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ABSTRACT. Recent investigations of crevassing on alpine glaciers and ice shelves
have been based on linear elastic fracture mechanics (LEFM). However, LEFM is unable
to explain some aspects of crevasse formation such as the initiation of crevasse propaga-
tion from crystal-scale (mm) microcracks, the slow propagation of large fractures in ice
shelves, and the acceleration of crevasse opening before breaking of the ice terminus. Here
another mechanism to account for these observations is proposed: subcritical crevassing.
Subcritical crack growth, documented in many materials though not yet explored in ice,
is characterized by a crack velocity that scales as a power of the tensile stress intensity
factor, but is much less than that associated with critical crack propagation. This mech-
anism allows crevasse propagation from mm-scale microcracks at velocities much lower
than body wave speeds, and explains crevasse-opening accelerations in a natural way.
Subcritical crevassing is theoretically explored for several simplified situations but is
limited by a lack of available data on crevasse evolution.

INTRODUCTION

Attempts to model the mechanics of crevassing and to pro-
pose a criterion for crevasse formation go back to the pio-
neering work of Nye (1957). Recently, there has been
renewed interest in crevassing, especially in the context of
ice-shelf fracturing (Rist and others, 1999, 2002). Following
the seminal work of Smith (1976), these recent investigations
of crevassing (Van der Veen, 1998b; Rist and others, 1999,
2002; Nath andVaughan, 2003) were based on linear elastic
fracture mechanics (LEFM). In these studies, crevasses are
considered as mode I cracks formed under tension, and a
crevasse initiation criterion is given by KI ¼ KIC, where
KI is the mode I stress intensity factor associated with the
initiation flaw (sometimes called ‘‘starter crack’’) and KIC

the fracture toughness of the ice. KI , which measures the
intensity of the stress field surrounding the crack, is propor-
tional to �� l1=2 where � is the applied stress and l is the
crack length. Most of the works cited above aimed to ana-
lyze the stability (or instability) of crevasse propagation
through depth, and especially to derive a maximum cre-
vasse depth corresponding to the depth at which crack
propagation is arrested by the overburden stress. The cre-
vasse arrest criterion was chosen to be either KI � 0
(Smith,1976; Rist and others, 2002) or KI � KIC (Van der
Veen,1998b; Nath andVaughan, 2003).

This LEFMapproach to crevassing does, however, come
up against some problems, including:

(i) The visco-plastic flow of glaciers a priori precludes a
straightforward application of LEFM, which is based
on a linear elastic rheology. In the case of materials
with a non-linear behaviour, more sophisticated crit-
eria for crack propagation have been proposed, with
partial success (see, e.g., Miannay,1998).

(ii) Within the LEFM framework, the initiation of crevas-
sing requires the presence of large sharp flaws within
the ice, large enough for the condition KI � KIC to
be exceeded under tensile stresses which are probably
no greater than a few hundred kPa. This implies flaw
sizes of the order of a few tens of cm or larger (see
further below).This problemwas stressed by Nath and
Vaughan (2003) who were uncertain that such flaws
would exist in firn.

(iii) The crevasse arrest criteria proposed above are prob-
ably misleading, as the stress intensity factor at arrest,
though non-zero, is always lower than the stress inten-
sity factor at initiation (Ravi-Chandar, 2001). More-
over, with crack propagation speeds close to the body
wave speed (i.e. the situation encountered when
KI � KICÞ, dynamic effects have to be taken into ac-
count to correctly predict the arrest condition (Ravi-
Chandar, 2001).

Some observations related to ice terminus in temperate
glaciers or to iceberg calving and ice-shelf disintegration
are also difficult to reconcile with the LEFM description of
crevasse initiation and propagation. Flotron (1977) and
R˛thlisberger (1977) reported an acceleration of the hori-
zontal displacement across a crevasse (i.e. a proxy of cre-
vasse opening, itself related to crevasse depth) whose
propagation led to the fall of a large ice block from a hang-
ing glacier. This acceleration showed a singular behaviour
as approaching the failure time tf:

vðtÞ � A

ðtf � tÞm ; ð1Þ

where v is the velocity of the horizontal displacement across
the crevasse and A and m are parameters. If the velocity^
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time evolution can be extrapolated and m is stable through
time (see further below), the breaking-off time may be ten-
tatively predicted.This acceleration, observed over periods
of the order of several months, can hardly be explained by
an unstable crack growth at speeds close to the body wave
speed. Keeping the LEFM framework, one may argue that
these low speeds could result from an averaging over time of
many step-like critical (KI > KICÞ increments, but this
would raise the problem of multiple crack arrests.This point
is discussed later in this paper. Using finite-element calcula-
tions, Iken (1977) modelled such acceleration by a stepwise
crack extension coupled with viscous flow. The crevasse is
assumed to propagate when the tensile stress at its tip, esti-
mated from a finite-element analysis of viscous flow,
becomes greater than a critical value, �I > �C, and stops
when this stress becomes compressive, �I � 0. Then the in-
creasing overhang of the ice block due to ice flow again
raises the stress to tensile values large enough to allow
further propagation.These crack-initiation and crack-arrest
criteria are very crude, as they do not take into account the
depth of the crevasse and suffer from the limitations de-
scribed in point (iii) above. Recently, Pralong and others
(2003) proposed an alternative explanation of this accelera-
tion using damage-mechanics concepts. In damage mech-
anics, the effective stress �eff is expressed as �eff ¼ �/(1�D),
where the apparent applied stress � is the applied force divided
by an apparent section, and the damageD itself increases with
increasing effective stress. Such positive feedback necessarily
leads to a finite-time singularity of the form of Equation (1). Im-
plementing such a mechanism into a numerical code, Pra-
long and others (2003) reproduced in their ice-terminus
modelling an acceleration of crevasse opening before
breaking-off. However, damage mechanics was designed to
model situations where the damage is spatially homoge-
neous within the material. The relevance of damage mech-
anics for the case where an ice terminus collapse is related to
the propagation of one or a few large crevasses can therefore
be questioned. The mechanism proposed by Pralong and
others (2003) might only capture some aspects of the pro-
cess.

Crevasse propagation supposedly plays a key role in ice-
berg calving (Van der Veen, 1998a; Hanson and Hooke,
2000) and the stability of ice shelves (Vaughan and Doake,
1996). Satellite imagery reveals propagation of cracks in ice
shelves over several km to several hundred km in several
years (see, e.g., Fricker and others, 2002), i.e. average crack
speeds of several mm s^1 or below, as well as a strong accel-
eration during the last days preceding the calving of the as-
sociated giant icebergs.These average propagation rates are
orders of magnitude lower than body wave speeds (around
3300m s^1 for polycrystalline ice). At a more global scale, a
common feature of ice-shelf retreats by iceberg calving is a
marked acceleration during the final stages (Vaughan and
Doake,1996).

Here I propose an alternative mechanism, namely sub-
critical crack growth, to account for these low crevasse-
propagation rates and for these accelerations in the later
stages of failure.

SUBCRITICAL CRACK PROPAGATION IN
MATERIALS

In many different materials such as rocks (Atkinson, 1979;
Das and Scholz, 1981), ceramics or glass (Wiederhorn, 1978;

Gy, 2001), it has been observed that a crack can propagate at
speeds much lower than the body wave speed evenwhen the
stress intensity factor is lower than the fracture toughness.
This is subcritical growth, which has also been discussed as
‘‘quasi-static growth’’or ‘‘static fatigue’’ (Gy, 2001).Three re-
gimes can be observed:

(i) ForKI below a lower limitK0, no crack growth occurs.

(ii) For K0 � KI < KIC, subcritical crack growth occurs,
characterized by a crack growth rate given by:

dl

dt
¼ BKn

l ; ð2Þ

where l is the crack size, and B and n are parameters.

(iii) For KI � KIC, i.e. the classical LEFM situation, un-
stable propagation occurs at speeds representing a sig-
nificant fraction of the body wave speed.

Fracture toughness of glacier ice varies with ice density
and temperature. For low-porosity ice, a value of KIC

around 150 kPam1/2 is often reported (see, e.g., Rist and
others, 2002). Note that a possible scale effect on KIC has
been reported for lake ice (Dempsey and others, 1999a)
and sea ice (Dempsey and others, 1999b), KIC rising from
about 120 kPam1/2 at a scale of 0.5m to about 250 kPam1/2

at scales larger than 10m.
The experimental estimation ofK0 is generally very dif-

ficult, and the existence of such a threshold is perhaps ques-
tionable, as the growth rates nearK0 are extremely slow. In
any case,K0 is likely to be only a small fraction of the tough-
ness KIC. Equation (2) is an empirical relation, and the re-
ported values of the exponent n are generally large, lying
between 10 and 50 with a modal value around 15 (Gy,
2001). These large exponents imply that accurate measure-
ments are needed to distinguish this subcritical behaviour
from a step function.When observed, Equation (2) remains
generally valid over a very large range of crack velocities
covering several orders of magnitude. Three broad cat-
egories of mechanisms have been proposed to explain sub-
critical crack growth: plastic flow, chemical reactions, and
diffusion processes related either to the motion of atoms
and vacancies near the crack tip or to the transport of re-
active species (Wiederhorn, 1978; Atkinson, 1979). These
thermally activated processes explainwhyB in Equation (2)
is an Arrhenius temperature-dependent parameter. No ex-
perimental data exist on subcritical crack growth for ice.
However, as suggested by Rist and others (2002), this possi-
bility is at least worth exploring.

The conditions encountered on glaciers� visco-plastic
flow, high homologous temperatures in the case of temper-
ate glaciers, presence of chemical impurities� are favour-
able factors for the mechanisms listed above. As an
example, stress concentrations at the crevasse tip may in-
crease the segregation of solutes concentrated along grain
boundaries and favour local melting at the tip. Below, I ex-
plore the likely behaviour of a crevasse experiencing subcri-
tical crack growth and show how it could explain some of
the observations listed in the introduction, especially for
ice terminus and calving. This is done for a few simplified
situations for which analytical expressions of the evolution
of the stress intensity factor with depth have been given in
the literature or can be proposed. Although these calcula-
tions are certainly oversimplifications, they do illustrate a
possible effect of subcritical growth on crevasse formation.
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It is not my intention to rule out the possibility of critical
crevasse propagation in glaciers (as evidenced by icequakes;
Neave and Savage, 1970) or of other mechanisms, such as
damage accumulation (Pralong and others, 2003), to ex-
plain the acceleration of propagation before ice terminus
collapse or calving.

SUBCRITICAL CREVASSE GROWTH

I consider the plane problem of an isolated crevasse of depth
l (its ‘‘length’’) within an ice layer (the ‘‘glacier’’) of thickness
H, as shown in Figure 1. I will consider the evolution of the
crevasse as described by the three regimes of tensile crack-
ing detailed above (no cracking, subcritical, critical). The
problem remains to integrate Equation (2), i.e. to know the
evolution of the stress intensity factor KI with the crevasse
length l. KI depends on the stress profile along the faces of
the crevasse, which itself depends on many factors: the
rheology of the ice, the surface slope of the glacier, the
boundary conditions, etc. In what follows, I will consider a
few typical and simplified situations for which a stress
profile can be estimated. I do not consider the presence of
water within the crevasse (in sufficient amount to counter-
act the effect of the overburden stress), possible interactions
between crevasses, an evolution of ice properties with depth
(e.g. density, fracture toughness), or bottom crevasses within
ice shelves. However, once one is able to estimate the stress
profile along the crevasse faces for these more sophisticated
situations (see, e.g., Smith (1976) andVan derVeen (1998b)
for the presence of water within the crevasse; Rist and
others (1996) and Van der Veen (1998b) for an evolution of
density from top firn to bottom ice; and Smith (1976) and
Sassolas and others (1996) for crevasse interactions), the
analysis of subcritical crevassing is straightforward using
the same procedure as described below.

Surface crevasse in a glacier

I consider first the classical situation of a surface crevasse
within a glacier where the stress profile normal to its faces
is the superposition of two terms (Fig.1):

(i) a tensile stress resulting from flow gradients, �t. Fol-
lowing many others (Smith,1976;Van derVeen,1998b;
Rist and others, 1999), the simplifying assumption is
made that �t is constant throughout the ice thickness.
Nath andVaughan (2003) argued that a constant strain
rate throughout the thickness is more realistic. If the
material properties change with depth (e.g. the poros-

ity for firn, or if the crevasse extends into the deeper
layers in a glacier where the non-linear softening of
the ice due to horizontal shearing becomes important),
this implies that �t varies with depth.This aspect is ne-
glected here.

(ii) the compressive overburden stress which increases
with depth according to �p ¼ ��igz, where �i is the
density of ice (917 kgm^3) and z the depth below the
glacier surface.

These two terms act against each other, leading to dis-
cussion of various crack-arrest criteria in the literature
(and consequently different maximum crevasse depth):
�t ¼ �p (Nye, 1957), KI ¼ 0 (Smith, 1976) or KI ¼ KIC

(Van derVeen,1998b).
Following Smith (1976), I first neglect the finite thickness

of the glacier (H ! þ1Þ. For a plane problem (Fig. 1); KI

is:

KIðlÞ ¼ K
ð1Þ
I �K

ð2Þ
I

¼ 1:12�tð�lÞ1=2 � 1:2235�igl
3=2;

ð3Þ

whereKð1Þ
I represents the opening term associated with the

Fig. 1. Surface crevasse within a glacier: geometry and nota-

tion of the plane problem considered.

Fig. 2. Subcritical crevassing of a surface crevasse within a

glacier (n ¼ 15;B ¼ 1017;�t ¼ 50 kPa). (a) Evolu-

tion of the crevasse depth, l, with time, showing a sigmoidal
behaviour. Note the logarithmic vertical scale for the main

graph and the linear vertical scale for the inset. (b) Evolution

of the stress intensity factor KI with the crevasse depth: the

critical conditionKI ¼ KIC is neverattained during the cre-

vasse life.
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(and consequently different maximum crevasse depth):
�t ¼ �p (Nye, 1957), KI ¼ 0 (Smith, 1976) or KI ¼ KIC

(Van derVeen,1998b).
Following Smith (1976), I first neglect the finite thickness

of the glacier (H ! þ1Þ. For a plane problem (Fig. 1); KI

is:

KIðlÞ ¼ K
ð1Þ
I �K

ð2Þ
I

¼ 1:12�tð�lÞ1=2 � 1:2235�igl
3=2;

ð3Þ

whereKð1Þ
I represents the opening term associated with the

Fig. 1. Surface crevasse within a glacier: geometry and nota-

tion of the plane problem considered.

Fig. 2. Subcritical crevassing of a surface crevasse within a

glacier (n ¼ 15;B ¼ 1017;�t ¼ 50 kPa). (a) Evolu-

tion of the crevasse depth, l, with time, showing a sigmoidal
behaviour. Note the logarithmic vertical scale for the main

graph and the linear vertical scale for the inset. (b) Evolution

of the stress intensity factor KI with the crevasse depth: the

critical conditionKI ¼ KIC is neverattained during the cre-

vasse life.
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tensile stress �t and K
ð2Þ
I the closing term associated with

the compressive overburden stress.
For a semi-elliptical crevasse which does not cross the en-

tire glacier width, the expression of KI would be similar,
with numerical coefficients depending on the aspect ratio
of the ellipse (Broek, 1982). The combination of Equations
(2) and (3) leads to a differential equation whose integra-
tion, using standard numerical integration tools such as the
fourth-order Runge^Kutta algorithm, determines the evo-
lution of the crevasse with time, i.e. l ¼ fðtÞ.Two examples
are given in Figures 2 and 3. In the absence of data on sub-
critical cracking in ice, n was set to a value of 15 close to the
modal value observed for rocks or ceramics (Atkinson,1979;
Gy, 2001).The parameter B was fixed to 1017 for stresses ex-
pressed in MPa, lengths in m and time in s (so B is ex-
pressed in MPa�nm1�n/2 s^1). This value falls within the
(very large) range of values reported for rocks or ceramics
with similar exponent n. Once again, the calculations pre-
sented below were performed to illustrate the mechanisms,
without intention to predict the quantitative behaviour of a
real crevasse in ice. Note, moreover, that the B values re-
ported for other materials depend on different factors, in-
cluding temperature, and are given with a large
uncertainty. The integration started at time t0 ¼ 0 with a
crevasse depth l0 of 3 cm. Under a given tensile stress at the
surface, an initial flaw is required for the stress intensity fac-
tor KI to overcome the lower limit K0. As noted above, in
materials where subcritical cracking is documented, K0,
when it can be estimated, is much lower than the fracture
toughnessKIC.

Figure 2a shows the evolution of crevasse depth with
time for a tensile stress �t ¼ 50kPa. A sigmoidal behaviour
is observed. First, the crevasse deepens very slowly, albeit at
an increasing rate.This acceleration is drivenby an increase
ofKI as l increases in the upper part of the glacier where the
tensile term of Equation (3), Kð1Þ

I , largely overcomes the
effect of the overburden stress Kð2Þ

I . This acceleration con-
tinues until an inflexion point at time ti �167 days at which
the crevasse is deep enough to sense the effect of the over-
burden stress.Then the crevasse decelerates towards a max-
imum depth lmax of about 9m. This maximum depth is set
by the condition KI ¼ K0, reached after a time infinitely
long if K0 ¼ 0.Whereas lmax is independent of n or B, ti is
dependent on those parameters. As the growth rate is pro-
portional to B (Equation (2)), a B value 10 times larger (re-
spectively 10 times lower) decreases (respectively increases)
ti by a factor of 10. ti also strongly depends on n: for the case
described above, an n value of 14 (respectively 16) decreases
(respectively increases) ti by a factor of 54 compared to
n ¼ 15. Figure 2b shows the evolution of the stress intensity
factor KI with the crevasse depth l. KI , which reaches a
maximum value of Kmax ¼ 114:5 kPam1/2 at about 3m
depth, never attains the critical toughness of 150 kPam1/2,
therefore excluding critical crevasse growth. Kmax and the
corresponding depth are calculated from the condition
dKI=dl ¼ 0:

In this example, we are not facedwith the problemof the
definition of a crack-arrest criterion: the same physics (sub-
critical growth) holds for the accelerating as for the deceler-
ating phase towards an asymptotic depth, supposedly
without dynamical effects. The maximum crevasse-growth
speed dl=dt ¼ BKn

I ¼ 762m s^1 is reached at t ¼ ti As
most of the time is spent in the earlier stages of growth, the
inflexion time ti strongly depends on the initial flaw size l0,

whereas the other characteristics such as the maximum
velocity, the maximum stress intensity factor or the asymp-
totic depth do not.

As n is large, the crevasse evolution is very sensitive to
the tensile stress �t. Figure 3 shows the crevasse evolution
for a tensile stress of 80 kPa. Although the accelerating
phase is similar, the time-scale as well as the final evolution
strongly differ. Starting again from l ¼ l0 ¼ 3 cm, the max-
imum crack speed predicted from subcritical cracking
would be reached after about 1226 s (<3.5 hours; see
Fig. 3a). However, the critical condition KI ¼ KIC is ful-
filled just before the inflexion point is reached, at l � 1m
(Fig. 3b). Therefore, one expects the ‘‘initiation’’of unstable
crevasse propagation from this depth. In that case, we are
again faced with the problem of crack arrest that sets the
maximum depth.

For the same loading case (Fig. 1),Van derVeen (1998b)
took into account the finite thickness of the glacier, H. He
found that the effect of H is to increase the stress intensity
factor KIðlÞ as a non-linear function of the ratio l=H. This
implies an increase of the crevasse growth rates and conse-
quently a decrease of ti. However, when the ratio between
the crevasse depth at ti and H is small, the effect of H on
subcritical crevasse evolution is very small. For the numeri-
cal examples given above (n ¼ 15;B ¼ 1017Þ and a glacier

Fig. 3. Subcritical crevassing of a surface crevasse within a

glacier (n ¼ 15;B ¼ 1017;�t ¼ 80 kPa). (a) Evolu-

tion of the crevasse depth, l, with time. (b) Evolution of the

stress intensity factorKI with the crevasse depth: the critical

conditionKI ¼ KIC is fulfilled when the crevasse reaches a

depth of about 1m.
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fourth-order Runge^Kutta algorithm, determines the evo-
lution of the crevasse with time, i.e. l ¼ fðtÞ.Two examples
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therefore excluding critical crevasse growth. Kmax and the
corresponding depth are calculated from the condition
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In this example, we are not facedwith the problemof the
definition of a crack-arrest criterion: the same physics (sub-
critical growth) holds for the accelerating as for the deceler-
ating phase towards an asymptotic depth, supposedly
without dynamical effects. The maximum crevasse-growth
speed dl=dt ¼ BKn

I ¼ 762m s^1 is reached at t ¼ ti As
most of the time is spent in the earlier stages of growth, the
inflexion time ti strongly depends on the initial flaw size l0,

whereas the other characteristics such as the maximum
velocity, the maximum stress intensity factor or the asymp-
totic depth do not.

As n is large, the crevasse evolution is very sensitive to
the tensile stress �t. Figure 3 shows the crevasse evolution
for a tensile stress of 80 kPa. Although the accelerating
phase is similar, the time-scale as well as the final evolution
strongly differ. Starting again from l ¼ l0 ¼ 3 cm, the max-
imum crack speed predicted from subcritical cracking
would be reached after about 1226 s (<3.5 hours; see
Fig. 3a). However, the critical condition KI ¼ KIC is ful-
filled just before the inflexion point is reached, at l � 1m
(Fig. 3b). Therefore, one expects the ‘‘initiation’’of unstable
crevasse propagation from this depth. In that case, we are
again faced with the problem of crack arrest that sets the
maximum depth.

For the same loading case (Fig. 1),Van derVeen (1998b)
took into account the finite thickness of the glacier, H. He
found that the effect of H is to increase the stress intensity
factor KIðlÞ as a non-linear function of the ratio l=H. This
implies an increase of the crevasse growth rates and conse-
quently a decrease of ti. However, when the ratio between
the crevasse depth at ti and H is small, the effect of H on
subcritical crevasse evolution is very small. For the numeri-
cal examples given above (n ¼ 15;B ¼ 1017Þ and a glacier
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thickness around100m, the numerically computed crevasse
evolutions are almost indistinguishable from the infinite-
thickness solutions for t < ti. This is not incompatible with
a strong effect ofH in the critical regime (KI � KICÞ, espe-
cially for large tensile stresses allowing large maximum
depths (Van derVeen,1998b). It will be shown later that H
may also have a significant effect in the case of a crevasse
located near a glacier terminus.

From this crude exploration of possible subcritical cre-
vassing within glaciers, some interesting points can be
stressed. The first one concerns the origin of initial sharp
flaws that are needed to initiate crevasse propagation under
a tensile stress �t. Surface stresses have never been directly
measured on glaciers; rather they are estimated from strain
rates (themselves calculated from surface velocity measure-
ments) and a visco-plastic ice-flow law (e.g. Nye, 1957; Rist
and others, 1999). As an example, tensile stresses around
100^200 kPa are rather large values. From a phenomeno-
logical approach analyzing the association between the
presence of crevasses and measured strain rates, fromwhich
stresses were deduced,Vaughan (1993) reported critical ten-
sile stress values in the range 90^200 kPa for crevassing
within glaciers.Within a classical LEFM framework, for a
tensile stress �t of 150 kPa and a toughness of 150 kPam1/2,
an initial flaw size of 26 cm at the glacier surface would be
required to initiate unstable propagation (KI ¼ KIC and
KI given by Equation (3)). As stressed previously by Rist
and others (1999) and Nath and Vaughan (2003), the ex-
istence of such large sharp flaws is questionable. Small mi-
crocracks of length of the order of the grain-size can form
within the ice as the result of dislocation pile-ups during
plastic flow (Frost, 2001) or grain-boundary sliding (Weiss
and Schulson, 2000). However, these microflaws would not
be long enough to initiate unstable propagation. Larger
flaws such as voids may exist within glacier ice, but these
blunted features would require larger stresses to be acti-
vated than sharp cracks.

Subcritical cracking is an elegant alternative to solve
this problem. As the lower threshold for subcritical propa-
gation K0 is always a small fraction of the material tough-
ness KIC, subcritical crevassing would allow crevasse
initiation and propagation from much smaller initial flaw
sizes. Using the same set of parameters as before
(n ¼ 15;B ¼ 1017), a microcrack of 3mm (i.e. a reason-
able order of magnitude for an average grain-size within
glacier ice) under a tensile stress �t of 150 kPa will grow
up to the LEFM critical value of 26 cm in 35 days. Once
again, these time-scales are only given to illustrate the me-
chanisms and have no real quantitative meaning, as the
parameters n and B are unknown.

As illustrated abovewith the examples of Figures 2 and 3,
the crevasse evolution is very sensitive to �t. Consequently, a
small initial flaw subjected to a (constant) small tensile stress
will not reach a significant depth within reasonable time,
whereas it would rapidly fulfil the conditions for unstable
propagation under (constant) large stress. However, as these
flaws move with the glacier flow and therefore experience a
changing stress history, it is easy to imagine a scenario
where a small flaw of a few mm initially grows under a rel-
atively large tensile stress to a depth of the order of a few tens
of cm to a few metres and then, as it moves downwards, ex-
periences smaller tensile stress under which it may propa-
gate subcritically down to an asymptotic depth without
reaching the critical conditionKI ¼ KIC.

Hanging glacier, glacier terminus and iceberg calving

The situation of a crevasse located close to a glacier termi-
nus, near the end of a hanging glacier or an ice shelf (Fig. 4),
is now considered. This is the situation studied by Iken
(1977). In this situation, it is easy to understand that the
effect of the overburden stress is greatly reduced, if not neg-
ligible. The stress profile along the faces of the crevasse de-
pends on many parameters: surface slope of the glacier,
distance of the crevasse from the calving face, geometry of
the bottom of the glacier (with possible overhangs), the
‘‘substrate’’ (rocks, or water for ice shelves), etc. Hughes
(1992) used beam theory to estimate these stress profiles in
the case of an ice front floating on water, whereas Hanson
and Hooke (2000) performed finite-element simulations of
a similar situation. As a general trend, Hanson and Hooke
(2000) obtained non-linear increases of the tensile stress �t

with the depth z (depth within the ice, different from the
depth of the crevasse, l).The crevasse depth l itself probably
modifies this stress profile �tðzÞ in a complex way, although
quantitative information on this point is not available. For
all these reasons, it is impossible to propose a ‘‘generic’’ ex-
pression for the stress intensity factor KIðlÞ as was done
before for a crevasse within a glacier. In what follows, I first
consider a simplified case of the situation depicted in Figure
4. It illustrates how a positive feedback between the crevasse
length and the stress intensity factor naturally leads to a fi-
nite-time singularity for the crevasse growth rate (and
therefore for crevasse opening) in agreement with the ex-
pression (1) proposed by R˛thlisberger (1977). Then, I dis-
cuss briefly how the finite thickness of the glacier or a more
complex stress profile �tðzÞ can strengthen the feedback
loop and consequently account for a variability of the expo-
nentm in Equation (1).

In a first step, the following crude approximations are
made:

(i) the effect of the finite thickness of the glacier is ne-
glected, i.e.H ! þ1

(ii) the stress profile is considered to be constant,
�tðzÞ ¼ �t

(iii) the evolution of the stress profile as the crevasse
deepens is neglected.

Fig. 4. Surface crevasse near a glacier terminus: geometry and

notation of the plane problem considered.
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With these simplifying hypotheses, the stress intensity
factorKI reduces to the first term of Equation (3), i.e.

KIðlÞ ¼ 1:12�t

ffiffiffiffiffi
�l

p
: ð4Þ

The combination of Equations (2) and (4) gives:

dl

ln=2
¼ Bð1:12�t

ffiffiffi
�

p
Þn dt ð5Þ

that can be integrated analytically:

l ¼ l0
2�n
2 � n� 2

2
B 1:12�t

ffiffiffi
�

p� �n
t

� � 2
2�n

: ð6Þ

As n > 2; l follows a singular behaviour (l ! þ1Þ at a crit-
ical time tc given by:

tc ¼
2

n� 2

l0
2�n
2

Bð1:12�t
ffiffiffi
�

p Þn ð7Þ

Contrary to the situation described in the previous sub-
section, the absence of overburden stress suppresses the in-
flexion point on the crevasse depth evolution. This
evolution is characterized by a simple positive feedback
loop: as the crevasse grows, the stress intensity factor in-
creases (Equation (4)), which in turn increases the growth
rate (Equation (2)), and so on up to infinity at tc. Obviously,
the LEFM critical condition KI ¼ KIC which initiates dy-
namic fracture will be reached a short time before tc. In
terms of growth rate dl=dt, or equivalently of crevasse-
opening rate at the surface (in fracture mechanics, crack
length and opening are theoretically proportional), this fi-
nite-time singularity is expressed as:

dl

dt
¼ n� 2

2

� � n
2�n ½Bð1:12�t

ffiffiffi
�

p Þn�
2

2�n

ðtc � tÞ
n

n�2
: ð8Þ

This is the form of the equation proposed by R˛thlisberger
(1977, equation (1)) to describe the acceleration of surface
velocity across a crevasse before breaking off, with
m ¼ n=ðn� 2Þ. This suggests that subcritical crevassing is
a possible explanation for the acceleration of crevasse
growth before breaking of a glacier terminus.

The exponent m deduced from the crude hypotheses
detailedabove is close to (asn is large) andalways larger than
1, whereas the data reportedby Flotron (1977) (see also Iken,
1977) are best fittedby Equation (1) withm around 0.7. How-
ever, more recent measurements performed on a glacier ter-
minus by the Swiss Federal Institute of Technology (ETH),
Zˇrich (personal communication fromM. Funk,2003), indi-
cateavariabilityofm, generallywithinthe range 0.5^1.

The situation described above, which is given to illus-
trate the link between a positive feedback mechanism and
the finite-time singularity of Equation (1), is obviously over-
simplified. Similar calculations, not described here, of the
crevasse evolution based on the integration of the crack-
growth rate (Equation (2)) for more sophisticated situations
led to the following qualitative conclusions:

(i) The effect of the glacier thickness introduces an add-
itional positive feedback effect: KIðlÞ increases non-
linearly with l=H (Van der Veen, 1998b). This results
in a larger growth rate for a given crevasse depth, and
therefore to a shorter failure time tc. In addition, the
apparent exponent m (the slope of log(dl=dtÞ vs
log ½1=tc � tÞ]) slightly decreases approaching tc.
However, this effect of the glacier thickness onm is sig-
nificant only a short time before breaking.

(ii) A variability of the exponent m and/or its fluctuation
during the crevasse life can also be explained by a ten-
sile stress �tðzÞ varying with z, or by an evolution of the
stress profile as the crevasse deepens. As a general rule,
any mechanism which strengthens the positive feed-
back loop, such as a finite ice thickness (see point (i)
above), an increase of �tðzÞwith depth or a strengthen-
ing of this increase as the crevasse deepens, tends to
decreasem towards a lower bound of 1.

(iii) For all the situations, necessarily simplified, explored
for this work, an exponent generally larger than and
close to 1was found.This disagreement with the scarce
available field measurements (m in the range 0.5^1; see
above) may have different origins such as more com-
plex loading situations, or a non-linear scaling between
the horizontal displacements measured on the glacier
surface and the crevasse depth.

This dependence of crevasse-growth kinetics on either
the stress profile or the glacier thickness illustrates the diffi-
culty of predicting accurately the breaking-off time of an ice
wall from an extrapolation of field velocity data.

DISCUSSIONAND CONCLUSION

So far, no experimental data or field measurements are
available on subcritical crack growth or subcritical crevas-
sing in ice. However, the conditions encountered on glaciers
such as visco-plastic flow, high homologous temperatures or
the presence of chemical impurities are favourable factors
for subcritical crevassing. In this paper, the behaviour of in-
dividual surface crevasses subjected to subcritical growth
(Equation (2)) has been explored for two simplified loading
situations. This mechanism makes it possible to interpret
different observations on crevassing, icefalls and iceberg
calving, that cannot be easily explained within a classical
LEFM framework:

(i) Subcritical crevasse growth can explain the propaga-
tion of crevasses, under reasonable tensile stresses,
from small microcracks nucleated by mechanisms at
the crystal scale. Crevassing could start by the subcrit-
ical propagation of a fracture from a crystal-scale (few
mm) flaw until a critical depth is reached where un-
stable dynamic propagation may occur.

(ii) Subcritical crevassing could explain the average propa-
gation rates far below the body wave speeds observed
by satellite imagery in ice shelves (see, e.g., Fricker
and others, 2002). In the case of ice shelves, one may ar-
gue that these low speeds could result from an aver-
aging over time of many step-like critical (KI � KIC)
increments. However, this raises the problem of re-
peated crack arrests necessarily involving fast and
large stress variations. A more realistic mechanism,
specific to ice shelves, could be ‘‘cyclic fatigue’’ crack
growth induced by tidal forcing (Anandakrishnan
and Alley,1997). Fatigue crack growth rate is generally
described by a relation similar to Equation (2), the
Paris law (see, e.g., Broek,1982):

dl

dt
¼ C�Kn; ð9Þ

where N is the number of load cycles and
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With these simplifying hypotheses, the stress intensity
factorKI reduces to the first term of Equation (3), i.e.

KIðlÞ ¼ 1:12�t

ffiffiffiffiffi
�l

p
: ð4Þ

The combination of Equations (2) and (4) gives:

dl

ln=2
¼ Bð1:12�t

ffiffiffi
�

p
Þn dt ð5Þ

that can be integrated analytically:

l ¼ l0
2�n
2 � n� 2

2
B 1:12�t

ffiffiffi
�

p� �n
t

� � 2
2�n

: ð6Þ

As n > 2; l follows a singular behaviour (l ! þ1Þ at a crit-
ical time tc given by:

tc ¼
2

n� 2

l0
2�n
2

Bð1:12�t
ffiffiffi
�

p Þn ð7Þ

Contrary to the situation described in the previous sub-
section, the absence of overburden stress suppresses the in-
flexion point on the crevasse depth evolution. This
evolution is characterized by a simple positive feedback
loop: as the crevasse grows, the stress intensity factor in-
creases (Equation (4)), which in turn increases the growth
rate (Equation (2)), and so on up to infinity at tc. Obviously,
the LEFM critical condition KI ¼ KIC which initiates dy-
namic fracture will be reached a short time before tc. In
terms of growth rate dl=dt, or equivalently of crevasse-
opening rate at the surface (in fracture mechanics, crack
length and opening are theoretically proportional), this fi-
nite-time singularity is expressed as:

dl

dt
¼ n� 2

2

� � n
2�n ½Bð1:12�t

ffiffiffi
�

p Þn�
2

2�n

ðtc � tÞ
n

n�2
: ð8Þ

This is the form of the equation proposed by R˛thlisberger
(1977, equation (1)) to describe the acceleration of surface
velocity across a crevasse before breaking off, with
m ¼ n=ðn� 2Þ. This suggests that subcritical crevassing is
a possible explanation for the acceleration of crevasse
growth before breaking of a glacier terminus.

The exponent m deduced from the crude hypotheses
detailedabove is close to (asn is large) andalways larger than
1, whereas the data reportedby Flotron (1977) (see also Iken,
1977) are best fittedby Equation (1) withm around 0.7. How-
ever, more recent measurements performed on a glacier ter-
minus by the Swiss Federal Institute of Technology (ETH),
Zˇrich (personal communication fromM. Funk,2003), indi-
cateavariabilityofm, generallywithinthe range 0.5^1.

The situation described above, which is given to illus-
trate the link between a positive feedback mechanism and
the finite-time singularity of Equation (1), is obviously over-
simplified. Similar calculations, not described here, of the
crevasse evolution based on the integration of the crack-
growth rate (Equation (2)) for more sophisticated situations
led to the following qualitative conclusions:

(i) The effect of the glacier thickness introduces an add-
itional positive feedback effect: KIðlÞ increases non-
linearly with l=H (Van der Veen, 1998b). This results
in a larger growth rate for a given crevasse depth, and
therefore to a shorter failure time tc. In addition, the
apparent exponent m (the slope of log(dl=dtÞ vs
log ½1=tc � tÞ]) slightly decreases approaching tc.
However, this effect of the glacier thickness onm is sig-
nificant only a short time before breaking.

(ii) A variability of the exponent m and/or its fluctuation
during the crevasse life can also be explained by a ten-
sile stress �tðzÞ varying with z, or by an evolution of the
stress profile as the crevasse deepens. As a general rule,
any mechanism which strengthens the positive feed-
back loop, such as a finite ice thickness (see point (i)
above), an increase of �tðzÞwith depth or a strengthen-
ing of this increase as the crevasse deepens, tends to
decreasem towards a lower bound of 1.

(iii) For all the situations, necessarily simplified, explored
for this work, an exponent generally larger than and
close to 1was found.This disagreement with the scarce
available field measurements (m in the range 0.5^1; see
above) may have different origins such as more com-
plex loading situations, or a non-linear scaling between
the horizontal displacements measured on the glacier
surface and the crevasse depth.

This dependence of crevasse-growth kinetics on either
the stress profile or the glacier thickness illustrates the diffi-
culty of predicting accurately the breaking-off time of an ice
wall from an extrapolation of field velocity data.

DISCUSSIONAND CONCLUSION

So far, no experimental data or field measurements are
available on subcritical crack growth or subcritical crevas-
sing in ice. However, the conditions encountered on glaciers
such as visco-plastic flow, high homologous temperatures or
the presence of chemical impurities are favourable factors
for subcritical crevassing. In this paper, the behaviour of in-
dividual surface crevasses subjected to subcritical growth
(Equation (2)) has been explored for two simplified loading
situations. This mechanism makes it possible to interpret
different observations on crevassing, icefalls and iceberg
calving, that cannot be easily explained within a classical
LEFM framework:

(i) Subcritical crevasse growth can explain the propaga-
tion of crevasses, under reasonable tensile stresses,
from small microcracks nucleated by mechanisms at
the crystal scale. Crevassing could start by the subcrit-
ical propagation of a fracture from a crystal-scale (few
mm) flaw until a critical depth is reached where un-
stable dynamic propagation may occur.

(ii) Subcritical crevassing could explain the average propa-
gation rates far below the body wave speeds observed
by satellite imagery in ice shelves (see, e.g., Fricker
and others, 2002). In the case of ice shelves, one may ar-
gue that these low speeds could result from an aver-
aging over time of many step-like critical (KI � KIC)
increments. However, this raises the problem of re-
peated crack arrests necessarily involving fast and
large stress variations. A more realistic mechanism,
specific to ice shelves, could be ‘‘cyclic fatigue’’ crack
growth induced by tidal forcing (Anandakrishnan
and Alley,1997). Fatigue crack growth rate is generally
described by a relation similar to Equation (2), the
Paris law (see, e.g., Broek,1982):

dl

dt
¼ C�Kn; ð9Þ

where N is the number of load cycles and
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�K ¼ Kmax �Kmin is the amplitude ofKI during the
cycle. Note that Kmax is necessarily smaller than KIC,
so fatigue crack growth is another kind of ‘‘subcritical’’
cracking. If loading frequency is constant throughtime,
the crack-growth kinetics deduced fromthe integration
of Equation (9) are strictly equivalent to those derived
before, except that the exponents n reported for cyclic
fatigue are generally lower than those reported for
‘‘static fatigue’’ (Equation (2); Broek, 1982). ‘‘Static fa-
tigue’’and ‘‘cyclic fatigue’’effects can also positively in-
teract in a mechanism called ‘‘corrosion fatigue’’.

(iii) The positive feedback that results from subcritical
cracking leads naturally to an acceleration of crevasse
growth (and so of crevasse opening rate) before break-
ing off, in agreement with observations of glacier ter-
mini in temperate glaciers (Flotron, 1977; Iken, 1977).
At much larger scale, a similar mechanism could ex-
plain the acceleration of fracture propagation within
ice shelves during the last days preceding the calving
of giant icebergs (Fricker and others, 2002), or even the
acceleration of ice-shelf retreat at a regional scale
(Vaughan and Doake, 1996). Note, however, that
Doake and others (1998) proposed another explanation
for this accelerating collapse, namely a large-scale
structural effect.

If subcritical crevassing can rationalize different intri-
guing observations, this does not rule out the existence of
other processes. In particular, any mechanism introducing
a positive feedback necessarily leads to a finite-time singu-
larity of the form of Equation (1).This is the case for damage
accumulation discussed by Pralong and others (2003). It is
also possible to imagine a coupling between different mech-
anisms such as subcritical cracking and damage accumu-
lation. Detailed analyses of field measurements may help in
the future to discriminate different processes.

In conclusion, the analysis developed here calls for lab-
oratory studies of subcritical cracking in ice as well as for
additional field measurements of crevasse opening or icefall
dynamics.
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�K ¼ Kmax �Kmin is the amplitude ofKI during the
cycle. Note that Kmax is necessarily smaller than KIC,
so fatigue crack growth is another kind of ‘‘subcritical’’
cracking. If loading frequency is constant throughtime,
the crack-growth kinetics deduced fromthe integration
of Equation (9) are strictly equivalent to those derived
before, except that the exponents n reported for cyclic
fatigue are generally lower than those reported for
‘‘static fatigue’’ (Equation (2); Broek, 1982). ‘‘Static fa-
tigue’’and ‘‘cyclic fatigue’’effects can also positively in-
teract in a mechanism called ‘‘corrosion fatigue’’.

(iii) The positive feedback that results from subcritical
cracking leads naturally to an acceleration of crevasse
growth (and so of crevasse opening rate) before break-
ing off, in agreement with observations of glacier ter-
mini in temperate glaciers (Flotron, 1977; Iken, 1977).
At much larger scale, a similar mechanism could ex-
plain the acceleration of fracture propagation within
ice shelves during the last days preceding the calving
of giant icebergs (Fricker and others, 2002), or even the
acceleration of ice-shelf retreat at a regional scale
(Vaughan and Doake, 1996). Note, however, that
Doake and others (1998) proposed another explanation
for this accelerating collapse, namely a large-scale
structural effect.

If subcritical crevassing can rationalize different intri-
guing observations, this does not rule out the existence of
other processes. In particular, any mechanism introducing
a positive feedback necessarily leads to a finite-time singu-
larity of the form of Equation (1).This is the case for damage
accumulation discussed by Pralong and others (2003). It is
also possible to imagine a coupling between different mech-
anisms such as subcritical cracking and damage accumu-
lation. Detailed analyses of field measurements may help in
the future to discriminate different processes.

In conclusion, the analysis developed here calls for lab-
oratory studies of subcritical cracking in ice as well as for
additional field measurements of crevasse opening or icefall
dynamics.
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