis were rarely
repeated in the following one. Thus, the results of the W

Table 4 Estimates of covariance and correlations between random regression coefficients of the genetic additive effect for AS models and eigen-
values (l) associated to matrix kA

ASME29 ASME1 ASME4 LEG þ W

Cov. Corr. Cov. Corr. Cov. Corr. Cov. Corr.

a0 a0 370.76 369.72 369.03 15.58
a1 2589.12 20.97 2587.22 20.97 2586.17 20.97 1.86 0.34
a2 227.86 0.87 227.13 0.87 226.82 0.87 24.65 20.96
a3 2194.42 20.98 2193.72 20.98 2193.34 20.98 20.87 20.13
a4 27.71 0.96 27.58 0.96 27.52 0.96

a1 a1 1 004.03 1,000.60 999.01 1.94
a2 2414.15 20.96 2412.82 20.96 2412.35 20.96 20.85 20.50
a3 310.16 0.95 308.88 0.95 308.30 0.95 20.11 20.05
a4 244.58 20.94 244.35 20.94 244.25 20.94

a2 a2 184.27 183.70 183.60 1.52
a3 2118.62 20.85 2118.12 20.85 2117.94 20.85 0.74 0.34
a4 17.06 0.84 16.98 0.84 16.95 0.84

a3 a3 105.63 105.17 104.97 3.10
a4 215.26 20.99 215.18 20.99 215.14 20.99

a4 a4 2.24 2.23 2.22
Eigenvalues

ASME29 ASME1 ASME4 LEG þ W

l0 3.13 3.12 3.12 17.33
l1 1 622.58 1 617.11 1 614.51 1.72
l2 39.58 39.56 39.56 0.002
l3 1.61 1.61 1.61 3.09
l4 0.02 0.02 0.02 –

Genetic parameters for test day milk yields by random regression

329

https://doi.org/10.1017/S1751731107685036 Published online by Cambridge University Press

https://doi.org/10.1017/S1751731107685036


curve should be viewed with caution. The results obtained
from the W* model, however, were consistent, demonstrat-
ing that the division of the covariate by 100 was effective
in circumventing problems of instability in the estimation
of random regression coefficients.

These results are in agreement with those obtained by
Schaeffer and Guo (2002). They evaluated different models
(but not the W* model, as suggested by Jakobsen et al.,
2002) and conclude that the AS model was superior to the

W model, which was one of the three worst fitted models.
In the present study, the W* model proved to be computa-
tionally efficient, as it did not present convergence problems.

Differently from observations in other studies (Olori
et al., 1999; Rekaya et al., 1999; Brotherstone et al., 2000;
Jamrozik et al., 2001; Lopez-Romero and Carabaño, 2003),
in which higher RV estimates were obtained for the begin-
ning and end of lactation, RV estimates in the present
study were similar among the DIM classes, as well as

Table 5 Estimates of covariance and correlations between the random regression coefficients of the non-hereditary animal effect for AS models
and eigenvalues (l) associated to matrix kp

ASME29 ASME1 ASME4 LEG þ W

Cov. Corr. Cov. Corr. Cov. Corr. Cov. Corr.

g0 g0 2592.51 2534.34 2527.81 14.12
g1 24253.25 20.99 24154.92 20.99 24146.84 20.99 20.67 20.09
g2 1694.03 0.92 1650.50 0.92 1649.27 0.92 23.43 20.48
g3 21438.84 20.99 21406.91 20.99 21402.55 20.99 0.16 0.03
g4 207.85 0.98 203.25 0.98 202.57 0.98 – –

g1 g1 7131.71 6966.19 6956.75 3.41
g2 22943.20 20.97 22870.57 20.97 22869.76 20.97 0.20 0.06
g3 2341.08 0.97 2286.91 0.97 2281.40 0.97 0.19 0.08
g4 2335.57 20.95 2327.73 20.95 2326.88 20.95 – –

g2 g2 1296.07 1264.84 1265.54 3.65
g3 2916.19 20.89 2892.01 20.89 2891.03 20.89 20.34 20.14
g4 129.33 0.86 125.79 0.86 125.64 0.86 – –

g3 g3 809.90 792.43 789.54 1.65
g4 2118.08 21.00 2115.58 21.00 2115.13 21.00 – –

g4 g4 17.37 17.01 16.94 –
Eigenvalues

ASME29 ASME1 ASME4 LEG þ W

l0 3.93 3.92 3.93 15.20
l1 11674.30 11 400.00 11 383.10 3.40
l2 162.65 163.69 162.97 2.70
l3 6.60 6.59 6.58 1.55
l4 0.04 0.04 0.04 –

Table 6 Estimates of variance (diagonal), covariance (below the diagonal) and correlations (above the diagonal) between random regression
coefficients for the W and W* models and eigenvalues (l) associated to kA and kp, respectively the additive genetic and non-hereditary animal
effects

W W*

Genetic additive effect Genetic additive effect

a0 a1 a2 l a0 a1 a2 l

10.72 20.220 20.65 5.085 10.93 20.49 20.46 8.08
20.03 0.002 0.15 0.002 21.80 1.22 20.13 0.68
210.73 0.034 25.50 31.140 27.64 20.70 24.77 28.16

Non-hereditary animal effect Non-hereditary animal effect

g0 g1 g2 l g0 g1 g2 l

15.10 20.360 20.45 10.783 16.49 20.75 20.54 10.67
20.05 0.001 0.19 0.001 25.09 2.81 0.46 1.12
210.37 0.037 35.70 40.018 213.64 5.08 38.90 46.40
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among the fitted models. Thus, assuming RV homogeneity
does not appear to compromise the accuracy of the esti-
mates of the other variance components and genetic par-
ameters (Tables 3, 4 and 5). Lopez-Romero and Carabaño
(2003) concluded that RV homogeneity could be assumed
in the interval between 75 and 275 days of lactation, but
that RV heterogeneity should be assumed outside of this
interval, that is, a RV should be considered for each DIM
outside this interval. However, considering a RV for each

DIM means an overparameterised model and significantly
hinders the estimation of the variance components.

Similar trends for variance estimates of genetic and perma-
nent effects throughout the lactation were observed among
the ASME1 (Figure 1a), ASME4 (Figure 1b), ASME29 (Figure
1c), LEG þ W (Figure 2) and W* (Figure 3a) models. Esti-
mates decreased from the beginning of lactation to more
stable values through to the final third of lactation, when
values increased. Estimates obtained from the W model
(Figure 3b) increased from the beginning to the end of lacta-
tion, when they reached markedly elevated values in compari-
son to the estimates obtained from the other models. These
results differ from those reported by Jamrozik et al. (1997b),
who obtained similar results using both the AS and the W
curve and from those from Jamrozik et al. (1997a), who
described a reduction in genetic variance from the beginning
to the 25th day of lactation and then stability in values
through to the end of lactation when using the W model.

Heritability estimates did not differ among the ASME1,
ASME4, ASME29 and LEG þ W models (Figure 4a), ran-
ging between 0.30 and 0.41. After a decrease at the
beginning, there was an increase that resulted in higher
values at mid lactation and another decrease toward lower
values at the end of lactation. The heritability estimates for
the W* model (Figure 4b) exhibited a more stable trend,
decreasing from 0.36 at the beginning of lactation to 0.33
on the 44th DIM. A slight increase was observed at the
end of lactation, when heritability estimates reached the
value 0.40. Olori et al. (1999) reported similar trends when
fitting a quadratic polynomial curve. With respect to the
convergence problems observed, heritability estimates in
the W model (Figure 4c) were higher than those obtained
from the other models (except at the beginning of

Figure 1 Estimates of genetic (vg) and non-hereditary (vep) variances
obtained by fitting the models ASME1 (Figure a), ASME4 (Figure b) and
ASME29 (Figure c).

Figure 2 Estimates of genetic (vg) and non-hereditary (vep) variances
obtained by fitting the model LEG þ W (Figure a).

Figure 3 Estimates of genetic (vg) and non-hereditary (vep) variances
obtained by fitting the models W* (Figure a) and W (Figure b).
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lactation). Starting from 0.27 at the beginning of lactation,
the estimates increased continually until reaching 0.65 by
the end of the period. This trend was similar to that
observed by Brotherstone et al. (2000), who, however,
reported lower heritability estimates (0.08 to 0.24).

Estimates obtained from the ASME1, ASME4, ASME29,
LEW þ W and W* models were the most similar to the
estimates obtained by Melo et al. (2005). Their estimates
for test day yields from single-character analyses ranged
from 0.22 to 0.36. These estimates are a reference (Rekaya
et al., 1999) to characterise an expected value for the her-
itability estimates from TDM throughout the lactation
period.

Genetic correlation estimates among test day yields
were similar between the ASME1 (Table 7) and W models
(Table 8). Estimates were close to the unity for adjacent
test day yields but decreased to lower values for yields
between the beginning and end of lactation. Genetic corre-
lation estimates were slightly higher for the ASME1 model
between the beginning and mid lactation periods, whereas
this trend toward higher values was observed for the W
model between test day yields from the intermediary
phase and the end of lactation. Overall, these results were
similar to those reported in other studies (Jamrozik and
Schaeffer, 1997; Brotherstone et al., 2000; Jakobsen et al.,
2002; Costa et al., 2005).

Genetic correlation estimates among test day yields for
the W* model were similar to those obtained from the
other models, except for the negative values observed
between test days in the beginning and end of lactation
(Table 9). Similar results were reported in other studies
(Rekaya et al., 1999; Brotherstone et al., 2000).

Figure 4 Estimates of heritability obtained by fitting the models ASME29,
ASME4, ASME1 and LEG þ W (Figure a), W* (Figure b) and W (Figure c).

Table 7 Estimates of heritability (diagonal), genetic (below the diag-
onal) and non-hereditary correlations (above the diagonal) between
test-day milk yields for selected days in milk (DIM) using the ASME1
model

DIM 5 25 45 125 165 265 285 305

5 0.32 0.74 0.63 0.30 0.17 0.06 0.08 0.11
25 0.29 0.30 0.96 0.70 0.60 0.47 0.46 0.45
45 0.37 0.94 0.33 0.85 0.76 0.62 0.61 0.60
125 0.37 0.64 0.79 0.40 0.98 0.89 0.86 0.82
165 0.24 0.56 0.65 0.95 0.41 0.95 0.92 0.87
265 0.06 0.40 0.42 0.58 0.71 0.37 0.99 0.97
285 0.08 0.33 0.37 0.44 0.54 0.97 0.35 0.99
305 0.10 0.25 0.30 0.29 0.34 0.87 0.97 0.29

Table 8 Estimates of heritability (diagonal), genetic (below the diag-
onal) and non-hereditary correlations (above the diagonal) between
test-day milk yields for selected days in milk (DIM) using the W
model

DIM 5 25 45 125 165 265 285 305

5 0.27 0.63 0.36 0.16 0.13 0.08 0.08 0.07
25 0.78 0.29 0.94 0.67 0.56 0.39 0.37 0.35
45 0.54 0.95 0.37 0.83 0.73 0.56 0.53 0.51
125 0.30 0.71 0.85 0.56 0.99 0.92 0.91 0.90
165 0.24 0.57 0.71 0.97 0.60 0.97 0.97 0.96
265 0.11 0.29 0.42 0.83 0.94 0.64 1.00 1.00
285 0.09 0.25 0.38 0.81 0.92 1.00 0.64 1.00
305 0.08 0.22 0.34 0.78 0.90 1.00 1.00 0.65

Table 9 Estimates of heritability (diagonal), genetic (below the diag-
onal) and non-hereditary correlations (above the diagonal) between
test-day milk yields for selected days in milk (DIM) using the W* model

DIM 5 25 45 125 165 265 285 305

5 0.36 0.74 0.48 0.19 0.11 20.10 20.13 20.17
25 0.74 0.33 0.94 0.77 0.69 0.44 0.38 0.34
45 0.50 0.95 0.34 0.93 0.87 0.64 0.60 0.55
125 0.36 0.84 0.93 0.38 0.99 0.87 0.84 0.81
165 0.34 0.75 0.83 0.97 0.39 0.94 0.91 0.89
265 0.23 0.37 0.41 0.69 0.84 0.40 1.00 0.99
285 0.20 0.29 0.33 0.62 0.78 1.00 0.40 1.00
305 0.18 0.22 0.25 0.55 0.73 0.99 1.00 0.40
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The present study was focused on the evaluation of the
parametric functions of Ali and Schaeffer and Wilmink and
a combination of Legendre and Wilmink function, but other
studies report satisfactory results obtained from using the
Legendre orthogonal polynomials to fit random regression
models (Olori et al., 1999; Brotherstone et al., 2000; Pool
et al., 2000). Brotherstone et al. (2000) observed that
parametric functions resulted in higher values for the maxi-
mum likelihood functions, but produced negative genetic
correlations between test days in the beginning and end of
lactation, which were not observed when using Legendre
polynomials. The authors suggest that in situations where
there are no computational limits, polynomials of a higher
order are more efficient. They also suggest that a
combination of parametric and non-parametric functions
(Lidauer et al., 2000 and 2003) would possibly improve the
modeling of the genetic and permanent environment var-
iance components. This was not confirmed in the present
study because the performance of the LEG þ W model
was worse than the AS models.

Conclusions
The AS models evaluated in the present study exhibited
similar results for residual and genetic variances. Heritabil-
ity estimates for test day milk yields were close to the
values obtained from single-trait analyses and of similar
magnitude to results found in the literature.

The model based on the Wilmink curve presented con-
vergence problems. Its variation, the W* model, resulted in
negative genetic correlation estimates between test days
yields in the extremes of the lactation. The LEG þ W
model did not show any improvement over the AS models.

The ASME1 was characterised as the most parsimonious
and of lower computational demand to model test day
milk yields of Holstein cows in Brazil by RRM.
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parameters for daily milk yield of primiparous Ayrshire cows by random
regression test-day models. Livestock Production Science 66, 251-261.

Lidauer M, Mäntysaari EA and Strandén I 2003. Comparison of test-day
models for genetic evaluation of productions traits in dairy cattle. Livestock
Production Science 79, 73-86.

Lidauer MEA, Mäntysaari AE, Strandén I and Pösö J 2000. Multiple-trait ran-
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