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We analytically derive an amplitude equation for the weakly nonlinear evolution of the
linearly most amplified response of a non-normal dynamical system. The development
generalizes the method proposed in Ducimetiere et al. (J. Fluid Mech., vol. 947, 2022,
A43), in that the base flow now arbitrarily depends on time, and the operator exponential
formalism for the evolution of the perturbation is not used. Applied to the two-dimensional
Lamb-Oseen vortex, the amplitude equation successfully predicts the nonlinearities to
weaken or reinforce the transient gain in the weakly nonlinear regime. In particular, the
minimum amplitude of the linear optimal initial perturbation required for the amplitude
equation to lose a solution, interpreted as the flow experiencing a bypass (subcritical)
transition, is found to decay as a power law with the Reynolds number. Although with a
different exponent, this is recovered in direct numerical simulations, showing a transition
towards a tripolar state. The simplicity of the amplitude equation and the link made with
the sensitivity formula permits a physical interpretation of nonlinear effects, in light of
existing work on Landau damping and on shear instabilities. The amplitude equation also
quantifies the respective contributions of the second harmonic and the spatial mean flow
distortion in the nonlinear modification of the gain.
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1. Introduction

The two-dimensional axisymmetric Lamb—Oseen (Gaussian) vortex flow, the vorticity
of which is a strictly decreasing radial function, is linearly stable: the eigenvalues of
L, the linearized Navier—Stokes operator around this flow, all possess a positive or null
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damping rate. In fact, even in the absence of viscosity where all damping rates are null,
linear perturbations experience an inviscid exponential decay; this phenomenon, called
‘Landau damping’, was observed and interpreted for instance in Schecter et al. (2000).
In particular, it was analytically derived that the Landau damping rate can be related to
the vorticity gradient, at the specific radius where the angular velocity associated with the
dominant Landau pole is equal to that of the base flow.

The Landau damping can be interpreted in mathematical terms. In an inviscid
framework, Schecter et al. (2000) consider at first a ‘top-hat’ base vortex, for which the
vorticity decreases slowly then rapidly drops to zero when the radial coordinate r is greater
than a specific value r,. This vortex supports a continuum of modes whose critical layers
are located at some r < r,, where they are singular since the base vorticity gradient is
non-zero there; it also supports a discrete (‘Kelvin’, according to the terminology of,
for instance, Balmforth, Llewellyn Smith & Young 2001) mode whose critical layer is
located at r. > r, where the base vorticity gradient is exactly zero: for this reason, the
discrete mode is smooth, regular and can be interpreted as a classical eigenmode. Secondly,
Schecter et al. (2000) consider a base vortex that is equivalent to the first, with the addition
of a low-vorticity ‘skirt’ that extends radially to a new, larger, r, > r.. This introduces a
non-zero base vorticity gradient at r. which ruins the regularity of the previously discrete
mode. However, Schecter et al. (2000) argue that symptoms of the original discrete mode
remain; some of the continuum modes closely resemble the latter in terms of structure
and frequency and combine to form what Schecter et al. (2000) call a ‘quasi-mode’.
Therefore, if the discrete mode is used as an initial condition, it will excite the continuum
following a Lorentzian distribution that is peaked around the discrete mode frequency (see
figure 3 in Schecter er al. 2000). As time evolves, the continuum modes disperse, and their
superposition behaves like an exponentially damped version of the original discrete mode
(hence the appellation ‘quasi-mode’).

Schecter et al. (2000) also consider the response of a Gaussian vortex, such as the one
considered here, to a generic external impulse. Although the response does not behave as
a single damped wave but projects well on a very large number of structurally different
modes, the Landau damping is still found to be relevant and to dominate the initial decay
of the perturbation.

Nevertheless, Rossi, Lingevitch & Bernoff (1997) evidenced that the Gaussian vortex
flow, despite its linear stability, could relax to a new non-axisymmetric, called ‘tripolar’,
state when subject to an arbitrary perturbation of sufficiently large amplitude. Such
phenomenology is symptomatic of a subcritical bifurcation. This tripolar structure is well
described for instance in Nolan & Farrell (1999) as a vortex for ‘which the low vorticity
of the moat pools into two satellites of an elliptically deformed central vortex, with the
whole structure rotating cyclonically’. It has been observed in the laboratory experiments
of Denoix, Sommeria & Thess (1994) as well as in Van Heijst & Kloosterziel (1989),
Kloosterziel & van Heijst (1991) and Van Heijst, Kloosterziel & Williams (1991), and
described in this last article as being ‘a very stable structure, even persisting in a highly
sheared fluid environment’.

This corroborates its importance in geophysical contexts, where tropical cyclones
sometimes show rotating elliptical eyes, as was reported for instance by Kuo, Williams
& Chen (1999) for Typhoon Herb, which occurred in Taiwan in 1996. A radar located on
the Wu-Feng mountain could measure the horizontal distribution of maximum reflectivity
for the Typhoon, from which we observe an elliptical eye (see their figures 1 and 2). The
eye was rotating cyclonically with a period of 144 min. Concerned with Hurricane Olivia,
which was part of the 1994 Pacific hurricane season, the work of Reasor et al. (2000) also
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documented an elliptical eye (see their figure 16). The ratio of minor to major axis was
approximately 0.7, and the period of (cyclonic) rotation was found to be around 50 min.

A substantial body of theoretical work has therefore been devoted to the apparition and
persistence of the tripolar state. Some of them reflect on the problem in terms of the
Landau damping, for instance Schecter et al. (2000), Le Dizes (2000), Balmforth et al.
(2001), Turner & Gilbert (2007) and Turner, Gilbert & Bassom (2008). Common to all
these latter works is the following idea: if the perturbation is large enough to nonlinearly
feedback on the mean vorticity (averaged in the azimuthal direction), in such a way that
the mean vorticity gradient vanishes near the radius where the angular velocity associated
with the dominant Landau pole equates to that of the base flow, then the Landau damping
is deactivated. Indeed, it was shown in Schecter ef al. (2000), Turner & Gilbert (2007) and
Turner et al. (2008) that such cancelling of the Landau damping goes with the appearance
of an undamped Kelvin mode. The effects of flattening the mean vorticity distribution
have been thoroughly studied in Schecter et al. (2000) and Turner et al. (2008), although
it was introduced rather artificially in order to a posteriori mimic nonlinear effects. It has,
however, been rigorously quantified using a matched asymptotic expansion in Balmforth
et al. (2001), the small parameter being directly linked to the amount of vorticity near the
critical radius r. of the neutral Kelvin mode of a compact vortex, whose vorticity there
would be zero otherwise. The developments result in an amplitude equation for the weakly
nonlinear quasi-mode, that can predict a secondary instability for a sufficiently strong
disturbance amplitude.

Under certain conditions, the vorticity tripole has also been shown to be the nonlinear
fate of a shear instability (also sometimes called ‘barotropic’ instability, in opposition
to ‘baroclinic’ instability, this latter requiring density stratification). This was illustrated
clearly for instance in Carton, Flierl & Polvani (1989), Carton & Legras (1994), Carnevale
& Kloosterziel (1994) and Kossin, Schubert & Montgomery (2000), and many other
works. If the mean vorticity profile (averaged along the azimuthal direction) presents a
local extremum at some radius, a necessary condition for shear instability is satisfied
according to a generalization of the Rayleigh theorem of inflectional point by Billant
& Gallaire (2005). This is, for instance, the case of the family of shielded monopoles,
where the vortex core of positive vorticity is surrounded by a ring of negative vorticity.
By increasing the intensity of the shear, the shielded vortex becomes unstable with a
maximum growth rate for perturbations of azimuthal wavenumber m = 2; by increasing
the shear further, m = 3 becomes even more unstable (see figure 7 in Carnevale &
Kloosterziel 1994). Inspired by velocity measurements of Hurricane Gilbert that occurred
in 1988, Kossin et al. (2000) considered the vorticity of a piecewise-constant vorticity
profile. The latter is constituted of four distinct regions of vorticity: an inner region of
very high vorticity, a moat region of relatively low vorticity, an annular ring of positive
vorticity and an irrotational far field. Kossin et al. (2000) then show that, by narrowing
the moat, a shear instability appears with a maximum growth rate at a wavenumber m = 2
(see their figure A1l). This shear instability can be conceptualized as resulting from a wave
interaction across the moat, between two Rossby waves riding respectively the inner edge
of the annular ring, and the outer edge of the central vortex. Note that what we designate
here as a ‘Rossby’ wave, according to the terminology of Kossin et al. (2000), is similar
to the ‘Kelvin’ mode discussed until now. Nonlinear simulations have then shown this
instability to saturate into a tripolar state.

Furthermore, an important ingredient to the subcritical transition towards the tripolar
state was found to be the non-normality of the linear operator L. An operator is non-normal
if it does not commute with its adjoint, the expression of the latter being relative
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to the choice of an inner product. The eigenvectors of a non-normal operator do not
form an orthogonal basis under this inner product, thus a negative growth rate for all
eigenvalues is not a guarantee for the associated norm to decay monotonically. In fact,
some small-amplitude perturbations may experience a large transient amplification. In
particular, the linear transient growth analyses conducted for instance in Antkowiak &
Brancher (2004), Antkowiak (2005), Pradeep & Hussain (2006), Heaton & Peake (2007)
and Mao & Sherwin (2012), have revealed the Lamb—Oseen (and Batchelor) vortex flow
to support such strong transient energy growth. Therefore, perturbations to the base flow
field, such as free-stream turbulence or acoustic disturbances, can be amplified strongly
enough through non-normal, linear, mechanisms to lead to a regime where nonlinearities
come into play; the flow may then escape from its linearly stable solution. This conjunction
of non-normality then nonlinearity corresponds to the ‘by-pass’ scenario proposed in
Trefethen et al. (1993) and contextualized to the Lamb—Oseen vortex flow in Antkowiak
(2005). Recently, the transient growth analysis of the Lamb—Oseen vortex has been
numerically extended in the fully nonlinear regime via a Lagrangian optimization in
Navrose et al. (2018).

The present work aims at reconciling the simplicity of a weakly nonlinear model (such
as in Sipp 2000; Balmforth er al. 2001), in the sense that it is easier to solve and interpret
than the original equation, with non-normality. Specifically, the objective is to construct
an amplitude equation that is not restricted to the description of close-to-neutral modes or
quasi-modes, but that extends to responses associated with optimal transient growth.

The amplitude equation analytically derived in this paper will not restrict the shape of
the base flow in order for the latter to support a close-to-neutral mode or a quasi-mode, and
will tolerate arbitrary temporal dependence of this base flow; this is precisely because these
complexities are already incorporated in the optimal transient growth analysis of which
we study the weakly nonlinear continuation. This makes possible the weakly nonlinear
analysis of optimal responses on vortices with more realistic vorticity profiles from field
measurements. For instance, this could be applied to the profile reported in figure 1 of
Kossin et al. (2000), from flight-level radar measurement of Hurricane Gilbert.

The derivation of a weakly nonlinear reduced-order model will make it possible to
distinguish the regimes where weak nonlinearities reinforce the transient gain, from the
regimes where they cause it to decrease. It will also provide a rough criterion for the
minimum amplitude of the initial condition required to trigger a bypass transition away
from the axisymmetric state. It will also help us quantify the importance of the distortion
of the flow averaged in the azimuthal direction, called ‘mean flow’, with respect to the
importance of the second harmonic in nonlinear effects at stake.

After a brief derivation on the linear formulation in §2, the method advanced to
derive the amplitude equation is outlined in § 3; specifically, we vary the amplitude of
a given initial condition and predict, at low numerical cost, the gain of the response at
a selected time ¢ = ¢,. The (general) method is then illustrated with the two-dimensional
Lamb-Oseen vortex flow with azimuthal wavenumber m = 2 in § 5, exhibiting large gain
and subcritical bifurcation.

2. Linear formulation

In the following subsection, the formulation of the linear transient growth problem is
briefly recalled. In the rest of the paper, we shall consider a purely two-dimensional flow,
invariant and with zero velocity in the axial direction. This two-dimensionality implicitly
assumes the flow not to be subject to any three-dimensional instabilities, or any kind
of spontaneous axial variations. This assumption is often made in considering vortex
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flows, and will not be discussed further in the present paper. Note that the restriction
to a two-dimensional flow is not intrinsic to the analytical development proposed in the
following, but is simply made to ease the computations thus concentrating our efforts on
the analysis of the subcritical transition toward the tripolar state.

Let Up(r,t) =[O0, Ub,g]T(r, t) denote a reference vortex flow, satisfying the
Navier—Stokes equations exactly (without body force) and supporting a small-amplitude
perturbation field of the form

u | im0
|:p] (r,0,1 = |:f?:| (r,p)e™ +c.c., 2.1

and #(r,t) = [@,, ig]" (r, t). The invariance of the base flow along the azimuthal ()
coordinate justifies the Fourier mode expansion of the perturbation in this direction;
m € Z denotes the wavenumber in the azimuthal direction. Linearizing the Navier—Stokes
equations around Uy(r, f) leads to an equation for the temporal evolution of the velocity
field a(r, )

~_[An—=1/r)/Re —im2  =2im/(PRe)+22 . & .-
o= [ 2im/(r2Re) - W; (A — 1/1”2)/Re _ im.Q] u—Vup(u)

= A (1)
= Ln(Du, (22)

where @m = [0,, im/r]T and
R =Upg/r, W.=R240Upg, Am=20,~+/r)d, —m*/r. (2.3a—c)

The letter §2 denotes the angular velocity of the base flow, where W, is its vorticity along
the z-axis. The operator imS2 is the advection by the base flow, and A,, is the Laplacian
associated with viscous diffusion: it is therefore systematically multiplied by 1/Re, with
Re the Reynolds number. The presence of the pressure term in (2.2) ensures the velocity
field & to be divergence-free for all times. Indeed, the pressure is linearly linked to the
velocity field according to the Poisson equation

Amp(u) = =2i(md,Up,g /)ity + 2(3, + 1/r)(2i19), (2.4)

obtained by taking the divergence of the momentum equations, then enforcing the
continuity (9, + 1/r)it, + imitg /r = 0. The perturbation fields are subject to the following
boundary conditions over r € [0; +oo[, valid for all times:

8r’jtr|r:O = arlj‘9|r:0 =0
13|r=0 =0

itrlr:O = &9|r:O =0

! for m odd,
8rp|r:O =0

for m even, and {
(2.5a,b)

as well as lim,_, oo & = 0. As shown in the appendix of Kerswell & Davey (1996), by
imposing the parity conditions (2.5a,b), ‘the correct axial behaviour automatically follows
without need to explicitly impose the regularity conditions’.

Only the temporal dependence of the operators will be made explicit in the rest of the
paper; for instance, L,,(#), whose temporal dependence is inherited from the base flow,
is actually L, (1) = Ly, (r, t; Re). Precisely due to the fact that it depends on time, the
operator exponential formalism cannot be used to solve (2.2). Instead, and given the value
of the perturbation field at a time #;, its temporal evolution at a further time ¢ according to
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(2.2) formally reads u(r) = W (¢, t;)u(t;). The operator W (¢, t;) is traditionally named the
propagator, for its action directly maps &(z;) onto (¢) (Farrell & Ioannou 1996). If #; = 0
in particular,

u(t) =¥, 0)u0). (2.6)
The propagator responds to the semigroup properties
V(1) =W, )Y (s, 1), 2.7)

and W(#;, ;) = I (the identity operator). Injecting @(¢) = W (t, t;))a(t;) in (2.2), and
enforcing the equation to be satisfied for all #(7;) leads to an evolution equation for the
propagator

oW (. 1) = Lu(OW (1, 1;). (2.8)
By evaluating (2.7) at t = t; and s = t, it follows that
I =W, 0¥t 1) thereby [W(r, )] = ¥ (1, 1). (2.9)

Eventually, taking the temporal derivative of the first equation in (2.9) results in an
evolution equation for the inverse propagator

W (t;, 1) = =W (t;, 1)L, (1). (2.10)

Note that in presence of a forcing term j"(t) at the right-hand side of the system (2.2), its
solution (2.6) generalizes into

t
ut) =¥, 0)u) + w(t, 0)/ v (0, s)f(s) ds. (2.11)
0

This formula will turn out to be useful in a moment.

The transient growth analysis amounts to constructing an orthonormal basis for the
initial flow field, with the particular feature that elements of this basis are ranked according
to how much they are amplified at a given temporal horizon ¢, > 0. The first element
of this basis is the initial condition that is most amplified at ¢ = 7,, the second is the
most amplified under the constraint that it must be orthogonal to the first, etc. Due
to the non-normality of L, (#), the first few elements often lead to amplifications that
are much larger than all the others. In the case where the initial condition projects
equivalently on each element of the basis, the flow response at ¢ = #, is dominated by
those stemming from the few first elements of the basis only. In other terms, the key idea
behind a transient growth (and/or a resolvent) analysis is that the response of a system to
external perturbations is intrinsic to the operator, thus the precise form of these external
perturbations matters little.

The first step is to define according to which measure the amplification is sought for. In
the following, we choose the norm induced by the Hermitian inner product

[e.¢]
(fual 1) = / il fy,r dr, (2.12)
0

the superscript ‘H’ denoting the Hermitian transpose. Note that (ﬁlﬁ) = ||&||? is directly
the kinetic energy of the perturbation. The largest linear amplification (or ‘gain’) between
an initial flow structure and its evolution at t = 7, > 0 (subscript o for ‘optimal’) reads

u(t, 1
G, (1)) = max lu()l .

_ = —. (2.13)
a0 w0 €

The optimal gain does not depend on the time itself, but only on the temporal horizon 7,. In
the following, G, alone implies G,(¢,). The propagator formalism (2.6) is used to re-write
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the maximization problem (2.13) as an eigenvalue problem

G — o [BNEC) (W o, ORO)¥ 15, 0i(0))
C a0 (@0)|a©) a0 ((0)12(0))
e O 10,0/ ¥y, 00)) o
o (@(0)1(0)

where the operator ¥(t,, 0)" denotes the adjoint of ¥ (z,,0) under the inner product
(2.12). From (2.14), it is clear that Gg is also the largest (necessary real) eigenvalue of the
self-adjoint operator ¥ (t,, 0)"w (z,, 0), and the associated eigenvector, named #, in what
follows, is the optimal initial condition. The latter is normalized such that (it0|ito) =1.
Smaller eigenvalues and corresponding eigenmodes constitute sub-optimal gains and
initial conditions, and the family of eigenvectors is orthonormal. Let /, be the unit-norm
response to the optimal initial condition &, at ¢t = t,, such that [, = ¥ (¢,, 0)&1,/G, and
<?0|20> = 1. From this definition, and using that ¥ (¢, 0)'W (z,, 0)i1, = Ggfto and that the
inverse of the adjoint is the adjoint of the inverse, two relations follow

(0, 1,)l, = €1, and W(0,1,) i1, = €,1,, (2.15a,b)

where we recall that €, is the inverse of the optimal gain. Note that these two last relations
also indicate the optimal initial condition and its associated response to be respectively
the right and left singular vectors of ¥ (¢,, 0), associated with its largest singular value.
Since the operator L, () is assumed in the rest of the study to be strongly non-normal,
the structures &, and generally project poorly each of its direct and adjoint eigenmodes
(except in the limit 7, — 00).

The full linear response seeded by €,4, and such that 2(t0) = 20 reads ?(t) =
€W (t,0)u,, or ¥ (0, t)?(t) = €,l1,. The gain associated with this full linear response reads

Gty = MO _ WO _ 0y, (2.16)
lleotto ]| €o

where the parameter 7, after the semi-colon in G(z;t,) highlights that this gain was
optimized for the time 7, specifically. Therefore, the gain (2.16) evaluated in ¢ = 7, equals
to that defined in (2.13), i.e. G(#,; t,) = G,(t,). Nevertheless, we insist that the gain (2.16)
depends on the time 7 and is parameterized by the temporal horizon ¢,, whereas the optimal
gain (2.13) depends only on the temporal horizon #,. In the following, the shortened
notation G(f) will systematically imply G(¢; ¢,), and will be sometimes used to lighten
the writing.

Of all the temporal horizons t,, the one leading to the largest optimal gain will be
highlighted with the subscript ‘max’ such that

1

mag)( Go(to) = Go(to,max) = (217)

o> €0, max

3. Weakly nonlinear formulation

In the linear paradigm, the gain is independent of ||(0)||, for the latter is assumed to be
arbitrarily small. In reality, ||&(0)| may be sufficiently large for the nonlinear corrections
to the response not to be negligible anymore, thus for the transient gain to depart from its
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linear prediction. Building on our previous work (Ducimetiere, Boujo & Gallaire 2022),
we propose thereafter a method for capturing weakly nonlinear effects on the transient
gain over a time-varying base flow.

In the rest of the present study, we subject the two-dimensional, unforced, Navier—Stokes
equations governing the flow field U(f) to a small-amplitude initial perturbation around
the reference vortex flow Uy (7). The initial perturbation has an azimuthal wavenumber m
and its radial structure &y, with ||&;| = 1, is for now arbitrary. The strong non-normality
assumption justifies further assuming the transient gain to be large, that is to say, €, < 1,
such that €, constitutes a natural choice of small parameter with which to scale the
amplitude of the initial perturbation. Specifically,

U0) — Up(0) = a /ey (it €™ + c.c.) = Up(ip €™ + c.c.), 3.1)

where the amplitude of the initial condition, Uy = o €,°, can vary through the real
prefactor « = O(1). We intend at capturing the variation of the transient gain by
increasing Uj.

For this purpose, the total flow field U is developed as a multiple-scale asymptotic
expansion in terms of powers of ,/€, around the reference vortex flow Up (1)

Ut T) = Up(t) + Jeou(t, T) + €our(t, T) + Jeg us(t, T) + O(€2). (3.2)

The slow time scale 7 = €,¢ was introduced, aiming at capturing the slow modulation
of the linear trajectory as nonlinearities progressively set in. The reason for which the
expansion and the scaling of the initial condition are made in terms of powers of /€, shall
be specified later. Injecting (3.2) in the Navier—Stokes equations, then expanding each u;
as a Fourier series in space according to

wi(t, T) = @, )+ Y (@ (1. T) exp(inmb) + c.c.), (3.3)

withn=1,2,3, ..., yields
Jé [[(at — L) e + c.c.] + 31]
e[ 0 = Ln@)as" e + c.c| +5 + Clur, u]]
+ /e [[(at — L)l e + C.c.] 55 4 drur + Cluy, ua] + Clua, ul]]
+0(2) =0, (3.4)
where the nonlinear advection operator

Clx, y1 = (x - V)y 4+ r~ —xaye, (voyr +x,99)/21",  V =[98, 7351, (3.5)

has been defined. The fundamental field, corresponding to n = 1, has been isolated at each
order in (3.4), and the harmonics have been incorporated in s; with

5= 0 — Lo + [(at — Lun ()" exp(inmd) + c.c.] , (3.6)

for n=2,3,.... From (3.1), the only field with a non-zero initial condition is the
fundamental one appearing at third order, specifically, ﬁgl) l/=0 = auy,. On the other hand,
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the relation
@ — L) = v, 09, (w0, 0a"), (3.7)

can be established using (2.10). Further injecting (3.7) in (3.4) leads to
Ve [ 00, (w0, 0@ ) e ] +5]
e [ 00 (90,07 ) " + .| +5 + Clur, u]]
V& [[ w09 (w0 0a") e+ cc]
53 + druy + Cluy, uz] + Clus, ul]]

+ 0(e2) = 0. (3.8)

We recall that the application of the operator ¥ (0, 7) is equivalent to integrating the

system backward from ¢ to 0, and that it maps the optimal response 1, on a field of very
small amplitude €, < 1 (by assumption) in (2.15a,b). The main idea behind our method is
to take advantage of this by perturbing the operator ¥ (0, ¢) for all # > 0 according to

RUGIED)
11112
and where the Heaviside distribution H(7) is defined as H(0) = 0 and H(t > 0) = 1. The
operator (l(t)l >x<> applied to any field g simply results in (l(t)| gr) The operator @ (0, ?)
satisfies @ (0, 0) = I and @ (0, t)i(t) = 0 for ¢ > 0, and therefore is singular for all strictly
positive times; the linear trajectory 1(#) constitutes its non-trivial (time-evolving) kernel.
We further show in Appendix A that the non-trivial kernel b(f) of the adjoint operator

@ (0,1 fort > 0, such that & (0, ))"b(r) = 0, reads b(r) = ¥ (1, 0)1(r).

Note that @ (0, 1) = ¥ (0, (I — 1(t) (I(1)|%)/|1()||?), where the term in parenthesis is
an orthogonal projection operator: it is self-adjoint, linear, idempotent and its application

®0,1) =¥ (0,1) —€,P(t), with P(t) = H(t) , (3.9

projects into the subspace that is complementary to 1(1). Therefore (3.9), by stating that
¥ (0,1 ~ &(0, t), implies that applying ¥ (0, ¢), or applying @ (0, ) that first removes the
component on 1(f) then applies ¥ (0, ), both lead to very similar initial states. That is
precisely because ¥ (0, ) maps 2(t) on €,u, of very small amplitude €, < 1.

In principle, expansion (3.9) requires [W(0,?7)] > € |P(®)| = e(,/||?(t)|| =1/
Wz, 0)ir,||; by using that the norm of the inverse of an operator is the inverse of its
minimum singular value

—1
¥, 0l = ( min ~ [|¥(z, 0)&(0)||> ; (3.10)
a(0), a(0)[=1
the condition above is equivalent to
_min W 0)@0)] < ¥ (. 0. (3.11)
2(0),[a(0)[I=1

In other terms, the operator perturbation a priori holds for the times ¢ such that the
response to the initial condition that is the least amplified at ¢, is much smaller than the
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response to #, that is the most amplified at #,. This is certainly verified for times around
t = t,, which is appropriate, for the response 1) is expected to be nonlinearly modified at
first at these times.

By then perturbing the operator ¥ (0, ) in (3.8) according to (3.9), we are left with

Ve [ 00, (00, 0" ) " +cc.] +5]
e [ [0 000, (20,08 ) ™ + .| 45 + Clur, ]

+ V& [[# @ 08 (@0, 0a") e + cc]
+53 + Oruy + Clui, uz] + Cluz, ui]
+ w008 (P0a") e +ce.]] + 0w =o. (3.12)

Note that the perturbation operator €,P(t), modifying ¥ (0, 7) in @ (0, t) at leading order
O(/€,), is compensated for at third order O(ﬁ3) specifically. This was made purposely
and explains a posteriori why the asymptotic expansion was outlined in terms of integer
powers of ,/€,, instead of being for instance in terms of integer powers of €,. More
precisely, we anticipated the forcing term C [u1, u>] + C[u3, u1] appearing at third order,
to have a non-zero component on the fundamental wavenumber m, due to the bi-linearity
of the operator C [*, *]; therefore, making the term in P(¢) appear at third order as well,
was a way of putting all forcing terms oscillating at m at the same order.

Note also that only the propagator associated with the wavenumber m was perturbed,
although harmonics may equally lead to significant transient gains. This selective
perturbation is justified a priori by the fact these harmonics are not externally excited like
the fundamental pair is through the initial condition, but are only generated nonlinearly
at higher orders. If, however, the harmonic responses are a posteriori found to endanger
the asymptotic hierarchy, they can always be included in the kernel of their associated
propagators in the manner of (3.9).

Terms in (3.12) are collected at each order in ,/€,, yielding a cascade of linear problems.

At order /€, we assemble (9; — an(t))ﬁgn) = 0 with l_l(ln) limo =0forn=0,2,3,...and
v (1,00, (20.0a") =0 with & =0. (3.13)

This leads to ﬁg") = 0 for all times and n # 1. In addition, multiplying (3.13) by ¥ (0, ¢),
then integrating in time and using ®(0,0) = I, gives @ (0, a" = 0. The kernel of
@ (0, t) being equal to H (t)?(t) for t > 0, the solution for ﬁgl) reads

"1, T) = AH©)I(t) fort >0, (3.14)

where A(T) € C is a slowly varying scalar amplitude verifying ;A = 0. Eventually, the
general solution at /€, is written

u (t, T) = A(TYHOI(t) €™ +c.c. fort > 0. (3.15)

In the linear regime, A would be constant over time; therefore, by continuity, we expect its
variation to be small in the weakly nonlinear regime. This is what is implied in the fact
that A depends on the slow time 7', since d;A = ;A + (0;T)9d7A = €,07A = O(¢,) K 1.
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At order ¢,, the solution is
w1, T) = AP (1) + (AT (@) exp(i2md) + c.c.) (3.16)
for t > 0, where
@ — Loy = —Cu[I*, 1] + cc., w3’ (0) = (3.17a)
and
@ — Lo = —Cu[1, 1], a3 ©0) =o0. (3.17b)

The advection operator in the Fourier space C,, [52? j)] is as (3.5), excepted that V is

replaced by Vs it computes the transport, by the field X, of the field y oscillating at m. In
principle, the Heaviside distribution H(¢) multiplies the forcing terms in (3.17). However,
it can be ignored here without loss of generality, for the forcing terms appear inside an
integral between 0 and ¢ in the formal expression of the solution, where the presence of a

Heaviside distribution is unimportant. In (3.16), the homogeneous solution A>(T)H (t)i(t),

)

solving the system @ (0, t)u, * = 0 for ¢ > 0, was ignored. In this manner, the component

of the overall solution on () is fully embedded in A, without needing to be corrected.

At order \/6_03 in (3.12) are gathered two equations: the first yields the Fourier
component of the solution oscillating at m

W (1, 0)9, («p(o z)u(”) —A|APHF — (d7A)YHI — AW (1, 0)8,(P(OHD),  (3.18)
subject to u )| =0 = auy, and where we defined
F = Con [0+ € |27 + €0 |1 | + € [0 1]. (3.19)

depending only on the fast time scale 7. The second equation governs the Fourier
component oscillating at 3m

(@ — Lan()l) = —A° (sz [1 u<2)] + cm[ a® l]) (3.20)

subject to u; )|,_0 = 0. Noticing that P(H)HI = H*@1, = Hii,, that ¥ (0, I = €,i1, (by
definition) and multiplying (3.18) by ¥ (0, 7) results in

3 («p(o t)u(1)> —A|AHW (0, O)f — (drA)He,it, — AD, (Hity) . (3.21)
Integration over the time #, detailed in Appendix B, leads to

@ (0, Ny = iy, + AJAPW (0, )i — (drA)e,tit, — AHit,, (3.22)

where
(0 — Ly (t)u = —f, subject to u(0) = 0. (3.23)

Evaluating (3.22) in t = 0 in particular, we check that ﬁgl) l;=0 = a&y, indeed. The operator
@ (0, 1) being singular for strictly positive time, (3.22) admits a non-diverging particular
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solution if and only if its right-hand side is orthogonal to b(r) for all ¢ > 0 (Fredholm
alternative). This condition results in

o _a(i;mh) Al |2(b|n1/(o 1))

= s 3.24
ar = o) bl o

for ¢ > 0. The adjoint field b(r) = W (z, 0)71(¢) tends towards b(0) = 1(0) = €,i1, when ¢
tends towards 0. Therefore, in this limit, (3.24) reduces to

limA =« (@1ol2un) . (3.25)
—

where we also used that the limits of both the left-hand side and the nonlinear term in
(3.24) are 0 when ¢ goes to O; the former because of the presence of the factor ¢, and the
latter because u#(0) = 0. Solving (3.24) is equivalent to solving its partial derivative with
respect to the fast time scale ¢, reading

o) () o

subject to the initial condition (3.25). The system is written solely in terms of ¢ by
evaluating (3.25) and (3.26) at T = €,t, and remembering that d;A = €,drA|7=¢,, leading

to
a_ d (Blin) (1w (0, niz) . e
=% (( |u0>) AlA |_<—(b|u0> ., with A0) = a{i,las).  (3.27)

The amplitude A, previously undefined at r = 0, was prolonged by continuity there by
stating A(0) = lim;—, o A(#). Note that such rewriting of the amplitude equation in terms
of ¢t was not done directly for (3.24), since it would have given an ordinary differential
equation without an initial condition, (3.25) being intrinsically satisfied.

Introducing the rescaled amplitude a = ,/€,A and remembering the amplitude of the

initial condition to be Uy = aﬁS, (3.27) writes
d U blu d Uo,. .
da _ U d ((bla]) ala?=E, with a(0) = =2 (i, iy), (3.28)
dr €o dt (b| uo> dr €0

and where we defined the nonlinear coefficient

i = LIBOWO.Da0) 1 (@ 0T O, 0Ew) _ [{oln)
€ (bl € (.00 Lok

(3.29)

From here, the weakly nonlinear transient gain corresponding to the wavenumber m for
t > 01is simply
—(1) 3
€Uy (1 a()| |1t
Gty = W& O1 _ @il (330,
lUoup|| Uo
The parameter ¢, after the semi-colon in Gy, (¢; t,) underlines that it is the weakly nonlinear
prolongation of a gain that was linearly optimized for t = #,. Again, in what follows,
the shortened notation G, (f) will systematically imply G, (t;f,). Note that G, (t,) =
la(to)1/ Uo.
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The linear regime corresponds to the limit Up/€, — 0, or simply Uy — 0, since if the
amplitude of the initial condition is much smaller than the linear gain, then the amplitude
of its response is much smaller than one. In this limit, the nonlinear terms in (3.28)
becomes negligible, and the solution tends towards
 Up (b)li) — (10)|Uo¥ (1, 0)ity) 331)

€ (b)) [OTE—

a(t)

which is the properly normalized projection on 1(1) of the response to the initial condition
Uouy, as expected at a linear level since a(?) is the amplitude along (7).

Note that in (3.9) any other perturbation operator of the form P = Hua, (5c| *) / <5c|i>, with

X any trajectory, would also have led to a singular operator with 1 as a non-trivial kernel,
but with b = W (¢, 0)'% as a non-trivial kernel of its adjoint. Choosing x = 1 implying
b= v (t, O)Ti, as was done so far, is the only choice leading to a coherent result in (3.31),
thereby guaranteeing the uniqueness of P in (3.9); as a side comment, it should be noted
that among all x, X = 1 also leads to the P of the smallest possible norm.

For the gain at = 1, (3.31) corresponds to

1 |{bao) )| _1

o ]~ -

lim G,(t,) =

U()%O
since b(t,) = €,¥ (t,, 0) W (1,, 0)it, = i1,. The result (3.32) also is as expected from the
linear prediction. In particular, we recover limy,— o Gy, (f,) = 1/€, = G, when the optimal
initial condition is applied (& = u,). It also predicts the gain to be null when &, is
orthogonal to u,, indicating the linear response at = £, to be orthogonal to 20 without
taking into account the gains associated with sub-optimal forcings. Therefore, these latter
should be O(1/,/€,) to be mathematically consistent.

For the rest of the paper, we set &, = @1,. In physical terms, this choice, although
very specific, is found to be the most natural in the absence of information regarding
the structure of the actual initial condition . Note, however, that &, might project very
poorly on &,, and in the latter case reducing the dynamics to the response to &, would give
inaccurate results.

Further expressing a(f) in terms of an amplitude |a(f)| € R™ and a phase ¢ (f) € R such
that a(t) = |a(?)| exp(i¢ (7)), the amplitude equation (3.28) becomes

dal | adu, Us
= _— th |a(0)| = —, 3.33
” |al g M la(0)] . (3.33a)
and
do zdl/«i .
— = —_—, th ¢ (0) =0, 3.33b
ar |al g M #(0) ( )

the subscripts ‘7’ and ‘i’ denoting the real and imaginary parts, respectively. The equation
for |a|, in particular, bears the following analytical solution:

la(®)| = Y% ! , thus G, (1) = ¢® . (3.34)

€o U\ 2 U\ 2
0 0
\/1 -2 (_) (1) \/1 -2 (_) (1)
€o €o
For any time ¢, the gain decreases strictly monotonically with U if u,(f) < 0, thus is

maximum in the linear regime. Moreover, the gain stays constant with Uy if . (f) = 0,
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and increases strictly monotonically if p,(#) > 0. In the latter case, by increasing Uy the
gain eventually becomes singular (tending towards 4-oo at time ¢) for

€o .
Uy = ———, definedif u,(¢) > 0. (3.35)
V20 (0 '

In the following, we call (3.34) the weakly nonlinear non-normal transient (WNNt)
model. In Appendix C we show that at first order in the gain variation, (3.34) partly reduces

to the sensitivity of the gain G(¢) to the axisymmetric base flow modification +a,2u§0) (0,
where a; = (Up/€,) is the amplitude of the response in the linear regime. In this sense,
our model states that small gain modifications by increasing Uy, are partly due to the fact
that the perturbation now evolves over a base flow that is distorted through the action of
the Reynolds stress forcing —C,, [ali*, aﬁ] + c.c. of this very same perturbation (nonlinear
feedback). In addition, (3.34) also includes the effects of the second harmonic oscillating
at 2m.

In Appendix D, a second method that is more immediate, although perhaps less
rigorous, is proposed to derive the amplitude equation (3.24). This method does not rely
on the singularization of the propagator, and was named the ‘pseudo-forcing method’.

4. Linear and fully nonlinear transient growth in the diffusing, two-dimensional
Lamb-Oseen vortex

Equation (3.34) is employed thereafter for the analysis of the transient gain experienced
by a two-dimensional Gaussian vortex in a weakly nonlinear regime.

4.1. Flow geometry

Vortices are flows combining rotation and shear, and the majority of them possess a
localized distribution of vorticity. The Lamb—Oseen vortex is perhaps the simpler solution
of the Navier—Stokes equation containing these ingredients, thus is adopted in the rest of
this paper. It expresses

1 —exp(—r?/(1 + 4t/Re))

Ub,r(ra t) = Oa Ub,@(rv t) = (41a,b)
r
The associated vorticity field, W;, has a Gaussian radial profile
U, aU,
W,(r, 1) = ’;’9 TR LA exp(—r2/(1 4 4t/Re)), 4.2)

8 1+4t/Re

that diffuses with time for finite Re values. For the linear velocity perturbation, we
select the azimuthal wavenumber m = 2, since it is the wavenumber associated with the
subcritical bifurcation towards the tripolar state described in the introduction (see for
instance Rossi ef al. 1997). Only the response to an initial condition with m = 2 will be
considered in this paper.
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4.2. Numerical methods

In practice, the Poisson equation (2.4) for the pressure is never solved directly, the latter
being included in the state space instead:

il (A, =V, ][a] . i [0
w7 [0 a0 wnm=[! 9 as

Systems (4.3) and (2.2) lead to the same solution for the velocity field, and (2.2) was
selected for the analytical development only because it does not contain the singular mass
matrix, which lightens the writing. To produce the linear and weakly nonlinear results,
(4.3) is discretized on Matlab by means of the pseudospectral Chebyshev collocation
method. Specifically, the variables are collocated at the N Gauss—Lobatto nodes s =
cos(jw/(N — 1)), withj =0, 1,..., N — 1, which includes the endpoints s = —1 and s =
1. This grid is mapped on the physical domain 0 < r < Ry, using an algebraic mapping
with domain truncation r = L(1 4 5)/(Smax — §), Where L is a mapping parameter to
cluster the points close to the origin, and is set equal to 3. The parameter s, is defined
as Smax = (2L + Ryax) /Rimax (see Canuto et al. 2007; Viola, Arratia & Gallaire 2016). In
the present work, R,,,x = 50 and N = 300 proved to be sufficient for the convergence of
all results. The lines corresponding to » = 0 and r = Ry, in the discretized version of
(4.3) are replaced by those enforcing the boundary conditions there; this also avoids the
problem of the singularity in r = 0.

The action of the propagator ¥ (¢, 0) is computed in practice by marching (4.3) in time
using a Crank—Nicholson scheme. Specifically, if the pressure and the velocity field are
known and equal to [a™, 13(”) 1T at a time 1, their values at th+1 = t, + At are obtained
upon inverting the system

M1 2D M1 O
NS EBm(th) potd | =\ A7 + EBm(tn) o | (4.4)
which is done by means of the command backslash on Matlab. The solutions to the other

linear time-dependent systems at higher orders are also approximated upon discretizing in
time with a Crank—Nicholson scheme. The adjoint system to (4.3) reads

it it
— M3, [?T} = B,(t)' [‘Q} , 4.5)
p p

where we used M" = M, and where the expression of By, (1" and the boundary conditions
for the adjoint field are derived in Appendix E. The action of the adjoint propagator
W (r,0)", necessary for the linear optimization, is determined by time marching (4.5)
backward. That is, from known adjoint velocity and pressure fields at a time #,4, their
evolution at #,, = t,,41 — At are obtained by solving

M 1 s ot M 1 + af-(+D
(E — EBm(tn)) |:ﬁf’(n)j| = <E + EBm(t"H)) |:13T,(n+l)i| . (4.6)
A time step of At = 0.02 was selected and was found sufficient to guarantee convergence
of the results. The fully nonlinear direct numerical simulations (DNS) were performed
using the spectral element solver Nek5000. A two-dimensional square grid (x,y) €
[—Rimaxs Rmax] X [—Rmax, Rmax] Was used, with a particularly high density of elements

near the vortex core region where the flow gradients are intense. Convergence of the results
by refining the mesh and extending the size of the computational domain has been checked.
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Figure 1. Linear transient growth in the two-dimensional, time-dependent Lamb—Oseen vortex flow for
varying Re € [1.25,2.5,5,10] x 10, larger Re corresponding to lighter colours. The perturbation has
wavenumber m = 2. (a) Optimal gain as defined in (2.13) as a function of the temporal horizon #,. The star
marker corresponds to its maximum value over 7, and for a given Re, that is, t0 G, (to max) = 1/€0.max; (b) €o.max
multiplied by Re'/3 and plotted as a function of Re; (c) 5, max multiplied by Re~1/3 and shown as a function
of Re.

4.3. Linear results

The results of the linear transient growth analysis for m =2 and varying Re €
[1.25,2.5,5,10] x 103 are presented below. The optimal gain G,(z,) defined in (2.13),
also called ‘envelope’, is shown as a function of ¢, in figure 1(a) and for different Re.
For all considered Re values, G,(t,) reaches a clear maximum at relatively small ¢,, before
decreasing and plateauing by further increasing #,. The values G, (, mqy) of these maxima,
and of the corresponding temporal horizons #, .y, seem to increase monotonically with
the Re.

The type of dependence is made explicit in figure 1(b,c), where we propose in (b) to
plot €, maqx multiplied by Re'/3 as a function of Re, demonstrating that G, (¢, nax) Rel/3.
In (¢), ty,max multiplied by Re—1/3 is also shown as a function of Re: while the data align
slightly less well on a constant line, the agreement remains correct and stating 7, max X
Re'/3 is a fair approximation. All these results are in excellent agreement with those
presented in chapter 3 of Antkowiak (2005). In particular, the power-law dependencies
of both G, (t, max) and t, nqc have already been observed and interpreted physically, and
discussed next.

In figure 2, by fixing Re = 5000, the optimal gain G,(z,) over ¢, is reproduced from
figure 1, as well as the gain G(#) associated with the linear trajectory optimized for
ty = to,max = 35 specifically. We check that G(0) = 1, that G(35) = G,(35) and that G is
below G, everywhere else. At the times corresponding to the black dots, the axial vorticity
structure, expressed as

@ = (1/r+ 0y)itg — (im/r)ity, 4.7)

is shown in figure 3. For panel (a), we observe that the optimal initial condition consists of
an arrangement of vorticity sheets, or ‘spirals’, orientated in counter-shear with respect to
the base flow. As time increases, the sheets unfold under the effect of advection by the base
flow, in analogy with the Orr mechanism. Antkowiak & Brancher (2004) and Antkowiak
(2005) also argue that a Kelvin wave (corresponding to a core mode) is transitorily excited
in the heart of the vortex, by induction of the vorticity spirals. By ‘induction’ is meant
that a radial velocity perturbation is induced in the heart of the vortex as the spirals
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Figure 2. The continuous line is the reproduction of the envelope shown in figure 1(a) for Re = 5000. The
dash-dotted line is the gain G(¢) associated with the linear trajectory optimized for 7, = #, juax = 35, defined in
(2.16). By definition, both curves collapse at # = 35. The black dots correspond to t = 0, 15, 30, ..., 105, for
which the corresponding vorticity structures are shown in figure 3.

(b) (©[;=30 (Di=45

(h)

-10 0 10 =5 0 5 -4 2 0 2 4

Figure 3. Temporal evolution of the vorticity structure @ (r, r) of the optimal linear response, shown at the
specific times corresponding to by the black dots in figure 2. Each panel shows only [x, y] € [—4, 4] x [—4, 4].
The plus sign denotes the origin, the dotted circle is the unit circle, and the dashed circle highlights the radius
r4 as defined in (4.9).

unfold, and advects the base vorticity which is large here, thus acting as a source for the
vorticity perturbation. The core mode is particularly visible in the heart of the vortex in
panel (d), corresponding to ¢t = 45. However, it quickly disappears for later times, as the
vorticity spirals roll up in the other direction, this time in line with the base advection
(see panel e for t = 60). Doing so, the vorticity perturbation decays with time due to a
shear-diffusion averaging mechanism studied by Rhines & Young (1983) for a passive
scalar and in Lundgren (1982) for vorticity. In particular, Lundgren (1982) concludes
that, as long as the vorticity perturbations are rapidly radially varying, the shear-diffusion
homogenization mechanism is qualitatively identical to the passive scalar case. This was
confirmed numerically a few years later in Bernoff & Lingevitch (1994), where is further
demonstrated that the decay of the perturbation vorticity spirals acts on a Re!/3 time
scale. From here, Antkowiak (2005) argues that, in the limit of vanishing viscosity, the
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evolution equation for the perturbation vorticity @ becomes time reversible; therefore,
the unfolding (Orr) amplification mechanism can be seen as the ‘mirror’ of the shear
diffusion, a damping one. Indeed, the curve for G(¢) is fairly symmetric around ¢ = ¢,
in figure 2, and would be even more for larger Re values. In this sense, the Orr mechanism
has an ‘anti-mixing’ effect. This explains why the temporal horizon leading to the largest
amplification is also in Re!/?, because it is the ‘natural’ amplification time scale of the
vortex. It should be noted that this conception of the Orr and shear-diffusion mechanism
as ‘mirroring’ each other was already present in Farrell (1987) in the context of plane shear
flows. As a side comment, Antkowiak (2005) also derives the Re'/3 dependence of ¢, jnax
by simply balancing the unfolding and the diffusion (in the radial direction) time scales.

We insist that, apart from a tenuous transient excitation of a core mode by vortex
induction, the amplification mechanism of the perturbation is essentially the Orr
mechanism. Farrell & Toannou (1993) have shown that this mechanism was associated
with the scaling law G,(#,) o t, (note that the gain defined in Farrell & loannou (1993)
is the square of the gain presently defined). From here, the scaling law G, (¢, max) Rel/3
follows immediately.

The shear-diffusion (thus the Orr) mechanism is in essence non-viscous. The only role
played by viscosity is to select the radial length scale of the initial vorticity structure
(which would tend to be infinitely thin in the absence of viscosity, and the optimal gain
and associated temporal horizon follow). Indeed, vorticity sheets that are too thin will be
smoothed out by viscosity. If both the optimal gain and the decay time are o Re'/3, then
the decay rate is clearly independent of Re. In fact, the decay of the vorticity moments
associated with the structures observable in figure 3 after t = 35, can also be interpreted
in terms of the Landau damping phenomenon, which is purely inviscid (Schecter et al.
2000), as developed in the introduction.

More precisely, the exponential decay rate of the vorticity moments can be obtained
from a Landau pole of the vortex base profile, as first demonstrated in Briggs, Daugherty
& Levy (1970). For this, one first needs to define the mth multipole moment of the vorticity
perturbation as

0™ (1) = /0 h 7o, 0 dr = [P g — ii)]r— o- (4.8)

Then, to quote Schecter et al. (2000), ‘A Landau pole is a complex frequency w, — iy at
which the Laplace transform of 0" (1) is singular [...]. A Landau pole contributes a term
to Q" (1) of the form exp(—yt — iwgt)’. A Landau pole, like an eigenvalue, is a property
of some specific linear operator acting on a perturbation and, in this sense, depends on
the base profile and on the wavenumber of the perturbation, but not on the specific radial
shape of the latter. A Landau pole is generally not unique, and its calculation amounts to
solving an eigenvalue problem along a radial contour that was deformed in the complex
plane (see the appendix in Schecter et al. 2000); however, one can reasonably expect one
of these potentially multiple Landau poles to dominates over the others.

In considering the response of an inviscid Gaussian vortex to a generic external impulse
with m = 2, Schecter et al. (2000) indeed find that the quadrupole moment 0@ (1) of the
vorticity perturbation ‘decays exponentially, and the decay rate is given by a Landau pole’.
In addition, is also mentioned that ‘the vorticity perturbation [...] is poorly described
by a single damped wave [...] Rather, the vorticity perturbation is rapidly dominated by
spiral filament’. This is also the structure observed from ¢ = 60 in figure 3, which closely
resembles the figure 9 in Schecter er al. (2000). In other terms, the response excites a very

976 A10-18


https://doi.org/10.1017/jfm.2023.856

https://doi.org/10.1017/jfm.2023.856 Published online by Cambridge University Press

Weakly nonlinear response of the Lamb-Oseen vortex

(a) e — (b)
, —— Linear response 102 ¢
06 N e Landau pole, w, = 0.42 ||
™ = 10"
g -y =
= )
I S
2t .
= Linear response
31 X | 1071 feereees Landau pole, y = 0.22
0 15 30 45 60 75 90 105 120 135 150 0 15 30 45 60 75 90 105 120 135 150
t t

Figure 4. Temporal evolution of the vorticity moment Q®® (r) corresponding to the linear response shown in
figures 2 and 3; the black dots again denote the specific times where the vorticity field is shown in figure 3.
(a) Phase ¢ (¢) divided by 2m. (b) Amplitude 0@ (r)|. The black dashed lines correspond to a pure Landau
damping 0 (1) = exp(—iwyt — y't), where we use fitted values for w, and y.

large number of structurally different eigenmodes, yet it does not invalidate the relevance
of the dominant Landau pole.

By writing the quadrupole in terms of amplitude and phase, 09 = 10D )|
exp(ig (1)), we display in figure 4(a) the temporal evolution of the phase ¢ (f) normalized
by 27 and corresponding to the response shown in figure 3. The amplitude |Q® (1)
is also shown in figure 4(b). The best fit of the form of a pure Landau damping
021 = exp(—iwgt — y1) is also proposed. Clearly, the phase changes at a constant
rate in figure 4(a) for 15 <t < 65, and |Q(2)(t)| decays exponentially in figure 4(b) for
40 <t < 65. Therefore, we confirm that the quadrupole moment 0@(1), associated with
the linear response in figure 3, is well approximated by a Landau pole in its decaying
part, despite the fact that we consider a viscous flow over a time-dependent base vortex,
which is not the case in Schecter ef al. (2000). The Reynolds number Re = 5000, however,
seems sufficiently large for the conclusions drawn in Schecter et al. (2000) to also hold
here. In the following, reference will be made to the Landau pole in order to qualitatively
interpret the nonlinear effects, even if the fact that Re is finite possibly makes it less
rigorous. The precise value of y in figure 4(b) is unimportant, for the comparison with any
analytical prediction of the Landau pole is outside of the scope of this paper. Note that the
exponential decay is followed by an algebraic one for large times, which is also observed
in Schecter et al. (2000). The fitted value wy = 0.42 in figure 4(a) is, however, important,
for it gives the location r; of the radius where the angular velocity w,/m associated with
the Landau pole is equal to that of the base flow

mS(ry(0), 1) = w,. (4.9)

The radius solving (4.9) at each time is highlighted by a dashed circle in figure 3. It takes
the value r, ~ 2.16, very weakly dependent on time.

It can be shown that the decay rate of the Landau pole is linked to the radial derivative
of the base vorticity at r, specifically. In fact, as demonstrated in Schecter et al. (2000),
Turner & Gilbert (2007) and Turner et al. (2008), the exponential damping mechanism can
be removed from any vortex, in particular a Gaussian one, by cancelling such derivative
at ry.

the poor modal description of a perturbation evolution over a Gaussian vortex,
mentioned in Schecter et al. (2000) and confirmed in figure 3, is the reason for which
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Figure 5. (a) Amplitude of the fully nonlinear fundamental perturbation fl,(,l) as defined in (4.11), initialized
with the linear optimal condition for (Re, m,t,) = (5000, 2, 35). Larger Uy values correspond to lighter
colours. (b) The same data are divided by their corresponding Uy, yielding the nonlinear gains as defined
in (4.12). For the largest considered Uy = 2.82 x 102, black dots are located at t = 0, 30, 60, . . ., 210, for
which the corresponding vorticity structures are shown in figure 6.

non-modal analytical tools are deployed in the present study, in particular for studying
nonlinear effects. We address these latter now.

4.4. Fully nonlinear results

We introduce the fully nonlinear results obtained from DNS in the present section. Let
us define u;, as being the perturbation between the fully nonlinear solution U obtained
from a DNS, and the reference Lamb—Oseen solution Uy, in (4.1a,b); in other terms, u, =
U — U,,. We recall that this perturbation is initialized along the wavenumber m = 2 with
the linear optimal initial condition with an amplitude Uy, such that

up|i—o = Uoli, e +cc.. (4.10)

Owing to nonlinear effects, u, generally does not oscillate purely along m for strictly

positive times. For this reason we need to further extract it,(,l) , the component of u,
oscillating at the fundamental wavenumber m, hence the superscript ‘(1)’. For this, a
Fourier series is naturally used as

1 2n : 21

il (r) = > /0 u,(r, 0) cos(mb) do — ﬁ /0 u,(r, 0) sin(md) df,  such that
u(r.0) =l e +ce.

(4.11)

From here, the fully nonlinear gain (associated with the fundamental pair) is immediately
defined as
A (1)
u
Gpns = ltp 1) (4.12)
Uo

By fixing Re = 5000 and 7, = 35, we report in figure 5(a) the fully nonlinear evolution

of the perturbation amplitude [|&)" ||, for different amplitudes of the initial condition Up.
The associated gain, that is, the same data divided by the corresponding Up, is shown in
figure 5(b).
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Figure 6. Temporal evolution of the vorticity structure of the fully nonlinear perturbation for Uy = 2.82 x
1072, shown at the specific times highlighted by the black dots in figure 5. Each panel shows only [x, y] €
[—4, 4] x [—4, 4], the plus sign denotes the origin, and the dashed line is the unit circle.

Figure 5(a) illustrates well a bypass transition, also called ‘bootstrapping effect’ in
Trefethen et al. (1993), where linear transient growth and nonlinear mechanisms interact
to bring about a transition to a new state, distinct from the reference one. Indeed, as we
increase the amplitude of the initial condition (linearly in log scale), the transient growth of
the perturbation, initiated by the linear Orr mechanism as we have seen, becomes sufficient
to trigger nonlinear terms; for the two largest considered Uy, this prevents the flow to
re-axisymmetrize to the Lamb—Oseen vortex. Interestingly, for the third and fourth largest
considered Uy, the flow seems to temporarily approach a new state but nevertheless relaxes
towards the reference one.

For the largest considered Uy = 2.82 x 1072 and the set of times highlighted by the
black dots, we report in figure 6 the structure of the vorticity perturbation. From ¢ = 60,
the flow has reached a new nonlinear quasi-equilibrium state, that diffuses very slowly due
to viscous effects, and rotates counterclockwise with a period of approximately 45 units
of times. The corresponding total vorticity field, which is obtained by adding to figure 6
the Gaussian reference vorticity (4.2), takes a tripolar shape. This is shown in figure 7
for t > 120, where the heart of the vortex takes an elliptical shape that is surrounded by
two satellite vortices of low and negative vorticities (corresponding to the two blues spots
in figure 6 from ¢ = 60). As developed in the introduction, this tripolar state was already
largely reported in a variety of contexts. In particular, its spatial structure compares well
with the one reported in figure 2 of Antkowiak & Brancher (2007) for Re = 1000, or with
the experimental visualization in Kloosterziel & van Heijst (1991).

In terms of the gain in figure 5(b), we notice that all the curves corresponding to different
Uy collapse for small times, confirming the linearity of the initial growth mechanism.
However, they significantly depart from each other at larger times. If nonlinearities seem
to saturate the gain for times around ¢, = 35, they clearly increase the latter up to three
orders of magnitude for large times; as said, that is because the flow bifurcated to another
state, thereby the perturbation that is measured around the reference vortex remains large.

The weakly nonlinear model is now employed to assess the gain evolution with Uy
shown in figure 5(b).
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Figure 7. Same as in figure 6 but the reference vorticity field (4.2) has been added, so as to visualize the total,
fully nonlinear, vorticity field; some isolines are also shown to better expose the elliptical deformation of the
vortex core.

5. Weakly nonlinear transient growth in the diffusing, two-dimensional Lamb-Oseen
vortex

In the weakly nonlinear paradigm, the perturbation field u, is approached by u, =
Jeoul + €our +ﬁ3 u3 +0(e§), as can been seen in (3.2). Consequently, itl(,l) is

approximated by eoﬁgl) + \/6_03 ﬁ;l) + 0(\/6_05), therefore the fully nonlinear gain Gpys
defined in (4.12) is expected to reduce to the weakly nonlinear one G,, defined in (3.30),
since €, < 1. These two quantities are compared in this section. Note that we checked that
for all considered Re values the first sub-optimal transient gain was O(1/,/€,), in contrast
to 1/¢, for the optimal one, which mathematically justifies focusing on the response to u,
only.

5.1. Transient change from nonlinear saturation to nonlinear amplification

The real part of the weakly nonlinear coefficient, defined in (3.29), is shown in figure 8(a)
for Re = 5000 and t, = t, max = 35. It is further split into the sum of a mean flow

distortion contribution, uﬁo), arising from u§0) only, and second harmonic contribution,

Mﬁz), arising from icéz) only. In this manner, u, = MS‘” + ;,ng).

Remarkably, after having significantly decreased until reaching a minimum at ¢ = 59,
the coefficient p, increases again and changes sign at t = 87. It then reaches its maximum
at + = 107, and decreases again until plateauing around zero for ¢ > 150. A change of
sign in u, brings diversity to the behaviours reported in Ducimetiere et al. (2022),
concerning transient growths in the streamwise-invariant Poiseuille flow, and in the flow
past a backward-facing step. There, only negative coefficients, corresponding to saturating
nonlinearities, were observed. In the present work, however, nonlinearities appear to
reinforce the gain for some times. When it is negative, the behaviour of 1, seems largely

dominated by the contribution from the mean flow distortion uio). When the former is
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Figure 8. (a) Real part of the weakly nonlinear coefficient p defined in (3.29) (black continuous line). It
is further split as the sum of a contribution from of a mean flow distortion (red dash-dotted line), plus a
contribution from the second harmonic (blue dotted line). In the grey zone, the weakly nonlinear gain G,
defined in (3.30) increases monotonically with Uy, since u, > 0. In the white zone, it decreases monotonically.
(b) The coefficient u, is compared with its reconstruction from DNS data (magenta dashed line) according
to (5.2).

positive, however, ,ug()) is reduced and the second harmonics appear to contribute as much

to the sum.
Upon taking the derivative of the square the weakly nonlinear gain in (3.34) with respect
to U2, we obtain

3(Gy) _ 2 5.0)

AU €2 -2Uu, "

Therefore, the coefficient u, relates directly to the rate of change of va with respect to Ug
in the limit where Uy tends towards zero as

2 2
1 3(G

wo=2( 1im — ( g)

2 \Uo—0 G2 a(U2)

(5.2)

By using (5.2), the coefficient u, can be reconstructed directly from DNS data. For this,
the derivative in (5.2) is estimated by using a first-order finite difference approximation
between DNS data for the gain squared, corresponding to the two lowest considered
Up = 2.26 x 10~% and Uy = 2.82 x 10~*. The result is shown as the magenta dotted line
in figure 8(b), and compared with the actual 1,. The good agreement between both curves
for t < 130 a posteriori validates for these times our weakly nonlinear expansion, a least in
the limit of small Uy. However, both curves depart significantly after + = 130, presumably
due to the violation of the condition (3.11) ensuring that the asymptotic expansion is
well posed. Indeed, the response to the initial condition optimized for ¢t = 7, = 35 was
shown to rapidly decay in amplitude for larger times in figure 2; therefore the norm of the

perturbation operator, ||P(?)|| = 1/ ||i(t)||, increases accordingly.

5.2. Comparison of fully and weakly nonlinear gains

In figure 9 the weakly nonlinear gain, associated with the coefficient in figure 8, is
compared with the fully nonlinear one. For the moment, only short times where the
gains are large are shown. The later evolution, being associated with orders of magnitude
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Figure 9. Weakly and fully nonlinear gains as defined in (3.30) and (4.12), respectively. Larger Up €
[0.03,0.45, 1.12, 2.82] x 102 correspond to lighter colours (direction of increasing Uy is also indicated by
the arrow). The continuous line stands for DNS data whereas the dash-dotted is for the weakly nonlinear
model. Temporal horizons are #, = t, uax = [25, 30, 35, 40] (times at which a black star is shown) for Re =
[1.25,2.5,5, 10] x 103, respectively.

smaller gains, will be considered in figure 10 in log scale. On the time interval chosen for
figure 9, the coefficient u, is negative, thereby the model predicts the gain to decrease
monotonically with Up. For values of Up small enough so that the linear gain (black
curves in figure 9) is only slightly modulated, the agreement with DNS data is excellent.
By increasing U, the agreement degrades only slowly and remains very good for these
relatively small times, for instance over 0 < ¢t < 40 in the panel corresponding to Re =

10*. This corresponds to times when the nonlinear structure remains symptomatic of the
linear one, in the sense that the flow has not yet reached the tripolar state (temporarily or
not, as shown in figure 5). Indeed, the amplitude equation (3.33) is independent of space,
which condemns the response to be structurally close to the linear one. For later times and
large Uy, as soon as the fully nonlinear gain begins to oscillate and to bear a non-monotonic
behaviour, the agreement with our weakly nonlinear model rapidly degrades. The reason
is precisely that, the response whose nonlinear evolution is approached by our model, is
not selected by the flow anymore, which has reached another state, temporarily or not, and
that is structurally completely different; about this new state, the amplitude equation has
no information.

Nevertheless, while the proposed amplitude equation fails to predict the gain and the
structure of the flow when at the tripolar state, it does predict a bifurcation threshold. This
is illustrated in figure 10, where the same data as in figure 9 for Re = 5000 are shown,
although the time interval is extended until t = 150 so as to include the time interval
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Figure 10. Weakly and fully nonlinear gains for Re = 5000 and increasing amplitude of the initial condition

Up € [4.5,7.1,11.2, 17.8] x 1073, Each panel corresponds to a different Uy. The grey box denotes the time

interval (5.3) over which the weakly nonlinear gain is undefined. The latter is singular at the boundaries of this
interval.

where the real part of the weakly nonlinear coefficient becomes positive, indicating
‘anti-saturation’. The weakly nonlinear gain is undefined on the time interval where

2
) > (i) 0. (5.3)
2\ Uy

which widens by increasing Up. The gain is singular (tends to infinity) at the times
corresponding to the boundaries of this interval. The latter is highlighted by the grey zones
in figure 10.

5.3. Bifurcation thresholds

By looking at the panels corresponding to Uy = 1.12 x 1072 and Uy = 1.78 x 1072, we
observe that, over the time interval where the equation has no solution, i.e. the grey zone,
the fully nonlinear simulation seems to have reached the tripolar state (although for Uy =
1.12 x 1072 it is only temporary as it eventually relaxes towards the reference state). In
this sense, a loss of solution in the amplitude equation could indicate that the DNS has left
the state around which the weakly nonlinear expansion was constructed. The minimum
Uy for which the weakly nonlinear gain becomes singular may then be considered as an
approximation of the actual bifurcation threshold. Such minimal Uy, named Uy is what
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Figure 11. (a) Typical half-life time of the heart deformation defined in (5.6), as a function of the amplitude of
the initial condition Uy. Larger Re = [1.25, 2.5, 5, 10] x 103 correspond to lighter colours. A star highlights an
inflection point, for which the corresponding Uy is declared as being the threshold amplitude for the subcritical
bifurcation. Such thresholds Uy are reported in () as a function of Re (also with a star symbol). The prediction
from the weakly nonlinear model, U} defined in (5.4) is also shown. The thin continuous line is a power law

fitted on the DNS data for the first three considered Re, with ocRe 88 whereas the thin dashed line is fitted
on the weakly nonlinear data with ocRe~%-%°. The inset shows the same in log—log scale.

follows, reads
s €o

Uy NeTR O where (1) mtax wr (1), 5.4
and is defined if and only if 1, (¢;) > 0.

A bifurcation threshold in the DNS solutions must also be defined and compared directly
with (5.4). To the knowledge of the authors, there is no clear and universal subcritical
bifurcation criterion, and the choice made is always arguably arbitrary. Nevertheless, we
will opt for the criterion proposed in Antkowiak (2005), based on the observation that
the tripolar state is characterized by a deformed, non-axisymmetric, heart. Therefore a
characteristic aspect ratio A of the heart is established as

. J+R .
2= TR withJ = (Joo +Jo2), R= \/(Jzo —Jo2)? +4J%1, (5.5

and J, = fg X"y"@&(x,y)dxdy a vorticity moment. A characteristic eccentricity is

further defined as e = /1 — 1/4%. From here, Antkowiak (2005) computes the typical
half-life time (that is where the criterion is rather arbitrary) of the heart deformation as

T 1 [
7, such that / e(n)dt = —/ e(r) de, (5.6)
0 2 Jo

where 7 = 500 is the final time of the fully nonlinear simulations.

We report the half-life time as a function of Uy and for different Re values in figure 11(a).
For each Re, we also highlight an inflection point in 7 at a certain Uy, and we declare the
latter as being the subcritical bifurcation threshold. It is reported directly as a function of
Re in figure 11(b), and compared with the weakly nonlinear prediction U3, in both linear
and log scales. Both approaches clearly highlight a decreasing power-law dependence of
the subcritical bifurcation threshold with the Re. For the fully nonlinear data, the fitted
exponent —0.88 found in the present study, agrees relatively well with the one reported in
Antkowiak & Brancher (2007), which is —0.8. However, since little information is given
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Figure 12. Same as in figure 11, although the inflection point is sought in Gpys(f = t5), where t;, defined in
(5.4), is the first time for which the amplitude equation predicts a loss of solution. In (@), the inset shows the

same data in linear scale. In (), the thin continuous line is a power law fitted on the DNS data with xRe 069,

whereas the thin dashed line ocRe 0% is similar to figure 11.

regarding how the threshold amplitude was computed in Antkowiak & Brancher (2007),
the agreement with our results is perhaps fortunate. In any case, the negative power-law
dependence with Re implies that the threshold amplitude above which the flow goes into
the basin of attraction of the tripolar state, and in the direction given by the linear optimal,
vanishes for increasing Re. This may explain the formation and persistence of elliptical
vortex eyewalls in some tropical cyclones (Kuo et al. 1999; Reasor et al. 2000). We
insist that we only consider perturbations in the direction of the linear optimal, whereas
nonlinear optimal perturbations can also be found by relying on the techniques presented
in Pringle & Kerswell (2010). The latter would be associated with a threshold amplitude
Uy for a subcritical bifurcation even smaller than the one shown in figure 11. The fitted
exponent for the weakly nonlinear model is found as being —0.66, thereby the threshold
amplitudes between both models differ significantly by decreasing Re in figure 11(b).

This discrepancy between exponents may possibly be explained as follows. For the
DNS, our bifurcation criterion aims at computing the threshold above which the flow
has definitely bifurcated, whereas the loss of solution in the amplitude equation refers to
a specific time interval. The importance of this conceptual difference is well illustrated
in figure 10(c) for Uy = 1.12 x 1072, Here, the amplitude equation predicts that no
solution exists over some time interval; thus, according to the criterion (5.4), the flow
has bifurcated. However, if the DNS data seem indeed to have reached the tripolar state
over this time interval, it relaxes to the reference state at longer times; thus, the criterion
based on 7 concludes that the flow has not yet bifurcated.

For this reason, we propose another criterion, rather artificial, for which both
‘bifurcations’ refer to the same specific time f, the first time for which the amplitude
equation predicts a loss of solution (see (5.4)). The threshold Up in the DNS is
decreed as being the one corresponding to an inflection point in Gpys(t = t), as shown
in figure 12(a), despite a quite coarse resolution. The agreement with Uj improves
significantly in figure 12(b) (as compared with figure 115). Note that, for both models,
the power-law dependence of the threshold amplitude cannot be only explained by the
power-law dependence of the linear optimal transient gain, for the latter was shown to be
in —1/3.
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Figure 13. (a) For Re = 5000, the evolution of the energy || * |% of the linear response i (black dashed line), of
the second harmonic itéz) (blue dashed-dotted line) and, mainly, of the mean flow distortion ugo) (red continuous
line). The red dots correspond to the specific times ¢ = 30, 40, . . ., 100, for which the vorticity structure of u(20)
is reported in figure 14. Two horizontal dotted lines are drawn at + = 35 and t = 85. (b) Slope of the vorticity

at the radius ry, i.e. 3rw§0) Ir:rq, as a function of time.

5.4. Physical interpretation of the nonlinear ‘anti-saturation’: mean flow distortion and
inversion of the vorticity gradient

We now propose to interpret physically the behaviour of the coefficient associated with

the (azimuthal) mean flow distortion, uﬁo) shown in figure 8, and attempt to discuss the
reason why it changes sign and leads to the subcritical behaviour discussed above. In the
following discussion, we will focus on the case Re = 5000. First, the energy of the mean

flow distortion uéo) is shown as the red curve in figure 13(a).
For comparison, the energies of the linear response and of the second harmonic are also
shown. As written in (3.17), the mean flow distortion is forced by

F = —cull* 1] +cc., (5.7)
which is the Reynolds stress of the linear response. Under its action, the energy of uéo)
increases until reaching a maximum around ¢ = 7, = 35, before decaying until # = 65.

From here, the energy rebounds very slightly, then decays extremely slowly for # > 85. It

is striking to notice in figure 13(a) that uéo) can persist for extremely long times, even when

the linear response, whose nonlinear interactions force uéo), has vanished. This suggests

that ug)) can persist even in the absence of sustained forcing. This is also illustrated in

figure 14, where we show wéo), the vorticity structure associated with ug)), for the different

times highlighted by the red dots in figure 13(a). If we observe a transient regime until the
panel for r = 70, the vorticity field does not seem to evolve over time afterward, except by
slow diffusion.

It will simplify the rest of the analysis to notice that ug)) only possesses an azimuthal

0) 0) ©0)
2 2

= u, ye9. Thatis because u, ~ is associated with the wavenumber m =

component, i.e. u

0, for which the equation for the radial perturbation is Br(rugoz) = 0 from the continuity.
This leads to u(zoi = 0 and a forced diffusion equation for u(zo())’ reading
_ 0
oy = Re™ (Ao — 1/l + £ (5.8)
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Figure 14. Temporal evolution of w, ), the vorticity structure of u the mean flow distortion induced by the
Reynolds stress of the linear response shown at the specific times corresponding to the red dots in figure 13(a).
Each panel shows only [x, y] € [—4, 4] x [—4, 4]. The plus sign denotes the origin, the dotted circle is the unit
circle, and the dashed circle highlights the radius r, solving (4.9) with w; = 0.42.

The panels in the first row in figure 15 show the evolution of f © (left) and u(o) (right)
over 0 <t < 35. The Reynolds stress forcmg f grows in amphtude (since I does) while

roughly conserving its shape, which u2 9 seems to imitate closely, although loglcally with
some delay. This direct structural link between the forcing and the response is certainly
due to the absence of an advection term in (5.8).

The panels in the second row in figure 15 show the evolution over the times 35 <t <

85. Notice that the forcing fz(og) has shapes at ¢ = 30 and ¢ = 40 that are similar but have

opposite signs. As developed in § 4.3, this is because the spiral structures in 1, that unroll in
one direction until # = 35, roll up symmetrically in the other direction afterward. Under the

action of this forcing that is now adverse, the Ve10c1ty u( ) tends to invert in figure 15(c),

which implies its momentary flattening, therefore u2 9 rapldly loses energy. This energy
would have grown again (which it does shortly after t = 65 in figure 13a) if the forcing

could maintain its intensity, but the latter decays rapidly with the one of 1
After + = 85 the velocity u( ) evolves freely, for fz(,oe) is negligible. The persistence

of ug)g is then easily understood once it is realized that the diffusion operator in (5.8)

possesses a continuum of orthogonal Bessel eigenfunctions (the domain is infinite). They
are associated with eigenvalues spanning the strictly negative part of the imaginary axis.
Accordingly, after discretization, we found an extremely dense packing of eigenvalues
all along the negative part of the imaginary axis, increasingly dense with the number of
discretization points. The velocity structure left by the forcing that has vanished at r = 85,
projects over a significant number of these Bessel eigenfunctions, including some with
very low damping rates of the order of 107%. It is therefore not surprising to see this
structure subject to very slow diffusion in figures 13(a) and 14.

After having proposed some elements to understand the evolution of ug)();, let us study
now how it feeds back on the response. We show in figure 13(b) the slope of a)g)) at the
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Figure 15. Temporal evolution of the forcing fz(fg (panels on the left) and of the velocity response ug)z) (panels

on the right). Panels on the top and the bottom correspond to two different and successive time intervals.
The top line is for r =0, 5, ...,35 (on the left of the first vertical line in figure 13a) and the second for
t = 35,40, ..., 85 (between the two vertical lines in figure 13a). Larger times correspond to lighter colours.

specific radius r, where the angular velocity w,/m associated with the Landau pole is
equal to that of the base flow. We recall this specific radius to be found by solving (4.9)
with the fit value w, = 0.42, resulting in r, ~ 2.16, very weakly time dependent.

The slope is negative until = 60, where it changes sign. As a consequence, from ¢ = 60
onward, the addition of a)g)) to the reference vorticity has a positive contribution to the

total vorticity slope at r,. In parallel, we recall that ,ugo) can be directly interpreted as the

sensibility at a time ¢ of the transient gain to the addition of u(Zog to the reference flow.

For this, Mﬁ(’) computes the integrated effect of this addition between 0 and ¢ (see formula

(C10)). Therefore, the decreasing tendency of ,ugo) until £ = 60 in figure 8, results from
the negativity of the slope of w§0) at ry, which enhances the Landau damping rate of the

response, whose integrated effect is to reduce the gain. Such an effect of the mean vorticity

slope at r, on the Landau damping was reported in Schecter ez al. (2000), Turner & Gilbert

(2007) and Turner et al. (2008). On the contrary, from ¢ = 60 onward the coefficient uﬁo)

increases, for the presence of wéo) now reduces the Landau damping rate; the integrated
effect of such mitigation of the Landau damping rate over time leads to a coefficient that
becomes positive, traducing a weakly nonlinear gain larger than the linear one. In other
words, we interpret the subcritical behaviour of our amplitude equation as being partially
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Figure 16. (@) Maximum growth rate of the eigenvalues of the Navier—Stokes operator at Re = 5000
and linearized around the (azimuthal) mean flow, in order to describe m = 2 perturbations. Mean flows
corresponding to Uy = 2.82 x 1072 are obtained either from DNS data (continuous line linking red dots)
or by evaluating the weakly nonlinear expansion (dash-dotted line linking blue diamonds). Positive growth rate
values imply linear instability. (b) Shows the eigenmode corresponding to the most unstable eigenvalue of the
operator linearized around the DNS mean flow, at t = 20. The radius of the dotted circle is equal to one, the
radius of the dashed circle is equal to r4, and the radii of the continuous-line circle highlight the extrema of
the mean vorticity profile. The colour scale is arbitrary.

due to the fact that the mean flow distortion reminiscence, shown in figure 14 for large time,
tends to erase the vorticity slope at the specific radius r,, therefore letting the perturbation
persist. This conclusion is comparable to the one drawn in Balmforth ef al. (2001). In
addition, the present amplitude equation leads to the conclusion that, when w, is at its
maximum, the effect of the second harmonic is just as important as the one of the mean
flow, although it is harder to interpret.

We insist that the conclusions drawn below relate only to predictions of the amplitude
equation, thereby possibly explaining DNS behaviour only when both approaches agree.
However, precisely because they do not at large Uy and after increasingly short times in
figures 9 and 10, the departure between weakly and fully nonlinear responses there remains
to be interpreted. This can still be done by using the amplitude equation, although in an
indirect manner.

In figure 16, we compare the linear stability to m = 2 perturbations of the (azimuthal)
mean flow extracted from the DNS, and the one predicted by the weakly nonlinear
approach. This is done for Uy = 2.82 x 1072, the largest considered initial condition
amplitude in figure 9. The weakly nonlinear mean flow is simply obtained by evaluating
the weakly nonlinear expansion as Up g + azugg, where a solves the amplitude equation.
The linear stability is assessed by replacing the reference flow by the mean one in (2.2),
then assuming a temporal dependence as u(r, t) = u(r) €°’, and solving the subsequent
eigenvalue problem. The azimuthal mean is linearly unstable if and only if there exists
an eigenvalue o such that Re(o) = o, > 0, and the corresponding eigenmode grows
exponentially to the extent that the growth rate is much smaller than the rate of change
of the base flow. The mean vorticity profiles are also shown in figure 17.

For 10 <t <20 in figure 16, both DNS and weakly nonlinear mean flows appear
unstable, with an excellent agreement between the growth rates, and between the
corresponding vorticity profiles in figure 17. For t = 15 and ¢ = 20 in figure 17, these
profiles consist of a central region of large vorticity, surrounded by a ring of locally
enhanced but relatively smaller vorticity. A local minimum is to be noticed at r =
1.6 between these two regions, as well as a second one a little further at r = 2.5.
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Figure 17. Mean (axisymmetric) vorticity profiles corresponding to Up = 2.82 x 1072, extracted from DNS

data (red continuous) and reconstituted from the weakly nonlinear expansion as W, + aza)g)) , where a solves

the amplitude equation (blue dashed-dotted line). The largest dot (respectively diamond) is located at the
radius for which —m$2 = o; where o; is the imaginary part of the most unstable eigenvalue of the DNS
(respectively weakly nonlinear) profile. This also corresponds to the critical radius of the most unstable mode.
The respectively smaller dot or diamond (if exists) stands for the second most unstable mode.

Note the qualitative resemblance with the profiles considered in Kossin et al. (2000) (see
their figures 1 and 12). The structure of the most unstable eigenmode supported by the
DNS mean vorticity profile at = 20 is shown at the right of figure 16. It bears several
characteristics of a shear instability. Specifically, its phase velocity is very close to the
angular velocity of the mean flow at the radius of the vorticity extremum (see the largest
dot in figure 17). This radius, highlighted by the first black continuous circle in figure 16, is
also the zero amplitude isoline of the eigenmode structure. Tightly around, the eigenmode
reaches its largest amplitude under the form of four external lobes, rotated of ~m/2 in the
anticlockwise direction with respect to four internal ones. This structure is similar to the
one shown in figure 2 of Carton & Legras (1994), who interpret it under the Rossby-wave
interaction paradigm. In words, the mean vorticity profile can be thought of as supporting
Rossby (vorticity) waves at the ‘edges’ (sharp slope) at one side and the other of the local
minima. These two vorticity waves are precisely the internal and external series of lobes
of the eigenmode structures. The velocity perturbation induced by a vorticity wave has a
phase lag of 1t/2 with respect to the latter. Therefore, since the lobe series are also rotated
of ~7 /2 with respect to each other, the velocity perturbation induced by one is in phase
with the vorticity perturbation of the other, thus reinforcing its growth. In addition, Carton
& Legras (1994) mentions that both waves interact in such a way as to travel with the same
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phase speed, thus the reinforcement of the one by the other is preserved in time, eventually
leading to instability.

From 20 <t in figure 16, growth rates determined with both approaches depart
significantly from each other, and so do the mean vorticities profiles in figure 17. This
is because the unstable mode grows and evolves in the DNS and feeds back on the mean
flow, whereas in our weakly nonlinear approach, the structure of the mean flow distortion
is fully determined by the Reynolds stress of the linear response.

Overall, it is plausible to think of the departure of the fully nonlinear solution from
the weakly nonlinear one, observable in figure 9 for large Uy, as resulting from a shear
instability. This instability reaches its maximum growth rate around ¢ = 20, and requires
some time for the unstable mode to gain in amplitude and for its nonlinear evolution,
taking a tripolar shape, to dominate the energy of the response from ¢ = 40 and for Uy =
2.82 x 1072 in figure 9. This goes in the sense of Carton & Legras (1994) and Kossin e al.
(2000), who have also shown shear instability modes to saturate into a tripolar state. The
weakly nonlinear expansion does not predict an amplitude for the unstable mode, for the
latter only declares as a ‘secondary’ mode, on the top of the optimal response. Therefore
the predictions from the amplitude equation, for the optimal response, depart from DNS
results after the time needed for the shear-driven unstable mode to become dominant.

6. Summary and perspectives

In conclusion, we believe our work to have brought a twofold generalization to existing
literature. The first lies on a purely methodological level. We have derived an amplitude
equation for non-normal systems, describing the transient response to an initial condition,
in a weakly nonlinear regime. Unlike in Ducimetiere et al. (2022), the reference state of
these systems can now depend arbitrarily on times, owing to the propagator formalism,
without the need for this latter to take its particular operator exponential shape. This offers
numerous possibilities of applications, and weak nonlinearities could be modelled, for
instance, in pulsating pipe flows, which play a key role in the hemodynamic system of
many species (Pier & Schmid 2017, 2021); it could also be applied to time-dependent
stratified shear flows, which have revealed to support strong transient growth, for instance
in Arratia, Caulfield & Chomaz (2013) and Parker et al. (2021). Not only could the weakly
nonlinear evolution of the gain associated with the linear optimal perturbation be captured,
but the amplitude equation could also be included in a Lagrangian optimization problem
whose stationary conditions would constitute a weakly nonlinear optimal, parameterized
by the amplitude of the initial condition.

The method does not rely on any modal (‘eigenmodal’) quantities, therefore the
existence of a continuous spectrum and/or the absence of discrete eigenmode is not
problematic. Corollary, the shape of the reference flow is not constrained, apart from the
fact that it should lead to strong energy growth at some finite time. The equation is derived
for the amplitude of the time-dependent (linear) optimal response, whose computation
already encompassed the entirety of the spectrum, regardless of its precise nature. This
was particularly convenient when applied to the two-dimensional Lamb—Oseen (Gaussian)
vortex flow, the linear optimal response of which is characterized by vorticity filaments
under constant shear by the reference flow. The work of Schecter et al. (2000) has shown
this response to project well onto a very large number of eigenmodes constituting the
continuum, all with different shapes and frequencies. Therefore it was extremely poorly
described as a single eigenmode, which invalidates the use of classical weakly nonlinear
methods.
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Instead, by using the amplitude equation (3.33), we could correctly predict for different
Re values the nonlinear evolution of the response for 0 < ¢ < 130, and for small amplitudes
of the initial condition. In this specific regime, at Re = 5000 as an example, nonlinearities
have been found to reduce the transient gain for 0 < ¢t < 87, but to enhance it for 87 < ¢ <
130, as confirmed by DNS. Owing to the simplicity of the amplitude equation and its link
to the sensitivity formula, this could be further related to the creation of an azimuthal mean
flow distortion from the Reynolds stress of the linear response, which affects the Landau
damping controlling the non-viscous dissipation of the response. The second harmonic
effect has also been found to be important over the time interval where nonlinearities
reinforce the gain.

However, for relatively large amplitudes of the initial condition, the predictions of the
amplitude equation are found to remain accurate at small times only. After a well-captured
episode of diminution of the gain, the DNS simulations with the largest considered
initial condition amplitudes depart from the weakly nonlinear prediction and evidence
a bifurcation towards a tripolar state. By performing a mean flow stability analysis, this
departure can be related to the emergence of a shear instability. Specifically, the mean flow
distortion by the Reynolds stress of the linear response, at the same time that it enhances
the Landau damping by its effect at the radius r,, generates a vorticity ring closely around
the central part of the vortex. A shear instability results from an interaction between the
inner ‘edge’ (sharp slope) of this annular ring and the outer edge of the central region. The
weakly nonlinear approach does not predict an equation for the unstable mode that emerges
on the mean flow. Therefore, as soon as the unstable mode dominates the response, around
t = 40 for the largest considered Uy = 2.82 x 1072 and Re = 5000, the weakly nonlinear
description rapidly degrades in terms of both energy and structure.

Nevertheless, at larger times, the amplitude equation can still give indirect information
about the fully nonlinear response. Specifically, for Re = 5000, for a given and above a
certain value for the amplitude of the initial condition, the amplitude equation has no
solution over a finite time interval contained in 87 < ¢t < 130, where the coefficient 1, is
positive. The non-existence of any solution over a time interval may imply that, at least over
the same time interval, the fully nonlinear solution must have reached another nonlinear
state. This seems confirmed by the DNS. In this sense, the threshold initial condition
amplitude predicted by the amplitude equation could be a reasonable approximation of the
fully nonlinear one, even if a direct comparison between the former and the latter is found
to be delicate.

For future research, the nonlinear self-sustaining mechanism(s) of the tripolar state
remain to be clarified. In this perspective, a semi-linear approach such as the one deployed
in Yim, Billant & Gallaire (2020) could be appropriate. This approach relies on the
assumption that the dominant nonlinear mechanism is the Reynolds stress feedback onto
the mean flow, thus neglecting the nonlinearity arising from the cross-coupling between
different frequencies. In this sense, it is less rigorous than the weakly nonlinear expansion
proposed here. Nevertheless, the semi-linear model does not assume the fluctuation over
the mean flow to be small and typically retains its spatial degrees of freedom. Therefore
the nonlinear structure it predicts is possibly considerably different from that of the linear
regime and could evolve towards a tripole.

Eventually, we believe that the fact that the proposed method does not make assumptions
on the shape of the base profile, nor on the values of external parameters, only that
the reference flow should lead to some energy growth, could be exploited further. For
instance, the proposed amplitude equation could be employed to assess and interpret
weakly nonlinear effects on the optimal response on vorticity profiles from actual field
measurements such as those reported in Kuo et al. (1999), Reasor et al. (2000), Kossin
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et al. (2000) and Kossin & Schubert (2001). Indeed, the mean vorticity profile predicted in
figure 17 of this work is qualitatively very similar to the one of Hurricane Gilbert shown
in figure 1 of Kossin et al. (2000). This raises the question of the relevance of non-normal
mechanisms combined with nonlinear effects in tropical cyclones.
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Appendix A. Kernel of the adjoint of the perturbed inverse propagator

We demonstrate in the following that the non-trivial kernel b(1) of the adjoint operator
@(0,1)" for t > 0 reads b(t) = ¥ (t,0)71(t)

@0, b(r) = |:‘I/(0, 1) ( (l‘)< @l * )>i| b(r)
i)

(I(0)] %)
Il(t)ll2

v (0,5

||l(t)I|2

i l()l )

I
||l(t)I|2 “

( I l()|*) [W (7, 0)¥ (0, 0] 1(r)
0.

(AD)

Appendix B. Temporal integration of the third-order equation

- (1)

From (3.21) The particular solution for u; * reads

iV, 7y =) (1) + AIAM P o) + [dram)al) o) + ADal) o, B1)
where
0 (20.0a)) =0 with ;) (0) = wity,

0 (20, 0a)) = —H¥(©O.0f with i} (0) =

(B2)
0 (20,038 ) = ~Heyit, with ) (0) =
0 (20,02} ) = —ai(Hi,)  with i) 0) =
Integrating in time the first equation in (B2) and using @ (0, 0) = I yields
@ (0, D) (1) = @0, 0 (0) = aiy,. (B3)
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Integrating the second gives

@0, nily) (1 = — /OtH(s)'II(O, $)f (s)ds = — /Ot W (0, s)f (s) ds = W (0, Di(r),
where we have defined
a(t) = —W(t,0) /0 tnI/(o, )f (5) ds,
or, equivalently using (2.11), u solves

(8 — Ly()it = —f,  subject to @2(0) = 0.

By integrating the third

t t
@0, N (1) = — /0 H(s)eoity ds = —[H(s)e,sito]'=h + /0 5(s)€,sit, ds
= —€,tlU,,

and eventually the fourth
@ (0, i) (1) = —H ()i,

Injecting these four solutions in (B1) and combining it with (3.21) leads to

@ (0, il = ait, + A|AI*W (0, )it — (drA)e tit, — AHil,.

(B4)

(B5)

(B6)

(B7)

(B8)

(B9)

Appendix C. Transient gain sensitivity in time-varying base flow and comparison

with the amplitude equation

We recall that the gain squared associated with the linear trajectory optimized for t = ¢,

through the choice of the initial condition #,, reads

G(t; to)* = [|W (£, 0)it | > = (10| W (¢, 0) "W (1, 0),).

(CDH

Note that, by definition, G(t,; t,) = G,(t,) = 1/¢€, as defined in (2.13). We recall as well
that G(r) is used as a shortened notation for G(¢; ). We derive thereafter the variation
8(G(1)?) of this linear gain induced by a variation 8L,,(¢) of the operator L,,(¢). We first

compute
3(G(D?) = (o] (W (1, 0)"W (1, 0))it,)
= (#1,|8(W (1, 0) YW (1, 0)it, + W (2, 0)T8W (1, O)it,)
= (8% (2, 0)ito|W (1, 0) i) + (W (1, 0)ito|8W (1, )i,
= 2Re (W (1, 0)ito| W (1, 0) 1))
= 2¢, 'Re((I(n 8% (1, 0)i,)),

(C2)

where we used that § (¥ (1, 0)") = (8% (¢, 0))': the variation of the adjoint is the adjoint of
the variation, as easily shown by using the definition of the adjoint operator. Next, we link
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8W (¢, 0) with §L,,(¢) by taking the variation of (2.8), which leads to
0:(8¥(1,0)) = (SLn(®)¥ (1, 0) + Ly (1)3¥ (1, 0). (C3)

Multiplying (C3) by ¥ (0, ¢) and using (2.10), stating that L,,(t) = —¥ (¢, 0)0,¥ (0, 1), leads
to

¥ (0,1)0,(8%(t,0) =W (O, ) SL,@)¥(t,0) — (;¥(0,1)5¥(t,0), thus 4
/(W (0,)5¥ (t,0)) =W (0,)(SLy(1)¥(2,0). ©)

Integrating (C4) in time and imposing é¥ (0, 0) to be null results in

t
SW(t,0) =w(t, 0)/ ¥ (0, s)(6Lu(s)¥ (s, 0)ds
0

t
= / W (t, )Ly, (s)W (s, 0)ds. (C5)
0
In the particular case where L, does not depend on time the propagator writes ¥ (¢, 0) =
ebn!, and relation (C5) reduces to the formula (6) at p. 175 of Bellman (1997). By injecting
(C5) in (C2) we obtain

t
5(G(1)?) = 2¢; 'Re (<?(t)| / W (1, 5) (8L ()W (s, 0)it, ds>)
0

t
= 2¢, ’Re ( / (w, s)Tl(t)ISLm(s)l(s)>ds) . (C6)
0
On the other hand, by re-formulating (3.34), the weakly nonlinear gain G,, is found to
satisfy
G’ Up\?
- =2|— 7). Cc7
Go()? (60 wr (1) (C7)

Considering small variations around the linear gain Gw(t)2 = G(t)2 +5(G(t)2) with
8(G(?)/G(1? < 1, (CT) reduces to

U 2
3(G(1)?) = 2G(1)* (?0) 1 (8), (C8)

o

but

(1))

t

<?(z)|-1/(t, 0) / v (0, )f (5) ds>
0

12(z) 12 12212
t
/O (W, )T1(0)| f(5))ds
11(0)|12
1

t
I -
= (eoG(t))Z/O <‘I’(t, s) l(t)lf(S))ds. (C9)

Combining (C8) with (C9) results in

2 t
8(G(H*) = —2¢,° (?) Re ( / (w(t, )10 j(s))ds>. (C10)
0

o
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Identifying (C6) with (C10) leads us to conclude that the small variation of the weakly
nonlinear gain around the linear one, as predicted by our model, reduces to the sensitivity
of this linear gain to a perturbation §L,,(7) satisfying

. Uo\? -~
SLn(OI(t) = — (E—) f@. (C11)

From the definition of f"(t) in (3.19), such §L, corresponds to an axisymmetric
perturbation of the base flow from U, to U + (Uy/ 60)2u(20), and also embeds the effect

of the second harmonics itgz) . Note that (Upy/€,) is the amplitude of the response in the
linear regime.

Appendix D. The pseudo-forcing method
We add to the asymptotic expansion (3.4) the trivial equality

0= [@(EOA(T)a(z)ao) - @3(A(T)3(t)ao)] e tcec., (D1)

where 6(f) = dH(t)/dt such that fot>0 §(t)dr = H(t > 0) — H(0) = 1. The terms are then
directly collected at each order without ever perturbing the propagator. According to (D1),
the term €,A(T)8(t)u1, will act as a forcing at order ,/€,, whereas the term —A(T)3(1)u,

will act as a forcing at order /o>
The equation assembled at . /€, is therefore

@ — L)l = Aseyity,  withi\"|,— = 0. (D2)

By postulating ilil)(t, T) = A(T)i\lil)(t), the field ﬁgl) solves

S . (D3)
W (t,0)e,u, =1(t) ift >0,

t if t =
il(ll)(t) =V (t, 0)/ ¥ (0, 5)8(s)e,tt, ds = {0 ift=0
0
thereby ﬁgl)(t) = H(t)l(r) and i‘il)(ﬁ T) = A(T)H(0)I(r) for t > 0 exactly as in (3.14). The

equations and their solutions at order €, are the same as in the main text. At order , /603,
the equation for the Fourier component at (1) reads

(& — L)y’ = —AJAPHf — (drA)HI — ASti,,  with &"|,— = aity, ~ (D4)

where A is still undetermined. The Fredholm alternative cannot be invoked since (D4) is
directly solvable, but is replaced by an asymptotic-preserving argument of the same nature.

As ﬁgl) oscillates at m and is subject to a non-zero initial condition, it is susceptible to be
amplified of a factor 1 /¢, at t = 1, thus conveying the response at order ,/€,; to avoid this

scenario ruining the asymptotic hierarchy, we impose the orthogonality of ﬁél) with the
linear response that is the most amplified at ¢ = ¢,, that is 1(#), which closes the system.
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Is it easily shown that the solution to (D4) reads
iy = W (1, 0)ity + AlA|%i — 1(drA)] — €, ' AHI, (D5)
whose condition of orthogonality with 1(7) for all > O results in
(1a") = a(l1w 2, 0)itg) + AIAP(117) — (drA) |11 — €, " AR = (D6)
Multiplying (D6) by €,/ ||?||2 =1/ ( | o) gives eventually
).

da  (bliy,

b|W (0, 1)t
" = o Al AFM —A,
dr (bluo> (Blito)
which is exactly the amplitude equation (3.24) derived in the main text by perturbing the
propagator.

As a side comment, note that ﬁgl) in (D5) is also the particular solution of (3.22). Indeed,
the orthogonality condition guarantees (2|1‘4§1)) =0 such that @(0, t)u(l) v (0, t)u(l)
and (3.22) is automatically satisfied. Therefore, not only are the amplitude equations the
same for both methods, but also the higher-order terms of the development, requiring

knowledge of the field u(l) This holds as long as the homogeneous solution on

ug ), not necessarily null for the method of the singularization of the propagator, is

ignored.

D7)

Appendix E. Expression of the adjoint operator

The adjoint of the operator B, (f) under the scalar product defined in (2.12) is such
that (Bmt}alt}b> = @ABL(},?) for any g, = [a4, ps] and q, = [up, pp]. By performing
integrations by parts, the following relations are easily demonstrated:

(Orfigliap) = (ritg itp))r—o00 — (Btal (3 + 1/r)itp)

o o H o . . (ED)
<Amua|ub) = [(arua Yupr — u, (rortp)lr—o00 + (ua|Amub) .
From here, the explicit expression of By, (¢) is derived immediately as being
(A — 1/r?)/Re + im$2 —2im/(r’Re) — W, —,
B,(n' = 2im/(r*Re) + 282 (Ap — 1/r%)/Re +im2  —im/r (E2)
o+ 1/r im/r 0,

and the cancellation of the boundary terms resulting from the integration by part imposes
— rp*a"y + it ph) + r@ o0 — 0 9,a") + r(079,0% — *9,07) = 0, (E3)

to hold at r — oo. Using the far-field condition on the direct field, stating #|,— o = 0,
condition (E3) implies the adjoint velocity field to also vanish at infinity, i.e. &' |, s = 0.
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