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Upscaling Petrophysical Properties

In Chapter 2 we argued that porous rock formations are heterogeneous across a wide
span of length scales, from the micrometer scale of pore channels to the kilometer scale
of petroleum reservoirs or even larger scales for aquifer systems and sedimentary basins.
Describing all flow processes pertinent to hydrocarbon recovery or CO2 storage with a sin-
gle model is therefore not possible. Geological characterization therefore usually involves
a hierarchy of models that each covers a limited range of physical scales cover a wide
range of physical scales. Section 2.3 introduced you to the concept of representative ele-
mentary volumes and mentioned various types of models used for flow studies including
flow in core samples (cm scale), bed models (meter scale), sector models (tens to hundreds
of meters), and field models (km scale). Geocellular models at the field/sector scale are
made to represent the heterogeneity of the reservoir and possibly incorporate a measure
of inherent uncertainty in reservoir simulation. Pore, core, and bed models are mainly
designed to give input to the geological characterization and to derive flow parameters
for simulation models. All model types must be calibrated against static and dynamic data
of very different spatial (and temporal) resolution: thin sections, core samples, well logs,
geological outcrops, seismic surveys, well tests, production data, core flooding and other
laboratory experiments, etc. To learn more about the process of building reservoir models,
you should consult the excellent textbook by Ringrose and Bentley [265].

To systematically propagate the effects of small-scale geological variations observed in
core samples up to the reservoir scale, we need mathematical methods that can homogenize
a detailed fine-scale model and replace it with an equivalent model on a coarser scale that
contains much fewer parameters that represent the behavior of the fine-scale model in an
averaged sense; see Figure 15.1.

Such techniques are not only used to incorporate the effect of small-scale models into
macroscale models. High-resolution geocellular models used for reservoir characterization
on field or sector scale tend to contain more volumetric cells than contemporary simulators
can handle without having to resort to massively parallel high-performance computing.
As a result, flow simulations are usually performed with models containing less details
than those used for characterization. Even if you had all the computational power you
needed, there are several arguments why you should still perform your simulations on
coarser models. First of all, one can argue that high-resolution models tend to contain more
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Figure 15.1 Upscaling of petrophysical properties, here represented by porosity.

details than what is justified by the information in the available data. Second, in many
modeling workflows the available computational power should be spent running multiple
model realizations to span the range of plausible outcomes rather than on obtaining high
numerical resolution for a few highly uncertain predictions. Third, because coarser models
contain fewer parameters, they are simpler to calibrate to observed reservoir responses like
pressure tests and production data. Finally, a coarser model may be sufficient to predict
flow patterns and reservoir responses with the accuracy needed to make a certain business
decision. It is perhaps tempting to believe that with future increases in computing power,
one will soon be able to close the gap in resolution between models used for reservoir
characterization and models used for flow simulation. The development so far indicates
that such an idea is wrong. The trend is rather that increases in computational power enable
geologists and reservoir engineers to build larger and more complex geocellular models at
a pace that outperforms the improvement in simulation capabilities.

For all these reasons, there is a strong need for mathematical and numerical techniques
that can be used to communicate parameters and properties between models of different
spatial resolution. This need will persist, and maybe even grow stronger, in the foreseeable
future. This chapter discusses techniques for upscaling static rock properties.

15.1 Upscaling for Reservoir Simulation

Upscaling (or homogenization) refers to the process of propagating properties and param-
eters from a model of a given resolution to a model of lower spatial resolution. In this
process, heterogeneous regions in a reservoir model are replaced by homogeneous regions
to make up a coarser model of the same reservoir. Or, in the words of Chapter 14 on grid
coarsening, upscaling is the process in which petrophysical properties in the cells that make
up a coarse block are averaged into effective values for each coarse block; see Figure 15.1.
The effective properties of the new homogeneous regions are defined so that they preserve
the effects of small-scale variations in an averaged sense. How this averaging should be
performed depends on the type of property to be upscaled. We distinguish between addi-
tive properties that can be upscaled using simple volumetric averaging and nonadditive

https://doi.org/10.1017/9781108591416.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.020


560 Upscaling Petrophysical Properties

properties, for which correct averaging methods only exist in special cases and the best
you can hope for in the general case is to compute accurate approximations.

Downscaling refers to the process of propagating properties from a model with a given
spatial resolution to a model having higher spatial resolution. We can, for instance, be inter-
ested in refining coarse-scale modifications in petrophysical properties obtained during a
history match on a simulation model to update the underlying geomodel. In the downscaling
process, the aim is to preserve both the coarse-scale trends and the fine-scale heterogeneity
structures.

The process of upscaling petrophysical parameters leads to many fundamental ques-
tions. For instance, do the partial differential equations that make up the flow model on
the coarse scale take the same form as the equations modeling flow at the subgrid scale?
And if so, how do we honor the fine-scale heterogeneities at the subgrid level? Even
though upscaling has been a standard procedure in reservoir simulation for more than
four decades, nobody has fully answered these questions rigorously, except for cases with
special heterogeneous formations such as periodic or stratified media.

Homogenization is a rigorous mathematical theory for asymptotic analysis of periodic
structures; see [41, 149, 135]. A relevant result states that for a periodic medium with
permeability K( x

ε
), there exists a constant symmetric and positive-definite tensor K0 such

that the solutions pε and vε = −K( x
ε
)∇pε to the elliptic problem

−∇ · K(
x

ε
)∇pε = q (15.1)

converge uniformly as ε→ 0 to the solution of the homogenized equation

− ∇ · K0∇p0 = q. (15.2)

Homogenization theory can be used to derive homogenized tensors for the region, if we
can safely assume that the region we seek to compute an effective property for is part of
an infinite periodic medium. The main advantage of homogenization is that it provides
mathematical methods to prove existence and uniqueness of the coarse-scale solution and
also verifies that the governing equation at the macroscopic level takes the same form as the
elliptic equation that governs porous media flow at the level of the representative elemen-
tary volumes (REVs). However, it is more debatable whether mathematical homogenization
can be used for practical simulations, since natural rocks are rarely periodic.

As you will see shortly, the most basic upscaling techniques rely on local averaging
procedures that calculate effective properties in each grid block solely from properties
within the grid block. Because these averaging procedures do not consider coupling beyond
the local domain, they fail to account for the effect of long-range correlations and large-
scale flow patterns in the reservoir, unless their effect can be represented correctly by the
forces that drive flow inside the local domain. Different flow patterns may call for different
upscaling procedures, and it is generally acknowledged that global effects must also be
taken into consideration to obtain robust coarse-scale simulation models.

Upscaling must also be seen in close connection with griding and coarsening methods,
as discussed in Chapters 3 and 14. To make a fine-scale model, you must decide what kind
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of grid you want to represent the porous medium, what (local) resolution you need, and
how you should orient your grid cells. Obviously, you should consider the same questions
for the upscaled model. To make an upscaled simulation model as accurate and robust as
possible, the grid should be designed so that grid blocks capture heterogeneities on the
scale of the block. This often implies that you may need significantly more blocks if you
use a regular grid than if you use an unstructured polyhedral grid. You may also want to use
different coarsening factors in zones of high and low flow, near and far away from wells
and fluid contacts, as discussed in Chapter 14. The importance of designing a good coarse
grid should not be underestimated. Henceforth, however, we simply assume that a suitable
coarse grid is available and focus on upscaling techniques.

The literature on upscaling techniques is extensive, ranging from simple averaging tech-
niques, e.g., [151], via flow-based methods that rely on local flow problems [37, 90] to more
comprehensive global [225, 133] and local–global [63, 64, 117] methods. Some attempts
have been made to analyze the upscaling process, e.g., [31, 318], but so far there is generally
no theory or framework for assessing the quality of an upscaling technique. In fact, upscal-
ing techniques are rarely rigorously quantified with mathematical error estimates. Instead,
the quality of upscaling techniques is usually assessed by comparing upscaled production
characteristics with those obtained from a reference solution computed on an underlying
fine grid. This deficiency is one of the motivations behind the development of modern
multiscale methods [95, 195]. Such multiscale methods are more well developed in MRST
than in any comparable software, but a detailed discussion is outside the scope of this book.

In the following, we only discuss the basic principles and try to show you how you
can implement relatively simple upscaling methods; we also attempt to explain why some
methods may work well for certain flow scenarios and not for others. If you are interested
in a comprehensive overview, you should consult one of the many review papers devoted
to this topic, e.g., [70, 311, 31, 263, 108, 91, 92]. We start by a brief discussion of how
to upscale porosity and other additive properties, before we move on to discuss upscaling
permeability, which is the primary example of a nonadditive property. Because of the way
Darcy’s law has been extended from single-phase to multiphase flow, it is common to distin-
guish the upscaling of absolute permeability K from the upscaling of relative permeability
krα . Upscaling of absolute permeability is often called single-phase upscaling, whereas
upscaling of relative permeability is referred to as multiphase upscaling. The main parts of
this chapter are devoted to permeability upscaling and to upscaling of the corresponding
transmissibilities that account for permeability effects in finite-volume discretizations. As
in the rest of the book, our discussion will to a large extent be driven by examples, for
which you can find complete codes in the upscaling directory of the book module.

15.2 Upscaling Additive Properties

Porosity is the simplest example of an additive property and can be upscaled through a
simple volumetric average. If � denotes the region we want to average over, the averaged
porosity value is given as
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φ∗ = 1

�

∫
�

φ(�x) d �x. (15.3)

Implementing the computation of this volumetric average can be a bit tricky if the coarse
blocks and the fine cells are not matching. In MRST, however, we always assume that the
coarse grid is given as a partition of the fine grid, as explained in Chapter 14. If q denotes
the vector of integers describing the coarse partition, upscaling porosity amounts to a single
statement

crock.poro = accumarray(q,rock.poro.*G.cells.volumes)./ ...
max(accumarray(q,G.cells.volumes),eps);

We use max(..,eps) to safeguard against division by zero in case your grid contains blocks
with zero volume or your partition vector is not contiguous. Weighting by volume is not
necessary for grids with uniform cell sizes. Similar statements were used to go from the
fine-scale model on the left side of Figure 15.1 to the coarse-scale model shown on the
right. Complete source code is found in the script illustrateUpscaling.m.

Other additive (or volumetric) properties like net-to-gross, (residual) saturations, and
concentrations can be upscaled almost in the same way, except that you should replace the
bulk average in (15.3) by a weighted average. If n denotes net-to-gross, the correct average
would be to weight with porosity, so that

n∗ =
[∫

�

φ(�x) d �x
]−1

∫
�

φ(�x)n(�x) d �x. (15.4)

and likewise for saturations. In MRST, we can compute this upscaling as follows:

pv = rock.poro.*G.cells.volumes;
N = accumarray(q,pv.*n)./ max(accumarray(q,pv),eps);

To verify that this is the correct average, we simply compute

φ∗n∗ =
[ 1

�

∫
�

φ(�x) d �x
][∫

�

φ(�x) d �x
]−1

∫
�

φ(�x)n(�x) d �x

= 1

�

∫
�

φ(�x) n(�x) d �x = (φ n)∗.

Using the same argument, you can easily propose that concentrations should be weighted
with saturations, and so on. Rock type (or flow unit), on the other hand, is not an additive
property, even though it is sometimes treated almost as if it was by applying a majority vote
to identify the rock type that occupies the largest volume fraction of a block. Such a simple
approach is not robust [324] and should generally be avoided.

To get more acquainted with upscaling of additive quantities, I recommend that you try
to do the following computer exercises.
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Computer exercises

15.2.1 Construct a 8 × 24 × 5 coarse grid CG of the SAIGUP model and upscale the
additive rock properties. Verify your upscaling by computing

pv = accumarray(CG.partition, poreVolume(G,rock));
max(abs(pv - poreVolume(CG, crock)))

Plot histograms of the fine and coarse porosities and compare. How would you
make a coarse grid that preserves the span in porosity values better? To measure the
quality of a given upscaling, you can for instance use the following error measure:

err = sum(abs(rock.poro - crock3.poro(CG.partition)))/...
sum(rock.poro)*100;

It may also be helpful to plot the cell-wise discrepancy between the upscaled and
the original porosity over the fine grid.

15.2.2 The file mortarTestModel from the BedModels1 data set describes a sedimentary
bed consisting of three different facies. Construct a coarse model that has 5 × 5
blocks in the lateral direction and as many blocks in the

vertical direction as required to preserve distinct
facies layers, as shown in the plot to the right. Upscale
the porosity of the model. Do you think the resulting
coarse grid is suitable for flow simulations? (Hint:
Check the guidelines from Section 14.7.)

15.3 Upscaling Absolute Permeability

To study upscaling of absolute permeability, it is sufficient to consider single-phase flow in
the form of a variable-coefficient Poisson equation

∇ · K∇p = 0. (15.5)

Even with such a simple equation, the choice of what is the best method to average absolute
permeability generally depends on a complex interplay between the local permeability
distribution and the characteristic flow directions. In certain special cases, one can develop
simple methods that average permeability correctly, but in the general case, all you can do
is develop computational methods that approximate the true effective permeability of the
upscaled region. How accurate a given approximation is will depend on the coarse grid, the
specific upscaling method, the purpose for which the upscaled values are to be used, and
the complexity of the fine-scale permeability distribution.

Most techniques for upscaling absolute permeability seek an averaged tensor K∗ that
reproduces the same total flow through each homogeneous region you would obtain by
solving the single-pressure equation (15.5) with the full fine-scale heterogeneity. In other
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words, if � is the homogeneous region to which we wish to assign an effective property
K∗, this property should fulfill∫

�

K(�x)∇p d �x = K∗
∫

�

∇p d �x. (15.6)

This equation states that the net flow rate �v� through � is related to the average pressure
gradient ∇�p in � through the upscaled Darcy law

�v� = −K∗∇�p. (15.7)

The upscaled permeability tensor K∗ is not uniquely defined by (15.6) for a given pressure
field p, and conversely, there does not exist a unique K∗ so that (15.6) holds for any pressure
field. This reflects that K∗ depends on the flow through �, which in turn is determined by
the boundary conditions specified on ∂�. The better you know the boundary conditions
that a homogenized region will be subject to in subsequent simulations, the more accurate
estimates you can compute for the upscaled tensor K∗. In fact, if you know these boundary
conditions exactly, you can compute the true effective permeability. In general, you will not
know these boundary conditions in advance unless you have already solved your problem,
and the best you can do is to make an educated and representative guess that aims to
give reasonably accurate results for a specific or a wide range of flow scenarios. Another
problem is that even though the permeability tensor of a physical system must be symmetric
and positive definite (i.e., �z · K�z > 0 for all nonzero �z), there is generally no guarantee
that the effective permeability tensor constructed by an upscaling algorithm fulfills the
same properties. The possible absence of symmetry and positive definiteness shows that
the single-phase upscaling problem is fundamentally ill-posed.

15.3.1 Averaging Methods

The simplest way to upscale permeability is to use an explicit averaging formula. power
averages constitute a general class of such formulas,

K∗ = Ap(K) =
( 1

|�|
∫

�

K(�x)p d �x
)1/p

. (15.8)

Here, p = 1 and p = −1 correspond to the arithmetic and harmonic average, respectively,
whereas the geometric mean is obtained in the limit p→ 0 as

K∗ = A0(K) = exp
( 1

|�|
∫

�

log(K(�x)) d �x
)

. (15.9)

The use of power averaging can be motivated by the so-called Wiener-bounds [317], which
state that for a statistically homogeneous medium, the correct upscaled permeability will
be bounded above and below by the arithmetic and harmonic mean, respectively.

To motivate (15.8), we can look at the relatively simple problem of upscaling perme-
ability within a one-dimensional domain [0,L]. From the flow equation (15.5) and Darcy’s
law, we have that
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−(K(x)p′(x)
)′ = 0 "⇒ v(x) = K(x)p′(x) ≡ constant.

The upscaled permeability K∗ must satisfy Darcy’s law on the coarse scale, hence v =
−K∗[pL − p0]/L. Alternatively, this formula can be derived from (15.6)

K∗
∫ L

0
p′(x)dx = K∗(pL − p0)

(15.6)=
∫ L

0
K(x)p′(x)dx = −

∫ L

0
vdx = −Lv.

We can now use (15.6) and Darcy’s law to find the expression for K∗∫ L

0
p′(x)dx = −

∫ L

0

v

K(x)
dx

= K∗
pL − p0

L

∫ L

0

1

K(x)
dx = K∗

(∫ L

0
p′(x)dx

)( 1

L

∫ L

0

1

K(x)
dx
)
,

from which it follows that the correct way to upscale K is to use the harmonic average

K∗ =
( 1

L

∫ L

0

1

K(x)
dx
)−1

. (15.10)

This result is universally valid only in one dimension, but also applies to the special case of
a perfectly stratified isotropic medium with layers perpendicular to the direction of pressure
drop as illustrated in Figure 15.2. It is a straightforward exercise to extend the analysis just
presented to prove that harmonic averaging is the correct upscaling in this case. (If you are
familiar with Ohm’s law in electricity, you probably realize that this setup is similar to that
of resistors set in parallel.)

Computing the harmonic average is straightforward in MRST:

vol = G.cells.volumes;
for i=1:size(rock.perm,2)

crock.perm(:,i) = accumarray(q,vol) ./ ...
accumarray(q,vol./rock.perm(:,i))

end

Here, we have assumed as in the previous section that q is a partition vector describing the
coarse grid.

K0 K1 K2 K3 K4 K5 K6 K7 K8 K9p0 pL

L

H

Figure 15.2 Example of a perfectly stratified isotropic medium with layers perpendicular to the
direction of the pressure drop, for which harmonic averaging is the correct way to upscale absolute
permeability.
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K0

K1

K2

p0 pL

L

H

Figure 15.3 Example of a perfectly stratified isotropic medium with layers parallel to the direction of
the pressure drop, for which arithmetic averaging is the correct way to upscale absolute permeability.

Another special case is when the layers of a perfectly stratified isotropic medium are
parallel to the pressure drop as shown in Figure 15.3. Because the permeability is constant
along the direction of pressure drop, the pressure will be linear in the x-direction with
p(x,y) = p0 + x(pL − p0)/L. Using (15.6), we can compute

K∗
∫ H

0

∫ L

0
∂xp(x,y) dx dy = K∗H(pL − p0)

=
∫ H

0

∫ L

0
K(x,y)∂xp(x,y) dx dy = pL − p0

L

∫ H

0

∫ L

0
K(x,y) dx dy,

from which it follows that the correct upscaling is to use the arithmetic average

K∗ = 1

LH

∫ H

0

∫ L

0
K(x,y) dx dy. (15.11)

These examples show that averaging techniques can give correct upscaling in special cases,
also in three dimensional space. If we now combine these two examples, we see that we
can define the following upscaled permeability tensors for the isotropic media shown in
Figures 15.2 and 15.3,

K∗ =
[
Ax
−1(K) 0

0 Ax
1(K)

]
and K∗ =

[
A

y

1(K) 0
0 A

y

−1(K)

]
,

where the superscripts x and y on the averaging operator A from (15.8) signify that the
operator is only applied in the corresponding spatial direction. These averaged permeabili-
ties would produce the correct net flow across the domain when these models are subject to
a pressure differential between the left and right boundaries or between the top and bottom
boundaries. For other boundary conditions, however, the upscaled permeabilities generally
give incorrect flow rates.

To represent flow in more than one direction, also for cases with less idealized heteroge-
neous structures modeled by a diagonal fine-scale tensor, you can compute a permeability
tensor with the following diagonal components:

K∗ =
⎡
⎣A

yz

1 (Ax
−1(K)) 0 0
0 Axz

1 (A
y

−1(K)) 0
0 0 A

xy

1 (Az
−1(K))

⎤
⎦ .
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In other words, we start by computing the harmonic average of each of the diagonal perme-
ability components in the corresponding longitudinal direction, i.e., compute the harmonic
average of Kxx along the x direction, and so on. Then, we compute the arithmetic average
in the transverse directions, i.e., in the y and z directions for Kxx , and so on. This average is
sometimes called the harmonic-arithmetic average and may give reasonable upscaling for
layered reservoirs when the primary direction of flow is along the layers. More importantly,
the harmonic-arithmetic average provides a tight lower bound on the effective permeability,
whereas the opposite method, the arithmetic-harmonic average, provides a tight upper
bound.

It is not obvious how to compute the harmonic-arithmetic average for a general unstruc-
tured grid, but it is almost straightforward to do it for rectilinear and corner-point grids in
MRST. For brevity, we only show the details for the case when the grid has been partitioned
uniformly in index space:

q = partitionUI(G, coarse);
vol = G.cells.volumes;
for i=1:size(rock.perm,2)

dims = G.cartDims; dims(i)=coarse(i);
qq = partitionUI(G, dims);
K = accumarray(qq,vol)./accumarray(qq,vol./rock.perm(:,i));
crock.perm(:,i) = accumarray(q,K(qq).*vol)./accumarray(q,vol);

end

The key idea in the implementation above is that to compute the harmonic average in one
axial direction, we introduce a temporary partition qq that coincides with the coarse grid
along the given axial direction and with the original fine grid in the other axial directions.
This way, the call to accumarray has the effect that the harmonic average is computed
for one longitudinal stack of cells at the time inside each coarse block. To compute the
arithmetic average, we simply map the averaged values back onto the fine grid and use
accumarray over the original partition q.

Example 15.3.1 The script averagingExample1 in the book module shows an example of
the averaging methods just discussed. The permeability field is a 40 × 60 sub-sample
of Layer 46 from the fluvial Upper Ness formation in the SPE 10 data set. Figure 15.4
compares the effective permeabilities on a 15 × 15 coarse grid computed by arithmetic,
harmonic, and harmonic-arithmetic averaging. We see that arithmetic averaging has a
tendency to preserve high permeability values, harmonic averaging tends to preserve small
permeabilities, whereas harmonic-arithmetic averaging is somewhere in between.

Although simple averaging techniques can give correct upscaling in special cases, they
tend to perform poorly in practice because the averages do not properly reflect the hetero-
geneity structures. Likewise, it is also generally difficult to determine which averaging to
use, since the best averaging method depends both on the heterogeneity of the reservoir and
the prevailing flow directions. Let us illustrate this by an example.
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Fine scale Arithmetic Harmonic Harmonic-arithmetic

.1 10 1000 .1 10 .1 10 1000 .1 10 .1 10 1000 .1 10 .1 10 1000 .1 10

Figure 15.4 Arithmetic, harmonic, and harmonic-arithmetic averaging applied to a 40× 60 subset of
Layer 46 from the SPE 10 data set.
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Figure 15.5 Three models used to test the accuracy of averaging techniques. From left to right: a
layered model and two subsets from the Tarbert and the Upper Ness formation, respectively, from the
SPE 10 data set.

Example 15.3.2 Consider an 8 × 8 × 8 reservoir with three different permeability
realizations shown in Figure 15.5, which we upscale to a single coarse block using
arithmetic, harmonic, and harmonic-arithmetic averaging. To assess the quality of the
upscaling, we compare fine-scale and coarse-scale prediction of net flux across the outflow
boundary for three different flow patterns: from west to east, from south to north, and
from bottom to top. Complete source code for this simulation setup is given in the script
averagingExample2.

Table 15.1 reports the ratio between the outflow computed by the coarse models and
the outflow computed on the original fine grid. For the layered model, arithmetic and
harmonic-arithmetic averaging correctly reproduces flow in the lateral directions, whereas
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Table 15.1 Ratio between flow rate predicted by upscaled/fine-scale models
for three permeability fields, flow scenarios, and upscaling methods.

Model Flow pattern Arithmetic Harmonic Harm-arith

Layered East→West 1.0000 0.2662 1.0000
North→South 1.0000 0.2662 1.0000

Top→Bottom 3.7573 1.0000 1.0000

Tarbert East→West 1.6591 0.0246 0.8520
North→South 1.6337 0.0243 0.8525

Top→Bottom 47428.0684 0.3239 0.8588

Upper Ness East→West 3.4060 0.0009 0.8303
North→South 1.9537 0.0005 0.7128

Top→Bottom 6776.8493 0.0020 0.3400

flow normal to the layers is correctly reproduced by harmonic and harmonic-arithmetic
averaging. For the two anisotropic models from SPE 10, on the other hand, the flow rates
predicted by the arithmetic and harmonic methods are generally far off. The combined
harmonic-arithmetic method is more accurate, with less than 15% discrepancy for the Tar-
bert model and 17–76% discrepancy for the Upper Ness model. Whether this can be con-
sidered an acceptable result will depend on what purpose the simulation is to be used for.

Computer exercises

15.3.1 Set up a set of flow simulations with different boundary conditions and/or well
patterns to test the accuracy of the three effective permeability fields computed in
averagingExample1.

15.3.2 Implement harmonic-arithmetic averaging for the SAIGUP model. (Hint: the
script cpGridHarmonic in the upscaling module computes harmonic averaging
for the SAIGUP model.) Can you also apply it to the coarse grids generated for
CaseB4 in the previous chapter?

15.3.3 Redo the upscaling in Figure 15.4 using a coarse grid that adapts to high-permeable
or high-flow zones. Does this help preserve the distribution of the permeabilities?

15.3.4 Implement the operator Ap in (15.8) as a new utility function.
15.3.5 How would you upscale the well indices in a Peaceman well model?

15.3.2 Flow-Based Upscaling

Thus far in this section, we repeatedly used simple flow problems to argue whether a partic-
ular averaging method was good or not. Taking this idea one step further, we could impose
representative boundary conditions along the perimeter of each coarse block and solve
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Figure 15.6 Illustration of a simple flow-based upscaling method, solving −∇ · (K∇p) = 0, with
p = 1 and p = 0 prescribed along the inflow and outflow boundaries respectively, and no-flow
boundary conditions elsewhere.

the flow problem (15.5) numerically to determine fine-scale pressures and flow rates and
corresponding net flow rates and average pressure gradients. We could then invert the flow
equations discretized on the coarse block to determine effective coarse-scale permeabilities
from Darcy’s law. That is, once p and v have been computed, we use the same type of
argument as we used to determine the formulas for the harmonic and arithmetic averages,
except that we now work with discrete pressures and fluxes. This raises the immediate
question of what kind of boundary conditions we should use.

Different boundary conditions have been suggested over the years. One obvious
approach is to use three different boundary conditions for each block to create a pressure
drop in each axial directions in the same way as for the computations reported in Table 15.1;
see Figure 15.6. By specifying sealing boundary conditions along the other boundaries, we
ensure that the effective flow over the block follows the same axial direction as the pressure
drop. This setup emulates how permeability is measured on core samples in the laboratory
and provides us with three pairs of flow rates in 3D that we can use to compute an upscaled
permeability tensor with diagonal elements

Kxx = −vxLx

�px

, Kyy = −vyLy

�py

, Kzz = −vzLz

�pz

.

Here, vx is net flux, Lx the characteristic length of the block, and �px the pressure drop
inside the block in the x-direction. With this method, the off-diagonal elements are zero
by construction. Strictly speaking, the assumption of sealing boundaries is only valid in
the idealized case when the permeability field is symmetric with respect to the faces of the
coarse grid, i.e., if the coarse block is surrounded by mirror images of itself. It can be shown
that this method tends to introduce an upscaling bias towards low permeability values by
thickening shale barriers and narrowing sand channels [163, 161].

Unless the grid block is located next to a sealing fault or an impermeable layer, it
therefore more natural to assume that the block has open boundaries so that a pressure
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differential applied along one of the axial directions will induce a net flow also in trans-
verse directions. This means that the effective permeability is a full tensor. One method
to emulate open boundaries is to prescribe a constant pressure on faces perpendicular to
each flow direction and linear pressure drop along the sides that are parallel to the flow
direction [120, 266] so that the flow can leave or enter these sides. As for the sealing
boundary, a unit pressure drop is applied in each of the axial directions. Use of linear
boundary conditions is only strictly valid if the heterogeneous coarse block is embedded
inside a homogeneous medium and tends to produce permeabilities with a bias towards high
values [90].

Another popular option is to prescribe periodic boundary conditions [90], assuming
that the grid block is sampled from a periodic medium so that the fluxes in and out of
opposite boundaries are equal. In other words, to compute the x-component, we impose
the following conditions:

p(Lx,y,z) = p(0,y,z)−�p, v(Lx,y,z) = v(0,y,z),

p(x,Ly,z) = p(x,0,z), v(x,Ly,z) = v(x,0,z),

p(x,y,Lz) = p(x,y,0), v(x,y,Lz) = v(x,y,0),

(15.12)

and similarly for the other axial directions. This approach gives a symmetric and positive-
definite tensor and is usually more robust than specifying sealing boundaries. Periodic
boundaries tend to give permeabilities that lie in between the lower and upper bounds
computed using sealing and linear boundaries, respectively.

Let us see how two of these methods can be implemented in MRST for a rectilinear or
corner-point grid. For simplicity, we assume that the d-dimensional domain to be upscaled
is rectangular and represented by grid G and rock structure rock. We start by setting up
structures representing boundary conditions,

bcsides = {'XMin', 'XMax'; 'YMin', 'YMax'; 'ZMin', 'ZMax'};
for j = 1:d;

bcl{j} = pside([], G, bcsides{j, 1}, 0);
bcr{j} = pside([], G, bcsides{j, 2}, 0);

end
Dp = {4*barsa, 0};
L = max(G.faces.centroids)-min(G.faces.centroids);

The first structure, bcsides, just contains name tags to locale the correct pair of boundary
faces for each flow problem. The bcl and bcr structures are used to store a template of
all the boundary conditions we must use. This is not needed to implement the pressure-
drop method, but these structures are handy when setting up periodic boundary conditions.
Finally, Dp and L contain the prescribed pressure drop and the characteristic length in each
axial direction. With the data structures in place, the loop that does the upscaling for the
pressure-drop method is quite simple:
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for i=1:d
bc = addBC([], bcl{i}.face, 'pressure', Dp{1});
bc = addBC(bc, bcr{i}.face, 'pressure', Dp{2});
xr = incompTPFA(initResSol(G, 100*barsa, 1),< G, hT, fluid, 'bc', bc);
v(i) = sum(xr.flux(bcr{i}.face)) / sum(G.faces.areas(bcr{i}.face));
dp(i) = Dp{1}/L(i);

end
K = convertTo(v./dp, milli*darcy);

That is, we loop over the axial directions and for each direction we: (i) specify a pressure
from left to right, (ii) compute pressures and fluxes by solving the resulting Poisson prob-
lem, and (iii) compute average velocity v across the outflow boundary and average pressure
drop d. Finally, we can compute the effective permeability by inverting Darcy’s law. The
implementation just described is a key algorithmic component in steady-state upscaling
of relative permeabilities for multiphase flow and is therefore offered as a separate utility
function upscalePermeabilityFixed in the upscaling module.

Periodic boundary conditions are slightly more involved. We start by calling a routine
that modifies the grid structure so that it represents a periodic domain:

[Gp, bcp] = makePeriodicGridMulti3d(G, bcl, bcr, Dp);
for j=1:d, ofaces{j} = bcp.face(bcp.tags==j); end

Technically, the grid is extended with a set of additional faces that connect cells on opposite
boundaries of the domain so that the topology becomes toroidal. The routine also sets up
an appropriate structure for representing periodic boundary conditions, which we use to
extract the faces across which we are to compute outflow. You can find details of how the
periodic grid is constructed in the source code. With the modified grid in place, the loop for
computing local flow solutions reads:

dp = Dp{1}*eye(d); nbcp = bcp;
for i=1:d

for j=1:d, nbcp.value(bcp.tags==j)=dp(j,i); end
xr = incompTPFA(initResSol(Gp, 100*barsa, 1), Gp, hT, fluid, 'bcp', nbcp);
for j=1:d,

v(j,i) = sum(xr.flux(ofaces{j})) / sum(Gp.faces.areas(ofaces{j}));
end

end

Inside the loop over all axial directions, the first for-loop extracts the correct pressure
drop to be included in the periodic boundary conditions from the diagonal matrix dp; that
is, a pressure drop along the current axial direction and zero pressure drop in the other
directions. Then, we solve the flow problem and compute the average velocity across the
outflow boundaries. Because of the periodic conditions, we may have outflow also across
boundaries that have no associated pressure drop, which is why we generally get a full-
tensor permeability. Outside the loop, we compute the average pressure drop in each axial
direction and invert Darcy’s law to compute the permeability tensor:
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dp = bsxfun(@rdivide, dp, L);
K = convertTo(v/dp, milli*darcy)

This implementation is offered as a utility upscalePermeabilityPeriodic in the
upscaling module. Linear boundaries are not supported in MRST, but can be implemented
by combining elements from the two cases just discussed: using the function pside to set a
pressure distribution on the boundaries parallel to the direction of the applied pressure drop
and solving a small linear system to compute the components of the effective permeability.

Setting up the necessary flow problems is relatively simple when the grid corresponds
to just one coarse block. It is a bit more involved to do this upscaling efficiently for
many blocks at a time. In the upscaling module, we therefore offer a utility function
upscalePerm that computes permeability upscaling using the pressure-drop method.

Example 15.3.3 Figure 15.7 shows two different permeability fields upscaled using flow-
based upscaling with sealing and periodic boundary conditions. For the case to the right,
the correlation in the permeability field is along the y-direction, and both methods compute
the same diagonal upscaled tensor. Using pressure drop along the axial directions with
sealing boundaries still gives a diagonal tensor if we rotate the grid so that the correlation
direction is along the diagonal, whereas the periodic boundary conditions give a full tensor.
By computing the eigenvalue decomposition of this tensor, we find that the upscaled tensor
is diagonal with values 15 and 19.5 if we rotate the axial directions 45 degrees clockwise.
Full source code for this example is given in the permeabilityExample1 script.

Example 15.3.4 Both flow-based methods will by design correctly reproduce flow along
or orthogonal to layered media for the experiment in Table 15.1. We therefore replace the
layered permeability field with one having dipping layers. Moreover, we replace the top-to-
bottom pressure drop by a pressure drop between diagonally opposite corners and sample
from a different part of the SPE 10 model. Figure 15.8 shows the new permeability fields

10 mD

30 mD

Ks =
[

17.23 0
0 17.23

]
,Kp =

[
17.25 −2.25
−2.25 17.25

]
, Ks =

[
15.0 0

0 20.0

]
,Kp =

[
15.0 0

0 20.0

]

Figure 15.7 Upscaling two isotropic permeability fields using flow-based upscaling with sealing
boundaries (s) or periodic boundary conditions (p).
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Table 15.2 Ratio between flow rate predicted by upscaled/fine-scale
models for three different permeability fields, flow scenarios, and
upscaling methods.

Model Flow pattern Harm-arith Sealing Periodic

Layered East→West 0.78407 1.00000 1.02594
North→South 0.49974 1.00000 1.00000

Corner→Corner 1.04273 1.30565 1.34228

Tarbert East→West 0.86756 1.00000 0.56111
North→South 0.89298 1.00000 0.53880

Corner→Corner 0.00003 0.00027 39.11923

Upper Ness East→West 0.83026 1.00000 0.40197
North→South 0.71283 1.00000 0.28081

Corner→Corner 0.09546 0.62377 2183.26643

0.01

 0.1

   1

  10

 100

1000

Figure 15.8 Three models used to test the accuracy of averaging techniques. From left to right: an
isotropic model with dipping layers and two subsets from the Tarbert and the Upper Ness formation,
respectively, from the SPE 10 data set.

and Table 15.2 reports the results of the experiment. The method with sealing boundary
conditions is exact by design for the first two flow fields, but gives incorrect flow rates
for the diagonal flow, in particular for the Tarbert subsample. With periodic boundary
conditions, we get the exact flux when the flow direction follows regions of constant per-
meability from the north to the south side for the isotropic case. For the other two flow
patterns, the flow directions cross dipping layers and we thus get minor deviations in the
lateral direction and somewhat larger deviation for the diagonal flow. For the anisotropic
subsamples, the periodic conditions generally give less accurate results than the other
two methods, except for the diagonal flow on the Tarbert case. Altogether, this example
illustrates quite well how ill-posed the upscaling problem is. Source code is given in the
permeabilityExample2 script.
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Computer exercises

15.3.1 The data sets BedModels1 and BedModel2 are examples of fine-scale rock models
developed for use in a workflow that propagates petrophysical properties from the
core scale to the reservoir scale. Use the methods presented in this subsection to
upscale the absolute permeability in these models.

15.3.2 Implement a method for upscaling with linear boundary conditions.
15.3.3 Estimates computed by the averaging and flow-based methods have a certain

ordering, from low to high values: harmonic, harmonic-arithmetic, sealing
boundaries, periodic boundaries, linear boundaries, arithmetic-harmonic, and
arithmetic. Make a small test suite of heterogeneity permeability fields and verify
this claim.

15.3.4 For grids that are not K-orthogonal, we know that the TPFA method will compute
incorrect fine-scale flow solutions and that it generally is better to use a consistent
discretization. Go back to Example 15.3.3, perturb the grid (e.g., with twister)
and compare upscaled solutions computed by TPFA and the mimetic or MPFA
method. (At the time of writing, the consistent methods do not yet implement
periodic boundary conditions.)

15.4 Upscaling Transmissibility

In the discrete case, the choice of an appropriate upscaling method depends on the numer-
ical stencil to be used for the spatial discretization of the upscaled model. In previous
chapters we have seen that the two-point finite-volume method is the method of choice in
reservoir simulation. When using this method, we only need grid-block permeabilities to
compute transmissibilities between neighboring coarse blocks. It would therefore be more
convenient if, instead of computing an effective permeability tensor, we could compute the
coarse transmissibilities associated with the interface between pairs of neighboring coarse
blocks directly. These transmissibilities should be defined so that they reproduce fine-scale
flow fields in an averaged sense. That is, instead of upscaled block-homogenized tensors
K∗, we seek block transmissibilities T ∗ij satisfying

vij = T ∗ij

(
1

|�i |
∫

�i

p d �x − 1

|�j |
∫

�j

p d �x
)

, (15.13)

where vij = −
∫
�ij

(K∇p) · �n dν is the total Darcy flux across �ij .

We can compute the upscaled transmissibilities T ∗ij much the same way we computed
upscaled permeabilities in Figure 15.9. Here, we use a pressure drop to drive a flow across
the interface �ij between two coarse blocks �i and �j . Thus, by solving (15.5) in the
two-block domain �i ∪ �j subject to suitable boundary conditions, we can compute the
average pressures Pi and Pj in �i and �j and then obtain T ∗ij directly from the formula

vij = T ∗ij (Pi − Pj ). (15.14)
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�i �j

Figure 15.9 Illustration of flow-based upscaling of transmissibility.

Let us see how this upscaling can be implemented in MRST. That is, we discuss how to
upscale the transmissibility associated with a single interface between two grid blocks. To
this end, we assume a fine grid G and a coarse partition vector q that subdivides the grid
into two coarse blocks in the x-direction. We start by constructing a coarse-grid structure
CG, as introduced in Section 14.2. From the data members in this structure we can find all
faces in the fine grid that lie on the interface between the coarse blocks and determine the
correct sign to apply to the coarse-scale flux

i = find(�any(CG.faces.neighbors==0,2));
faces = CG.faces.fconn(CG.faces.connPos(i):CG.faces.connPos(i+1)-1);
sgn = 2*(CG.faces.neighbors(i, 1) == 1) - 1;

As we saw in Section 15.3.2, there are different ways we can set up a localized flow problem
that gives a flux across the interface between the two blocks. Assuming that the coarse
interface is more or less orthogonal to the x-axis, we use a pressure drop in this direction
and no-flow boundary conditions on the other sides, as shown in Figure 15.9:

bc = pside([], G, 'XMin', Dp(1));
bc = pside(bc, G, 'XMax', Dp(2));
xr = incompTPFA(initResSol(G, 100*barsa, 1), G, hT, fluid, 'bc', bc);
flux = sgn * sum(xr.flux(faces));
mu = fluid.properties();

All that now remains is to compute pressure values Pi and Pj associated with each coarse
block before we use (15.14) to compute the effective transmissibility. Following (15.13),
Pi and Pj are defined as the average pressure inside each block

P = accumarray(q,xr.pressure)./accumarray(q,1);
T = mu*flux/(P(1) - P(2));

Here, we have assumed that all grid cells have the same size. If not, we need to weight the
pressure average by cell volumes. As an alternative, we could also have used the pressure
value at the block centroids, which would give a (slightly) different transmissibility:

cells = findEnclosingCell(G,CG.cells.centroids);
P = xr.pressure(cells);
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Figure 15.10 Upscaled transmissibility computed on a series of two-block configurations using either
centroid values or averaged values for the block pressures. Black dots show the location of the block
centroids from which pressure values are sampled.

Example 15.4.1 In Figure 15.10 we have used the code just discussed to compute the
transmissibility between two blocks covering a rectangular domain [0,200] × [0,100] m2.
We gradually rotate the interface between the two coarse blocks so that it goes from vertical
towards being horizontal. Complete source code is given in the script
transmissibilityExample1 in the book module. For the first four pairs of coarse blocks
shown in Figure 15.10, there is only a slight difference between the transmissibilities
computed using pressure values defined as block averages and pressures defined by
sampling at the block centroids. The transmissibilities start to deviate as the block interface
approaches the diagonal.

A pressure drop along the x-axis is a reasonable drive mechanism for the first block
pairs, but it is highly questionable for the last two block pairs. Let us, for instance, con-
sider block pair number seven. If we instead apply the pressure drop along the y-axis
to create a flow that is more perpendicular to the coarse interface, the transmissibil-
ity computed with block-averaged pressures changes from 2.0e-14 to 8.1e-14, whereas
the value is 8.9e-14 with a pressure drop along both axial directions. (The latter setup
is generally not well-posed, as it will have singularities at the southeast and northwest
corners.) Depending upon what type of flow conditions the block pair is subject to in
subsequent simulations, it might be better to set a pressure drop orthogonal to the coarse-
block interface or use one of the oversampling methods that will be introduced in the next
section.

An important property of the upscaled transmissibilities T ∗ij is that they all should
be positive across all interfaces that can transmit fluids, since this will ensure that the
TPFA scheme defined by

∑
j T ∗ij (pi − pj ) = qi reproduces the net grid block pressures

p� = 1
|��|

∫
��

p d �x, and hence also the coarse fluxes vij . Unfortunately, there is no
guarantee that the transmissibilities defined by (15.13) are positive, for instance, if the
blocks are such that the chord between the cell centroids does not cross the coarse
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interface. Negative transmissibilities may also occur for regular block shapes if the
permeability is sufficiently heterogeneous (e.g., as in the SPE 10 model). Even worse,
unique transmissibility values may not even exist, since the upscaling problem gen-
erally is not well-posed; see [318] for a more thorough discussion of existence and
uniqueness. To guarantee that the resulting coarse-scale discretization is stable, you
should ensure that the T ∗ij values are positive. A typical trick of the trade is to set
Tij = max(Tij,0), or in other words, just ignore ill-formed connections between neigh-
boring grid blocks. This is generally not a satisfactory solution, and you should there-
fore either try to change the grid, use different pressure points to define the trans-
missibility, or apply some kind of fallback strategy that changes the upscaling method
locally.

The upscaling module does not contain any simple implementation of transmissibility
upscaling like the one outlined in this section. Instead, the module offers a routine,
upscaleTrans, that is designed for the general case where both the coarse and the fine
grids can be fully unstructured and have faces that do not necessarily align with the
axial direction. To provide robust upscaling for a wide range of geological models,
the routine relies on a more comprehensive approach that will be outlined briefly in
the next section, and also has fallback strategies to reduce the number of negative
permeabilities.

15.5 Global and Local–Global Upscaling

The methods described so far in this chapter have all be local in nature. Averaging meth-
ods derive upscaled quantities solely from the local heterogeneous structures, whereas
flow-based methods try to account for flow responses by solving local flow problems
with prescribed boundary conditions. These boundary conditions are the main factor that
limits the accuracy of flow-based methods. In Table 15.2, we saw how neither of the
local methods were able to accurately capture the correct net flow for the anisotropic
Tarbert and Upper Ness samples with boundary conditions giving diagonal flow. The main
problem for flow-based techniques is, of course, that we do not know a priori the pre-
cise flow that will occur in a given region of the reservoir during a subsequent simu-
lation. Thus, it is generally not possible to specify the appropriate boundary conditions
for the local flow problems in a unique manner unless we already have solved the flow
problem.

To improve the accuracy of the upscaling, you can use a so-called oversampling tech-
nique, which is sometimes referred to as an overlapping method. In oversampling methods,
the domain of the local flow problem is enlarged with a border region that surrounds each
(pair of) grid block(s) and boundary conditions, or other mechanisms for driving flow,
like wells or source terms, are specified in the region outside the domain you wish to
upscale. Local flow problems are then solved in the whole enlarged region, but the effective
permeability tensor is only computed inside the original coarse block. This way, you lessen
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Figure 15.11 Illustration of oversampling techniques for upscaling. The size of the grid block is
exaggerated in the right plot.

the impact of the localization assumption and the particular mechanism used to drive flow,
and the flow across the boundaries of the coarse block is to a larger extent determined by
the heterogeneity in the local region surrounding the block. The motivation for using an
oversampling technique is to better account for permeability trends that are not aligned
with the grid directions and possible large-scale connectivity in the permeability fields.

To also account for global flow patterns, you can solve the pressure equation once,
or a couple of times, on the full geological model and impose fluxes sampled from the
global flow solution as boundary conditions on the local flow problem used to upscale
permeabilities or transmissibilities. In these so-called global upscaling methods, the pres-
sure solution can either be computed using representative and specific drive mechanisms.
Alternatively, you can compute the pressure solution using a set of generic conditions that,
e.g., specify a flow through the reservoir from east to west, from north to south, and so on.
From a computational point of view, this approach may seem to contradict the purpose of
upscaling, but can be justified for numerical simulation of compressible and/or multiphase
flow. Indeed, for such transient flows, the pressure equation must be solved multiple times
throughout the simulation, and the cost of solving the global pressure equation once (or
even a few times) on a fine grid will in most cases be small compared with the cost of
solving the full multiphase flow problem.

Computing a global pressure solution on the fine grid can be avoided if we use a so-
called local–global method [64, 63, 117]. In these methods, pressure solutions obtained by
solving global flow problems on a coarse grid are used to set boundary conditions for local
flow problems that determine the upscaled transmissibilities. Since the initial coarse-grid
computation may give quite poor boundary conditions for the local flow problems, these
methods use a iterative bootstrapping procedure to gradually ensure consistency between
the local and the global calculations.

Global and local–global upscaling methods may suffer from negative or anomalously
large transmissibility values. To avoid these, Holden and Nielsen [133], who were among
the first to study global upscaling methods, proposed an iterative process involving the
solution of an optimization problem that gradually perturbs the transmissibilities until
they fall within a prescribed interval. A similar technique that avoids the solution of the
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fine-grid problem was presented in [225]. Chen and Durlofsky [63] observed that unphys-
ical transmissibilities occur mainly in low-flow regions. Therefore, instead of using an
optimization procedure that alters all transmissibilities in the reservoir, they proposed to use
a thresholding procedure in which negative and very large transmissibilities are replaced
by transmissibilities computed by a local method. Because the transmissibilities are altered
only in low-flow regions, the perturbation will have limited impact on the total flow through
the reservoir.

The script upscaleTrans offers various implementations of global transmissibility
upscaling using either specific or generic mechanisms to drive flow in the full reservoir
model. This specific approach enables you to tailor the coarse-scale model and achieve
very good upscaling accuracy for a particular simulation setup. The generic approach
gives you a more robust upscaling that is less accurate for a specific simulation setup, but
need not be recomputed if you later wish to simulate setups with significant changes in
the well pattern, aquifer support, and other factors that affect the global flow patterns in
the reservoir. Local–global methods are not yet supported in MRST. Instead, the software
offers various multiscale methods [95], including multiscale mixed finite elements [6, 243],
multiscale finite volumes [211, 214], and the multiscale restriction-smoothed basis method
[216, 215]. These methods offer an alternative approach, in which the impact of fine-
scale heterogeneity is included more directly into coarse-scale flow equations as a set of
basis functions that not only represent the average effect but also incorporate small-scale
variation. The methods also give a natural way to reconstruct fine-scale pressure and
mass-conservative flux approximations.

Computer exercises

15.5.1 Extend the computations reported in Table 15.2 to include oversampling methods.
Does this improve the accuracy of the two flow-based methods?

15.5.2 Implement a function that performs generic global upscaling for uniform partitions
of rectilinear and curvilinear grids. To drive the global flow pattern, you can use a
pressure drop in each of the axial directions. How would you extend your method
to more general grids and partitions?

15.5.3 Extend the upscaling module to include local–global upscaling methods.

15.6 Upscaling Examples

In this section we go through three examples that apply the methods discussed earlier in the
chapter to upscale reservoir models. In doing so, we also introduce you to a simple form of
flow diagnostics [274, 218] you can use to assess the accuracy of single-phase upscaling.
The last example represents a complete workflow, from geological surfaces to grid, via
fine-scale simulation to upscaled model. We end the section with a set of general advice
and simple guidelines.
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15.6.1 Flow Diagnostics Quality Measure

A challenge with upscaling is to predict upfront whether the upscaling will be accurate or
not. To partially answer this question and give an indication of the quality of the upscaling,
we suggest to compare the cumulative well-allocation factors computed by the fine-scale
and upscaled models. As shown in Section 13.1.3, a well-allocation factor is the percentage
of the flux in or out of a completion that can be attributed to a pair of injection and produc-
tion wells. This information is similar to what is obtained by a production logging tool.

To compute these factors, we need to first compute a global, single-phase pressure
solution for the specific well pattern we want to investigate. From the resulting flow field
we compute influence regions that subdivide the reservoir into subvolumes associated with
pairs of injection and production wells, as discussed in Section 13.1. Global methods tend
to compute at least one fine-scale pressure solution as part of the upscaling procedure, but
if a global solution is not available for the specific well pattern, it is generally not very
expensive to compute compared with the cost of the flow-based upscaling procedure. The
same goes for the computation of a coarse-scale flow field and partition functions on the
fine and the upscaled model.

To improve the predictive power of well-allocation factors, you may have to subdivide
each well into two or more segments that each consists of a connected set of completed
cells. This way, you can measure the communication between different parts of the wells,
which is particularly important if the model to be upscaled includes layers or geological
objects with significantly different permeabilities. You can obviously also investigate to
what extent dynamic heterogeneity measures, sweep/drainage regions, and time-of-flights
are preserved, or compare the fine and coarse fluxes to assess the accuracy of the upscaling.

15.6.2 A Model with Two Facies

We start by considering a small rectangular reservoir containing two facies with contrasting
petrophysical properties. The reservoir is produced by an injector and a producer placed
diagonally opposite each other and completed mainly in the high-permeability parts of the
reservoir. Both wells operate at a fixed rate that amounts to the injection/production of
0.2 pore volumes per year. We neglect gravity forces to avoid potential complications from
cross-flow. The fine grid consists of 40×20×15 cells, which we seek to upscale to a coarse
5×5×15 model. That is, we upscale by a factor 8×4 in the lateral direction and leave the
vertical layers in an attempt to preserve the vertical communication in the model as accu-
rately as possible. Figure 15.12 shows the porosities of the fine and the coarse model. To
also upscale permeability, we use upscalePerm, which implements the flow-based method
from Section 15.3.2 with sealing boundary conditions. The script upscalingExample1 in
the book module contains complete source code.

To get an indication of the accuracy of this upscaling, we compare the volumet-
ric connections between the injector and producer computed for the original and the
upscaled permeability. (The latter is prolongated back onto the fine grid.) With a single

https://doi.org/10.1017/9781108591416.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108591416.020


582 Upscaling Petrophysical Properties

Figure 15.12 Porosity distribution in a model with two different rock types before and after upscaling.

Figure 15.13 Volumetric subdivision of flooded/drainage regions by majority vote. The left plot
shows the regions flooded by the upper and lower parts of the injector in blue and cyan, respectively.
The right plot shows the drainage regions of the upper and lower half or the producer in yellow
and red, respectively. In both plots, each cell is assigned to the completion that has the highest
concentration value.

injector–producer pair that operates at fixed rates, the only difference we can expect
to see is variation in the distribution of flow rates within each well. To better measure
the communication within the reservoir, we therefore subdivide each well into an upper
and a lower segments, so that we altogether have four well-pairs, whose well-allocation
factors can be used to verify the quality of the upscaling. Figure 15.13 shows the influence
regions of the fine-scale model for each of the four segments, defined as regions with
“color concentration” larger than 0.5. A good upscaling method should preserve these
communication volumes as accurately as possible in the coarse model.

Volumes are not always easy to compare in complex 3D models. Instead, we com-
pare cumulative well-allocation factors. The plots in Figure 15.14 show bar charts of the
cumulative flux in/out of the completions that make up each segment, from bottom to top.
Here, each segment is assigned the same unique color as in Figure 15.13 and each bar is
subdivided into the fraction of the total influx/outflux that belongs to the different well-
pairs the segment is part of; see Section 13.1.3. To compare the fine-scale and coarse-scale
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permeability, K and K∗, we use colors for well allocation computed with the coarse model,
whereas solid lines show the same quantities computed for the fine-scale model. The closer
the color bars and the solid lines are, the better the upscaling.

To explain how this type of flow diagnostics should be interpreted, let us look at the
lower-left bar chart, which reports the allocation factors for the upper segment of the
producer (P:1, yellow color). Here, blue color signifies inflow that can be attributed to
injection from the upper segment I:1 of the injector, whereas cyan color signifies inflow
attributed to the lower segment I:2. Because the colored bars are mostly blue, the inflow
into the upper producer segment is predominantly associated with the I:1–P:1 pair. In
other words, P:1 is mainly supported by the upper segment of the injector and is hardly
connected to the lower segment. You can confirm this by looking at the upper-right bar
chart, which shows that the flow from the lower injector segment mainly contributes to
inflow in the lower segment of the producer. The flooded volumes shown to the left in
Figure 15.13 show that fluid injected from I:2 will mainly sweep the volume surrounding
the lower three cells of P:2. Similarly, the right plot shows that the drainage region of P:1
only engulfs the upper parts of I:1. The flooded regions of I:1, on the other hand, engulfs
both P:1 and the upper parts of P:2, and hence the upper injector segment will contribute
flux to both segments of the producer, as shown in the upper-left chart of Figure 15.14.
Likewise, the drainage region from P:2 engulfs both I:2 and the lower part of I:1 and hence
is supported by flux from both the injector segments, as shown in the lower-right chart of
Figure 15.14.

I:1 I:2

P:1 P:2

Figure 15.14 Normalized cumulative well-allocation factors for the four well completions in the
two-facies model. The color bars show well-allocation factors computed with K∗ (upscaled by
upscalePerm) on the fine grid, while the black lines show the same factors computed with the
original permeability K. The colored bars and the black lines should coincide if the upscaled
permeability reproduces the flux allocation correctly.
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So, what does this flow diagnostics tell us about our upscaled permeability? First of
all, K∗ does not fully reproduce the volumetric connections of the original permeability
K. Looking at well-allocation factors for the producers in the bottom row of Figure 15.14,
we see that K∗ predicts too much flux in the upper segment (P:1, yellow color, left chart)
since the colorbars exceed the solid lines at the top. Likewise, in the lower segment of
the producer (P:2, red color, right chart), we get too low influx. Altogether, the allocation
factors seem to suggest that the main problems are that with K∗ we miss some of the vertical
communication and exaggerate the connection between I:1 and P:1. We could have used
a single number to measure the overall discrepancy in flux allocation, but in my opinion
you will benefit more from a graphical presentation like this for problems with only a few
wells, because it may help you identify the cause of the mismatch between the upscaled
and the original permeability. (Lorenz coefficients for K and K∗ are 0.2329 and 0.2039,
respectively.)

To develop a better upscaling strategy, we can upscale transmissibilities and well indices
using a global method. For a given flow scenario, like the one with fixed well positions and
constant well controls, you can determine a set of transmissibilities and well indices that
reproduce a single pressure step exactly. This may seem desirable, but has the disadvantage
that the linear system becomes negative definite, which in turn may lead to unphysical
solutions away from the scenario used for upscaling. To span a reasonable set of global
flow directions, we instead use generic boundary conditions that pressurize the reservoir
from east to west, from north to south, and from top to bottom. We can then combine these
three global flow fields in several different ways to compute a transmissibility value for
each coarse face; see e.g., [152]. Here, we use a simple strategy suggested by [172]: We
pick the one among the three flow field that gives the largest flux across a given coarse
face and insert this into (15.14) to compute the transmissibility associated with the face.
A rationale for this choice is that the accuracy of the coarse model is most sensitive to the
choice of transmissibilities in high-flow regions.

We upscale well indices using a coarse-scale version of the inflow-performance relation-
ship (see (4.27) on page 122)

J ∗i = Qi/(Pi − pw), (15.15)

where Qi is the sum of the rates of all the perforations inside block i, Pi is the average
block pressure, and pw is the pressure inside the wellbore. To obtain representative flow
fields for n wells, upscaleTrans solves n−1 pressure equations. Each solution is computed
by setting a positive pressure in one well and zero pressure in all the other. We can then
combine the flow fields using the same strategy as for the transmissibilities by picking the
solution that gives the largest well rate, or as we will do here, add all well rates and divide
by the sum of the corresponding pressure drops. (For models with many wells, we would
rather upscale well indices using local or specific approaches.)

Unfortunately, there is no guarantee that the upscaled transmissibilities are nonnegative.
To avoid creating an ill-conditioned discretization matrix, we therefore set all negative
transmissibilities to zero, thereby blocking the corresponding coarse face for flow. This
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I:1 I:2

P:1 P:2

Figure 15.15 Normalized cumulative well-allocation factors for the four well completions in the two-
facies model. The color bars show well-allocation factors computed on a coarse model upscaled using
upscaleTrans, while the black lines show the same factors computed on the original model.

is in our experience an acceptable solution as long as the upscaled transmissibilities are
only intended for a specific scenario, like herein, since negative transmissibilities tend to
appear because flow is tangential to the coarse interface or as a result of numerical noise
in regions with very low flow. If your upscaling, on the other hand, aims to serve a more
general purpose with varying well patterns and/or boundary conditions, you would need to
implement a more sophisticated fallback strategy that recomputes negative transmissibil-
ities by an alternative method like a local flow-based method, an averaging method, or a
combination of these.

Figure 15.15 shows the resulting match in well-allocation factors, which is significantly
better than when using a simple permeability upscaling. In part, this is a result of improved
transmissibilities, and in part because we now have upscaled the well indices.

15.6.3 SPE 10 with Six Wells

You have already encountered Model 2 from the 10th SPE Comparative Solution Project
multiple times throughout the book. Because of its simple grid and strong heterogene-
ity and the fact that it is freely available online, this data set has become a community
benchmark that is used for many different purposes. The original aim of the project was
to “compare upgridding and upscaling approaches and the ability to predict performance
of a waterflood through a million cell geological model,” and in [71] you can read about
the relative merits of the various methods used in the upscaling studies that were submitted
to the project by August 2000. In short, the study showed that the data set is generally
very difficult to upscale accurately with single-phase methods and that the best results are
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P1 P2 P3

P4 I1 I2

Figure 15.16 Model of the Tarbert formation with six wells, two central injectors and four peripheral
producers. The 3D plot shows lateral permeability distribution, whereas the bar charts show
normalized cumulative well-allocation factors.

generally obtained by methods that also account for multiphase effects. Later, however,
several authors have obtained excellent results with local–global and multiscale methods.

In this section, we compare how accurate four different upscaling methods can predict
single-phase flow. That is, we consider two averaging methods (harmonic and harmonic-
arithmetic) and a local flow-based upscaling with sealing boundary conditions for upscaling
permeability, and the global upscaling method discussed at the end of the previous exam-
ple for upscaling transmissibilities and well indices. Unlike in the previous example, we
use maximum flow rate to determine both transmissibilities and well indices. The script
upscalingExample2 contains full details.

We start by considering the Tarbert formation, which is found in the upper 35 layers of
the model. We choose a coarsening factor of 10×10×3, and to get an even number of cell
layers inside each grid block, we extend the model slightly by repeating the top layer so
that the fine-scale model altogether has 220×60×36 = 475 200 cells. We also replace the
original five-spot pattern with a pattern consisting of producers in the four corners of the
model and two injectors located near the center of the model; see Figure 15.16. All wells
are controlled by bottom-hole pressure; the producers operate at 200 bar and the producers
at 500 bar.
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Figure 15.17 Well-allocation factors for injector I2 in the Tarbert model computed on four different
coarse models.

Figure 15.17 compares well-allocation factors predict by the four upscaling methods
for injector I2. This well has significant communication with all four producers and is
hence more difficult to match than injector I1, which mainly communicates with P3 and
P4. Harmonic averaging not surprisingly gives well rates that are far from the fine-scale
targets. As explained in Section 15.3.1, the harmonic mean has a bias against smaller values
and tends to underestimate the effective permeability. Because all wells are controlled by
bottom-hole pressure, too low permeability means too low well rates. If the wells were
controlled by total rate, as in the previous example, the well rates predicted by the harmonic
average would have been more correct, but the predicted pressure buildup around the
injector and the pressure drawdown in the producers would both be too high.

Comparing the local flow-based method to the harmonic-arithmetic averaging method,
we see that the latter is significantly more accurate. By design, the flow-based method
should give accurate prediction of flow along the axial directions of the grid. Here,
however, we have flow that is strongly affected by heterogeneity and mostly goes in the
lateral, diagonal direction and hence the harmonic-arithmetic method seems to be more
suited, in particular if we consider the computational time of the two methods. In the
current implementation, the flow-based method extracts a subgrid and assembles and
inverts three local matrices for each coarse block. The computational overhead of this
procedure is significant since each new local solve incurs full start-up cost. The result is
that the function upscalePerm has orders of magnitude higher computational cost than the
harmonic-arithmetic averaging, which is implemented using a few highly efficient calls to
accumarray.
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The global upscaling method reproduces the fine-scale well-allocation factors almost
exactly. The plots may be a bit deceiving because of the areas where the colorbars extend
beyond the solid lines representing the fine-scale well-allocation. However, bear in mind
that the bars and lines represent cumulative factors, and thus we should only look at the
discrepancy at the top of each colorbar. If you look closely, you will see that here the match
is excellent. There are two reasons for this: First of all, with global boundary conditions,
the boundary conditions used to localize the computation of each transmissibility account
better for correlations that extend beyond the block pair and thus set up a flow that is more
representative of the flow the interface will experience in the subsequent flow simulation.
Secondly, the global method includes upscaling of well indices. This can have a significant
impact on the well rates that determine the flux allocation. In passing, we also note that
the computational cost of the global method is significantly lower than that of the local
method, primarily since our implementation utilizes a highly efficient multigrid solver for
the global flow problems and avoids solving a long sequence of small problems that each
have a large start-up cost.

For completeness, we also include the results of a similar study for the whole SPE 10
model; see Figure 15.18. This includes the fluvial Upper Ness formation, which is noto-
riously difficult to upscale accurately. The harmonic-arithmetic and the global method are
no longer as accurate as for the Tarbert formation. For this 1.1 million grid cell model, an
efficient iterative solver like AGMG is indispensable to be able to compute the fine-scale
solution and perform a global upscaling in MATLAB.
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Figure 15.18 Well-allocation factors for injector I2 in the full SPE 10 model computed on four
different coarse models.
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15.6.4 Complete Workflow Example

Our last example shows a complete workflow for a synthetic sector model, from setting
up the geocellular model, via compressible flow simulations, to coarsening/upscaling and
analysis of the results using flow diagnostics. The example can thus be seen as a partial
recap of the content in this book. We therefore include more code details than in the two
previous examples. You can find the complete source code in upscalingExample3 in the
book module.

The reservoir has a layered stratigraphy and contains three faults. The reservoir fluids
form a slightly compressible two-phase oil/water system and hydrocarbons are recovered
by a well pattern consisting of one injector and three producers. The model is mostly
conceptual and is designed to outline and give details of the workflow rather than as
a problem representing a realistic scenario in terms of well locations and fluid physics.
However, unlike many other examples in the book, it is completely self-contained and does
not involve any ECLIPSE files to describe reservoir geometry, wells, fluid properties, and
simulation schedule.

We start by creating the main horizons that deliminate the external and internal geology
of the sector. The top surface is composed of three different trends: a large-scale anticline
structure in the form of an elongated arc-like shape, a set of medium-scale sinusoidal folds,
and a set of small-scale random perturbations. For simplicity, we use the same surface,
shifted by a constant factor, to deliminate the reservoir downward. In between, we introduce
two tilted surfaces with extra small-scale random perturbations. These surfaces are clipped
against the top and bottom surface to create erosional effects. The four horizons are shown
in Figure 15.19. Assuming that these surfaces are given in the arrays zt, zmt, zbt, and zb,
we create a basic corner-point grid as follows (see Section 3.3.1):

horizons = {struct('x', x, 'y', y, 'z', zt), ...
struct('x', x, 'y', y, 'z', zmt), ...
struct('x', x, 'y', y, 'z', zmb), ...
struct('x', x, 'y', y, 'z', zb)};

grdecl = convertHorizonsToGrid(horizons, 'dims', [40 40], 'layers', [3 6 3]);

To introduce the faults, we first extract the coordinates for the corner-points and then shift
the z-coordinates in selected parts of the domain:

[X,Y,Z] = buildCornerPtNodes(grdecl);
i=47:80; Z(i,:,:) = Z(i,:,:) + .022*min(0,Y(i,:,:)-550);
j= 1:30; Z(:,j,:) = Z(:,j,:) + .021*min(0,X(:,j,:)-400);
j=57:80; Z(:,j,:) = Z(:,j,:) + .023*min(0,X(:,j,:)-750);
grdecl.ZCORN = Z(:);

The lower-left plot in Figure 15.19 shows the resulting model. The permeability consists
of four layers of lognormally distributed values with average lateral permeability of 100,
400, 10, and 50 md, from top to bottom. The vertical permeability is set to one-tenth of the
lateral permeability.
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Geological horizons. Interpolated 40× 40× 12 corner-point grid

Introducing four partial faults. Lateral permeability and well pattern.

Figure 15.19 Creating a synthetic sector model whose geology is described by three volumes (two
of which are eroded), three vertical faults that partially penetrate the sector, and four layers of
distinctively different permeabilities. Oil is recovered by three producers supported by one injector.

The three vertical producers are completed in all layers of the model and operate at a
constant bottom-hole pressure of 250 bar. The injector is also perforated in all layers and
operates at a constant rate that would fill one pore volume of water over a period of ten
years. As you probably recall, such wells are set up as follows:

W = verticalWell([], G, rock, 10, 10, [],...
'Name', 'P1', 'comp_i', [1 0], 'Val', 250*barsa, ..
'Type', 'bhp', 'refDepth', 50);

The fluid system is assumed to consist of two phases, an incompressible water phase
and an oil phase with constant compressibility. If we express the oil compressibility as
an expansion factor on the form, bo(p) = b0 exp[c(p − p0)], we can model the fluid
system as a special case of the general three-phase black-oil model from the AD-OO
framework discussed in Chapter 12. The simplest fluid object in this framework models an
incompressible fluid with constant densities. To get the correct behavior for the oil phase,
we simply replace the function handle in the bo field by a pointer to an anonymous function
that evaluates the exp function with appropriate arguments. We then call the appropriate
constructor from the AD-OO framework:
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fluid = initSimpleADIFluid('mu', [1, 5, 0]*centi*poise, ...
'rho', [1000, 700, 0]*kilogram/meter̂ 3, ...
'n', [2, 2, 0]);

fluid.bO = @(p, varargin) exp((p/barsa - 300)*0.001);

gravity reset on
model = TwoPhaseOilWaterModel(G, rock, fluid);

Initially, the reservoir is assumed to be in an equilibrium state with a horizontal oil–water
(OW) contact separating pure oil from pure water. As explained earlier, MRST uses water,
oil, and gas ordering internally, so in this case we have water in the first column and oil in
the second for the saturations in the initial state

region = getInitializationRegionsBlackOil(model, depthOW, ...
'datum_depth', ddepth, 'datum_pressure', p_ref);

state0 = initStateBlackOilAD(model, region);

The initialization is quite simple and does not perform any sub-cell integration to assign
more accurate saturations in cells intersected by the OW contact; see the upper-left plot in
Figure 15.20.

We define a straightforward simulation schedule consisting of five small initial con-
trol steps followed by 25 larger steps. We keep the well controls fixed throughout
the simulation. If dT contains the time step, the schedule is constructed by the call
simpleSchedule(dT, 'W', W). The simulation model has 16,350 grid cells and the
resulting linear systems are a bit too large for MATLAB’s direct solver to be efficient. We
therefore set somewhat stricter tolerances and use a CPR preconditioner with an algebraic
multigrid solver for the elliptic pressure system as discussed in more detail for the SPE 9
benchmark in Section 12.4.4. Figure 15.20 shows how water displaces oil over time inside
the reservoir.

To reduce computational times, we partition the original 40 × 40 × 12 grid uniformly
in index space into a new 20 × 20 × 4 coarse grid. This will generally give blocks having
cells on opposite sides of faults. To ensure that as many as possible of the coarse blocks
are hexahedral (except for those that are partially eroded along the top or bottom), we split
any coarse block intersected by one of the faults. To do this, we introduce a temporary grid
topology in which faults are set as barriers, and then perform a simple postprocessing to
split any disconnected blocks:

cdims = [20, 20, 4];
Gf = makeInternalBoundary(G, find(G.faces.tag > 0));
p = processPartition(Gf, partitionUI(G, cdims));

Altogether, this produces a coarse grid with 1,437 active blocks (see Figure 15.21), which
corresponds to a little more than a 22 times reduction in the number of unknowns. This
should put us well within the range of models for which we safely can use MATLAB’s
default linear solver without the need for a CPR preconditioner.
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Initial state After 0.38 yrs

After 6.15 yrs After 10.0 yrs

Figure 15.20 Time evolution of the water saturation for the sector model.

Figure 15.21 A coarse 20× 20× 4 partition of the sector model. New blocks arising when we split
blocks penetrated by one of the faults are marked in green. The right plot shows the initial saturation
as computed by upscaleState.

We can now directly upscale the model, schedule, and initial state. By default, the
upscaling routine uses the simplest possible options, i.e., harmonic averaging of perme-
abilities,

modelC1 = upscaleModelTPFA(model, p);
scheduleC1 = upscaleSchedule(modelC1, schedule);
state0C1 = upscaleState(modelC1, model, state0);
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We have already seen that power-averaging of permeability is not very accurate, and thus
we only consider this model as a base case. In addition, we use flow-based transmissibility
upscaling with a specific flow field obtained by solving a single-phase flow problem with
the given well pattern. This approach has proved to be the most accurate in the examples
earlier in the section:

[�, TC, WC] = upscaleTrans(GC, model.operators.T_all, ...
'Wells', W, 'bc_method', 'wells', 'fix_trans', true);

modelC2 = upscaleModelTPFA(model, p, 'transCoarse', TC);
scheduleC2 = schedule;
for i = 1:numel(scheduleC2.control)

scheduleC2.control(i).W = WC;
end

To get an idea of how accurate the two upscaling methods will be, we can compare well
allocation with the fine model based on the computation of a single pressure step. The
plots in Figure 15.22 confirm that harmonic averaging also in this case underestimates the
coarse-scale permeability and hence will predict too small flux into the three production
wells. Specific transmissibility upscaling, on the other hand, reproduces the correct flux
allocation very accurately and it therefore seems likely that it will produce quite accu-
rate results. Let us now simulate the two cases. This is done as for a standard fine-scale
model by calling the standard simulator interface with the coarsened model, initial data,
and schedule

[wellSolsC1, statesC1] = simulateScheduleAD(state0C1, modelC1, scheduleC1);

Somewhat surprising, the production curves predicted by the specific flow-based upscaling
are generally not much more accurate than those predicted by the simple harmonic

P1 P2 P3 I1

P1 P2 P3 I1

Figure 15.22 Flow diagnostics used as a quality measure for the two upscaling methods on the 20×
20× 4 upscaled sector model with harmonic upscaling of permeability (top) and specific flow-based
transmissibility upscaling (bottom).
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Figure 15.23 Comparison of oil rate (producer P2) and water rate (producer P3) predicted by the
upscaled 20× 20× 4 models and the original 40× 40× 12 sector model.

permeability upscaling. Figure 15.23 shows the two production curves for which specific
transmissibility upscaling compares least favorably with harmonic upscaling. This illus-
trates an important point: whereas accurate reproduction of single-phase well allocation
often is a necessary condition for accurate upscaling, it is not a sufficient
condition.

The question now is what has gone wrong here? The primary problem is that the
grid blocks in the coarse grid do not adapt to the layering structure in the permeability
field if we use a uniform subdivision of the K index. You may recall we argued that
adapting to permeability layering is important when we discussed CaseB4 in Section
14.3.3. So let us rerun the upscaling exercise with a new basic partition that respects the
layering

p0 = partitionLayers(G, cdims(1:2), L);

Here, L=[1,3,8,11,13] is a run-length encoding of the layer indices; this vector can
be obtained as the second output of the lognormLayers function we used to generate
the permeability field. The resulting coarse partition has exactly the same number of grid
blocks, but gives significantly more accurate predictions for both upscaling methods, as
you can see in Figure 15.24. We also obtain almost the same accuracy if we instead use a
uniform 10 × 10 × 12 partition, which supports our hypothesis that preserving layering is
very important in this particular example.

Computer exercises

15.6.1 How coarse model are you able to make and still predict the oil and water rates
with reasonable accuracy?

15.6.2 Make a fine-grid model that respects the OW contact exactly. How does this affect
the simulation? How would you coarsen and upscale this model?
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Figure 15.24 Comparison of oil rate (producer P2) and water rate (producer P3) predicted by the
upscaled 20× 20× 4 models where the coarse blocks adapt to the permeability layers of the original
40× 40× 12 sector model.

15.6.5 General Advice and Simple Guidelines

Through the various examples in this chapter, I have tried (and hopefully succeeded) to
convince you that accurate and robust upscaling is a challenging problem and that there is
no single upscaling method that is unequivocally better than others. This is one motivation
for the big attention so-called multiscale methods [95, 195] have received in recent years.
These methods offer a promise of a more systematic and consistent way of bringing the
impact of small-scale heterogeneity variations into simulations on a coarser scale.

What is the best upscaling method for a specific project will depend on many factors.
The most important factor is probably what you intend to use the upscaled model for. If
you are upscaling for a specific scenario, I strongly recommended that you use a method
employing specific global information as this generally will enable you to perform more
aggressive coarsening. If you, on the other hand, want to use the upscaled model to simulate
a large variety of flow scenarios, or some yet unspecified scenario, you should pick a
technique that is as robust as possible. Which technique to pick will depend on the type
of heterogeneity you are facing, the flow patterns that exist in a reservoir, and so on.
For relatively homogeneous reservoirs with flow patterns that mainly follow the axial
directions, a simple averaging technique may be sufficient, whereas techniques that utilize
some kind of global information are recommended for highly heterogeneous reservoirs
with strong contrasts and large variations in correlation lengths. Other determining factors
include the time and the computer resources you have available for upscaling, the number
of petrophysical realizations you need to upscale, the required upscaling factor, and so on.

Regardless of your situation, I generally recommended that you try different upscaling
and coarsening methods. Start by simple averaging methods that have a low computational
cost, since these not only give you a first quick estimate of the upscaling uncertainty (or
more generally the uncertainty in the petrophysical properties), but will also provide upper
and lower bounds for more sophisticated upscaling methods. Check to see if there are
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features in your model that need to be resolved by adapting the coarse grid, and ensure that
you do not create a coarse grid that gives problems for subsequent flow simulations; see e.g.,
the discussion in Section 14.7. Then you can gradually move towards more sophisticated
upscaling methods. For local methods, you should try both sealing and linear pressure
boundaries to provide lower and upper bounds. You may also need to check the use of
oversampling methods to lessen the impact of boundary conditions used for localization.

At all stages, you should use representative single-phase simulations to validate your
upscaled model against the original fine-scale model. To this end, you should compare flow
fields computed both with TPFA and a consistent method to get an idea of the amount
of grid-orientation effects. Likewise, I strongly recommend that you use various kinds of
flow diagnostics like the well-allocation factors discussed in the examples in this chapter,
partition functions that give you the volumetric connections between inflow and outflow,
time-of-flight that gives time lines for displacement fronts, and so on. Herein, we have
computed these quantities using finite-volume discretizations that are available in MRST,
but these flow diagnostic measures can also be computed by streamline simulation [79],
which is generally a very efficient tool for comparing geomodels and upscaled simulation
models. Whether you choose one or the other is not that important. What is important is
that you stick to using single-phase flow physics to avoid mixing in the effect of multiphase
flow parameters, such as variations in relative permeabilities and capillary pressures, which
need to be upscaled by other means.
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