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Residual Spectra of Split Classical Groups
and their Inner Forms

Neven Grbac

Abstract. This paper is concerned with the residual spectrum of the hermitian quaternionic classical

groups G′

n and H ′

n defined as algebraic groups for a quaternion algebra over an algebraic number

field. Groups G′

n and H ′

n are not quasi-split. They are inner forms of the split groups SO4n and Sp4n.

Hence, the parts of the residual spectrum of G′

n and H ′

n obtained in this paper are compared to the

corresponding parts for the split groups SO4n and Sp4n.

Introduction

This paper is concerned with the residual spectrum of the hermitian quaternionic
classical groups G ′

n and H ′
n defined as algebraic groups for a quaternion algebra over

an algebraic number field in Section 1. Groups G ′
n and H ′

n are not quasi-split. They

are inner forms of the split groups SO4n and Sp4n. Hence, the parts of the residual
spectrum of G ′

n and H ′
n obtained in this paper are compared to the corresponding

parts for the split groups SO4n and Sp4n. The problem of comparing the residual
spectra of split groups and their inner forms is still open even for the general linear

group as mentioned in [3] and [2, §25].

For quasi-split groups there are many papers regarding the residual spectrum:

Mœglin and Walspurger [27], Mœglin [24–26], Kim [17,18,21], Žampera [43], Kon-
No [22]. For quasi-split groups in those papers the Langlands–Shahidi method de-

scribed in [34, 35] gives the normalization of the intertwining operators by L-func-

tions required in the application of the Langlands spectral theory [23, 28].

Although, in principle, the results of this paper could be obtained using the Arthur
trace formula [2], the strategy of this paper is a more direct application of the Lang-

lands spectral theory, and the Arthur trace formula is not used at all. However, the

groups G ′
n and H ′

n considered in this paper are not quasi-split. Hence, they are out of
the reach of the Langlands–Shahidi method, and we had to develop a new technique

in order to define the normalization of the intertwining operators and prove the re-

quired holomorphy and non-vanishing of the normalized intertwining operators. It
is based on the lift of representations defined using the Jacquet–Langlands correspon-

dence [7], keeping the Plancherel measure invariant. This technique, as well as the
first calculation of the residual spectrum for a non-quasi-split group, was used in the

author’s paper [8], where the principal series part of the residual spectrum for the

group G ′
2 of the semi-simple rank 2 was constructed, and subsequent papers [9–11].

The invariance of the Plancherel measure was used for the first time by Muić and
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Savin [33] to obtain the complementary series coming from a supercuspidal repre-
sentation of the Levi factor of the Siegel parabolic subgroup for the local p-adic G ′

n

and H ′
n. Their global idea for transferring the Plancherel measures between the split

groups and their inner forms does not work for inner forms of the split groups SO4n+2

and Sp4n+2, and that is the reason why this paper restricts its attention only to inner

forms of SO4n and Sp4n.
The main results on the residual spectrum of G ′

n and H ′
n are obtained in Theo-

rem 2.2 and its Corollary 2.3. They show certain ambiguities of quaternionic groups,

such as the condition on the non-triviality of the local components at all non-split
places in case (ii) for the group H ′

n. The reason for that lies in a different form of

the local normalization factors at split and non-quasi-split places. The comparison
of the parts of the residual spectrum obtained in Theorem 2.2 and the corresponding

parts of the residual spectrum for split groups SO4n and Sp4n is given in Theorem 2.4

and Corollary 2.5.
A simple consequence of Theorem 2.2 is Corollary 2.7, which shows the unita-

rizability of the duals under the Aubert–Schneider–Stuhler involution [4, 37] of the

principal series Steinberg representations of hermitian quaternionic classical groups
H ′

n and G ′
n defined for a quaternion algebra over a local field of characteristic zero.

Namely, these duals are the local components of automorphic representations be-
longing to the residual spectrum obtained in Theorem 2.2. This idea of solving the

unitarizability question for local representations using the fact that they are the local

components of an automorphic representation belonging to the residual spectrum
was used for the first time by Speh [36] for archimedean fields and by Tadić [38] for

non-archimedean fields.

The paper is divided into two sections. In Section 1 the normalization factors
of the intertwining operators are defined and the required holomorphy and non-

vanishing of the normalized intertwining operators are proved. This is done first for
the local intertwining operators at a split place for generic and non-generic represen-

tations in Subsections 1.1 and 1.2 and at a non-split place in Subsection 1.3. Finally,

the global normalization factors are obtained as the products of the local ones in
Subsection 1.4.

Section 2 is devoted to the construction of certain parts of the residual spectrum

of the groups G ′
n and H ′

n coming from the minimal parabolic subgroup. The main
results are Theorem 2.2 and its Corollary 2.3, as well as the comparison with the

parts of the residual spectrum for split SO4n and Sp4n in Theorem 2.4 and Corollary
2.5. The unitarizability of the Aubert–Schneider–Stuhler duals of the principal series

Steinberg representations of the local G ′
n and H ′

n is obtained in Corollary 2.7.

During the calculation of the poles of the Eisenstein series we always assume that
they are real. There is no loss of generality because that can be achieved just by twist-

ing a cuspidal automorphic representation of a Levi factor by the appropriate imag-

inary power of the absolute value of the reduced norm of the determinant. Hence,
this assumption is just a convenient choice of coordinates.

We should remark that in this paper the usual parabolic induction from a standard
parabolic subgroup P of G with the Levi decomposition P = MN will be denoted

by IndG
M instead of IndG

P . This will not cause any confusion since all the parabolic

subgroups appearing in the paper are standard.
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1 Normalization of Intertwining Operators

Throughout this paper let k be an algebraic number field, kv its completion at a place

v and A its ring of adeles. Let D be a quaternion algebra central over k and τ the usual
involution fixing the center of D. Then D splits at all but finitely many places v of k,

i.e., at those places where the completion D⊗k kv is isomorphic to the additive group
M(2, kv) of 2× 2 matrices with coefficients in kv. At finitely many places v of k where

D is non-split, the completion D ⊗k kv is isomorphic to the quaternion algebra Dv

central over kv. The finite set of places of k where D is non-split is denoted by S. The
cardinality of S, denoted by |S|, is even for every D.

The group of invertible elements of D regarded as an algebraic group over k is

denoted GL ′
1. At a split place v 6∈ S it is isomorphic to GL ′

1(kv) ∼= GL2(kv), where
GL2 is the split group of invertible 2 × 2 matrices. At a non-split place v ∈ S it is

isomorphic to GL ′
1(kv) ∼= D×

v .

Let det′ denote the reduced norm of the simple algebra D ⊗k A and det ′v the cor-
responding reduced norm at a place v. If v 6∈ S is split, then det ′v = detv is just the

determinant for 2 × 2 matrices, while if v ∈ S is non-split, then det′v is the reduced
norm of the quaternion algebra Dv. The absolute value of the reduced norm det′ and

det′v is denoted by ν.

Let V be a 2n-dimensional right vector space over D. We fix the basis {e1, . . . , e2n}
of V . Then (ei , e j) = δi,2n− j+1 for 1 6 i 6 j 6 n defines a hermitian form on V by

(v, v ′) = ǫτ((v ′, v)) and (vx, v ′x ′) = τ(x)(v, v ′)x ′

for all v, v ′ ∈ V and x, x ′ ∈ D, where ǫ ∈ {±1}. The group of isometries of the

form ( · , · ) regarded as a reductive algebraic group defined over k will be denoted
by G ′

n if ǫ = −1 and by H ′
n if ǫ = 1. Then G ′

n is an inner form of the split group

SO4n, while H ′
n is an inner form of the split group Sp4n. Hence G ′

n(kv) ∼= SO4n(kv)
and H ′

n(kv) ∼= Sp4n(kv) for every place v 6∈ S.

The maximal split torus over k for both G ′
n and H ′

n is isomorphic to GL1 × · · · ×
GL1, with n copies of GL1. The minimal parabolic subgroup P ′

0 defined over k of
both G ′

n and H ′
n has the Levi factor M ′

0
∼= GL ′

1 × · · · × GL ′
1, with n copies of GL ′

1.

The Weyl groups W ′ for G ′
n and H ′

n with respect to the maximal split torus are the

same. For the corresponding split case M0
∼= GL2 × · · · × GL2 in SO4n or Sp4n let

W (M0) denote the subgroup of the Weyl group W consisting of elements fixing the

Levi factor M0. Then W ′ ∼= W (M0) and we will use just the symbol W ′ in the sequel.
Let a

∗
C
∼= X(M ′

0) ⊗Z C denote the complexification of the Z-module X(M ′
0) of

k-rational characters of M ′
0. We fix the basis of a

∗
C

consisting of the reduced norms

for every copy of GL ′
1. Hence, a

∗
C

is an n-dimensional complex vector space and in
the fixed basis we denote its elements as s = (s1, . . . , sn) ∈ C

n. In the split case of M0

in SO4n and Sp4n the space a
∗
C

is the same.

Before proceeding to the normalization we define the local and global lift of rep-
resentations from GL ′

1 to the split GL2. It is given by the Jacquet–Langlands corre-

spondence [7, §8]. More precisely, let σ ′ ∼=
⊗

v σ
′
v be a cuspidal automorphic rep-

resentation of GL ′
1(A) which is not one-dimensional. Then at non-split places v ∈ S

the local lift σv of σ ′
v is the square-integrable representation of GL2(kv) defined by the

character relation [7, Theorem 8.1]. At split places v 6∈ S we have GL ′
1(kv) ∼= GL2(kv)
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and the local lift is just σv
∼= σ ′

v . The global lift of σ ′ is defined using the local lifts
as σ ∼=

⊗
v σv. By [7, Theorem 8.3] the global lift σ is isomorphic to a cuspidal

automorphic representation of GL2(A). Hence, its local components σv are generic.
Letχ◦det′ =

⊗
v(χv◦det′v) be a one-dimensional cuspidal automorphic represen-

tation of GL ′
1(A). Here χv are unitary characters of k×v and χ is a unitary character

of A
×/k×. Then the global lift of χ ◦ det ′ is just the one-dimensional representa-

tion χ ◦ det =
⊗

v (χv ◦ detv) of GL2(A). It belongs to the residual spectrum of

GL2(A). At a non-split place v ∈ S the local lift of χv ◦ det′v is defined by the Jacquet–

Langlands correspondence [7, Theorem 8.1] to be the Steinberg representation of
GL2(kv) twisted by χv, i.e., the unique irreducible subrepresentation of the induced

representation
IndGL2(kv)

GL1(kv)×GL1(kv)

(
χv| · |

1/2 ⊗ χv| · |
−1/2

)
,

where | · | is the absolute value on GL1(kv) ∼= k×v . We denote this representation

by Stχv
. Observe that by our definition in this case the global and local lifts are not

consistent. The reason is that the global lift is supposed to be in the discrete spectrum

of GL2(A), while the local lift should preserve the Plancherel measure.

This section is devoted to the definition of the scalar normalization factors for the
standard intertwining operators appearing in the constant term of the Eisenstein se-

ries attached to a cuspidal automorphic representation of the Levi factor M ′
0(A) of

the minimal standard parabolic subgroup P ′
0 of G ′

n and H ′
n. The main requirement

of the normalized intertwining operators is to be holomorphic and non-vanishing

“deep enough” in the positive Weyl chamber so that the poles of the standard in-
tertwining operators are captured in the normalizing factors. The expression “deep

enough” is made precise in the statements of the results below.

The normalization is obtained separately for the local normalized intertwining
operators at every place v. We distinguish three cases: a split place where the rep-

resentation is generic, a split place where the representation is not generic, and a
non-split place. Every case is treated in a separate subsection below.

1.1 Generic Split Case

Let v be a place of k where D splits, i.e., v 6∈ S, and let G be a classical split group

defined over kv. Fix the set of positive and simple roots of G and a nontrivial contin-
uous additive character ψv of kv. For a ψv-generic representation of the Levi factor

M(kv) of a parabolic subgroup P of G, the normalization factor of the standard inter-
twining operators is obtained using the Langlands–Shahidi method [35]. We recall

the definition here for the convenience of the reader. For more detailed exposition

see the original paper [35] or [8, §1.1].
First, let P be the maximal proper parabolic subgroup corresponding to the subset

of the set of simple roots obtained by removing the simple root α. For a ψv-generic

representation πv of its Levi factor M(kv) and the unique nontrivial element w of the
Weyl group such that its action on the set of simple roots keeps simple all the roots in

the subset defining P, the normalization factor of the standard intertwining operator
A(sα̃, πv,w) acting on the induced representation

I(sα̃, πv) ∼= IndG(kv)
M(kv)

(
πv ⊗ |sα̃( · )|

)
,
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is defined to be

r(sα̃, πv,w) =

ℓ∏

i=1

L(is, πv, ri)

L(1 + is, πv, ri)ε(is, πv, ri , ψv)

for s ∈ C. Here, α̃ = 〈ρP, α
∨〉−1ρP, where ρP equals the half of the sum of the

positive roots of G not being the roots of M and we write sα̃ = α̃ ⊗ s ∈ a
∗
M,C for

s ∈ C. The L-functions and ε-factors are the ones defined by Shahidi [35, §7] and ri

are the irreducible components, indexed as in [35], of the adjoint representation r of

the Langlands dual group of the Levi factor M on the Langlands dual Lie algebra of

the Lie algebra of the unipotent radical of P. The normalized intertwining operator
N(sα̃, πv,w) is given by A(sα̃, πv,w) = r(sα̃, πv,w)N(sα̃, πv,w).

Once the normalization is defined for the maximal proper parabolic subgroup
case, the normalization factor r(s, πv,w) for a ψv-generic representation πv of a gen-

eral proper parabolic subgroup Pθ with the Levi factor Mθ and s ∈ a
∗
M,C is defined

as the product of the normalizing factors for the maximal proper parabolic cases ap-
pearing in the decomposition, according to a reduced decomposition of w into simple

reflections, of the standard intertwining operator A(s, πv,w) [34, §2.1]. Although a

reduced decomposition of w into simple reflections is not unique, the normalizing
factor is independent of the choice of such decomposition. The normalized inter-

twining operator N(s, πv,w) is again defined by A(s, πv,w) = r(s, πv,w)N(s, πv,w).
We recall the main result of [42] (see also [8, Proposition 1.3]) showing the holo-

morphy and non-vanishing of the normalized intertwining operator N(s, πv,w) in a

certain open set slightly bigger than the closure of the positive Weyl chamber for a
tempered ψv-generic representation πv.

Proposition 1.1 Let Pθ be the proper parabolic subgroup of G corresponding to a subset

θ of the set of simple roots and w an element of the Weyl group W such that w(θ) is

also a subset of the set of simple roots. Let πv be an irreducible ψv-generic tempered

representation of the Levi factor Mθ(kv). Then the normalized intertwining operator

N(s, πv,w)

is holomorphic and non-vanishing for s ∈ a
∗
M,C such that

〈Re(s), α∨〉 > −1/ℓα for all α ∈ Φ
+
w,θ,

where ℓα is the length of the corresponding adjoint representation rα in the decomposi-

tion of the standard intertwining operator given in [34, §2.1] and Φ
+
θ,w is the set of all

the positive roots α such that wα is a negative root.

Finally, we must consider non-tempered unitary ψv-generic representation. This
will be done just for representations πv

∼= σ1,v ⊗ · · · ⊗ σn,v of M0(kv) ∼= GL2(kv) ×
· · · × GL2(kv) in the split SO4n(kv) or Sp4n(kv).

Proposition 1.2 Let P0 be the standard parabolic subgroup of the split group SO4n

or Sp4n with the Levi factor M0
∼= GL2 × · · · × GL2. Let πv

∼= σ1,v ⊗ · · · ⊗ σn,v be
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an irreducible unitary non-tempered generic representation of M0(kv). Then for every

w ∈ W (M0) the normalized intertwining operator N(s, πv,w) is holomorphic and non-

vanishing in the closure of the positive Weyl chamber in a
∗
C

, i.e., for all s = (s1, . . . , sn) ∈
a
∗
C

such that Re(s1) > · · · > Re(sn) > 0.

Proof If a unitary generic representation σi,v of GL2(kv) is not tempered, then it is a

complementary series, i.e., the fully induced representation of the form

σi,v
∼= IndGL2(kv)

GL1(kv)×GL1(kv)(µi,v| · |
ri ⊗ µi,v| · |

−ri ),

where µi,v is a unitary character of GL1(kv) and 0 < ri < 1/2. Since the intertwining

operators are compatible with the induction in stages, the problem of the holomor-
phy and non-vanishing is reduced to the tempered case.

More precisely, there is a tempered representation τv of one of the Levi factors

L(kv) contained in M0(kv) and an element s′ of the corresponding space a
∗
L,C such that

I(s, πv) ∼= I(s ′, τv). Therefore, the holomorphy and non-vanishing of N(s, πv,w) is

equivalent to the holomorphy and non-vanishing of N(s′, τv,w). If s = (s1, . . . , sn),

then s′ is obtained by replacing si with (si + ri , si − ri) for all i such that σi,v is a
complementary series. Now it is enough to check that if Re(s1) > · · · > Re(sn) > 0,

then the inequalities of Proposition 1.1 are satisfied. That is a straightforward check
using the bound 0 < ri < 1/2.

At the end of this subsection we collect the normalizing factors for the generic split

maximal proper parabolic cases needed in the sequel. For the case GL2 ×GL2 ⊂ GL4

the normalizing factor of the standard intertwining operator A((s1, s2), σ1,v ⊗σ2,v,w)

acting on the induced representation

I((s1, s2), σ1,v ⊗ σ2,v) = IndGL4(kv)
GL2(kv)×GL2(kv)(σ1,vν

s1 ⊗ σ2,vν
s2 )

∼= I((s1 − s2)α̃, σ1,v ⊗ σ2,v)

equals

(1.1) r((s1, s2), σ1,v ⊗ σ2,v,w) =

L(s1 − s2, σ1,v × σ̃2,v)

L(1 + s1 − s2, σ1,v × σ̃2,v)ε(s1 − s2, σ1,v × σ̃2,v, ψv)
,

where the L-functions and ε-factors are the Rankin–Selberg ones of pairs and ·̃ de-
notes the contragredient representation. For the case GL2 ⊂ SO4 the normalizing

factor of the standard intertwining operator A(s, σv,w) acting on the induced repre-
sentation

I(s, σv) = IndSO4(kv)
GL2(kv) (σvν

s) = I(2sα̃, σv)

equals

(1.2) r(s, σv,w) =
L(2s, ωσv

)

L(1 + 2s, ωσv
)ε(2s, ωσv

, ψv)
,
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where the L-functions and ε-factors are the Hecke ones for the central character ωσv

of σv. For the case GL2 ⊂ Sp4 the normalizing factor of the standard intertwining

operator A(s, σv,w) acting on the induced representation

I(s, σv) = Ind
Sp4(kv)

GL2(kv) (σvν
s) = I(sα̃, σv)

equals

(1.3) r(s, σv,w) =
L(s, σv)

L(1 + s, σv)ε(s, σv, ψv)
×

L(2s, ωσv
)

L(1 + 2s, ωσv
)ε(2s, ωσv

, ψv)
,

where the L-functions and ε-factors are the principal Jacquet ones for σv and the

Hecke ones for the central character ωσv
of σv.

1.2 Non-Generic Split Case

In this subsection let v be a place of k where D splits. We define the normalization

factor for the standard intertwining operators attached to a one-dimensional unitary
representation πv

∼= (χ1,v ◦ detv) ⊗ · · · ⊗ (χn,v ◦ detv) of the Levi factor M0(kv) ∼=
GL2(kv)× · · ·×GL2(kv) of the split group SO4n(kv) or Sp4n(kv). The strategy follows

the Mœglin and Waldspurger proof of [27, Lemma I.8] rather closely. See also [8,
§1.2].

Representation πv embeds into the induced representation

IM
T (s′, τv) = IndM(kv )

T(kv)

(
χ1,v| · |

−1/2 ⊗ χ1,v| · |
1/2 ⊗ · · · ⊗ χn,v| · |

−1/2 ⊗ χn,v| · |
1/2

)

as the unique irreducible subrepresentation, where T is the maximal split torus in

SO4n or Sp4n,

s′ = (−1/2, 1/2, . . . ,−1/2, 1/2) ∈ a
∗
T,C and τv = χ1,v ⊗χ1,v ⊗ · · ·⊗χn,v ⊗χn,v.

Hence, for every element w ∈ W (M0) of the Weyl group the standard intertwining

operator A(s, πv,w), where s = (s1, . . . , sn) ∈ a
∗
C

, fits into the commutative diagram

I(s, πv)

A(s,πv ,w)

��

�

�

// I(s + s ′, τv)

A(s+s ′,τv)

��

I(w(s),w(πv))
�

�

// I(w(s + s ′),w(τv)).

Here s is embedded into a
∗
T,C. In other words, A(s, πv,w) is the restriction of A(s +

s′, τv) to I(s, πv). Hence, the normalizing factor for A(s, πv,w) is defined to be

r(s, πv,w) = r(s + s ′, τv,w)

and the normalized operator N(s, πv,w) is actually the restriction of N(s + s′, τv,w)

to I(s, πv).
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Proposition 1.3 For every w ∈ W (M0), the normalized intertwining operator

N
(

(s1, . . . , sn), (χ1,v ◦ detv) ⊗ · · · ⊗ (χn,v ◦ detv),w
)

defined above is holomorphic and non-vanishing in the positive open Weyl chamber

Re(s1) > · · · > Re(sn) > 0.

Proof Let w ′ be the element of the Weyl group corresponding to the permutation

w ′
= (1, 2)(3, 4) · · · (2n − 1, 2n),

where (i1, . . . , i l) denotes the cycle mapping i1 → i2 → · · · → i l → i1. The Weyl

group element corresponding to a permutation p acts on a
∗
T,C as (s1, . . . , s2n) →

(sp−1(1), . . . , sp−1(2n)) and analogously on representations.
By the discussion above, πv is the unique irreducible subrepresentation of

IM
T (s′, τv). Hence, it is the image of the M(kv) normalized intertwining operator

N(w ′−1(s′),w ′−1(τv),w ′). Observe that w ′(s) = s. Then N(s, πv,w) fits into the
following commutative diagram:

I(s, πv)

N(s,πv ,w)

��

I(s + w ′−1(s′),w ′−1(τv))
N(s+w ′−1(s′),w ′−1(τv),w ′)

oo

N(s+w ′−1(s′),w ′−1(τv),ww ′)

��

I(w(s),w(πv))
�

�

// I(w(s + s′),w(τv)),

where the upper horizontal arrow is surjective. Since, for s in the positive open Weyl

chamber,

s + w ′−1(s′) = (s1 + 1/2, s1 − 1/2, . . . , sn + 1/2, sn − 1/2) ∈ a
∗
T,C

satisfies the inequalities of Proposition 1.1 for the Weyl group element ww ′, the right

vertical arrow is holomorphic and non-vanishing. Therefore, the commutativity

of the diagram implies that N(s, πv,w) is also holomorphic and non-vanishing for
such s.

Finally, we collect the normalizing factors in this case for the maximal proper
parabolic subgroup cases. The general proper parabolic subgroup normalizing fac-

tors are again just the product of those. For the case GL2 ×GL2 ⊂ GL4 the normal-

izing factor of the standard intertwining operator

A
(

(s1, s2), (χ1,v ◦ detv) ⊗ (χ2,v ◦ detv),w
)

acting on the induced representation

I
(

(s1, s2), (χ1,v ◦ detv)⊗(χ2,v ◦ detv)
)

= IndGL4(kv)
GL2(kv)×GL2(kv)

(
(χ1,v ◦ detv)νs1 ⊗ (χ2,v ◦ detv)νs2

)

∼= I
(

(s1 − s2)α̃, (χ1,v ◦ detv) ⊗ (χ2,v ◦ detv)
)
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equals

(1.4) r
(

(s1, s2), (χ1,v ◦ detv) ⊗ (χ2,v ◦ detv),w
)

= r1(s1 − s2, χ1,vχ
−1
2,v ),

where, for s ∈ C and a unitary character χv of k×v ,

r1(s, χv) =
L(s, χv)L(s − 1, χv)

L(s + 2, χv)L(s + 1, χv)ε(s + 1, χv, ψv)ε(s, χv, ψv)2ε(s − 1, χv, ψv)
.

The L-functions and ε-factors are the Hecke ones for a character. For the case GL2 ⊂
SO4 the normalizing factor of the standard intertwining operator A(s, χv ◦ detv,w)
acting on the induced representation

I(s, χv ◦ detv) = IndSO4(kv)
GL2(kv) ((χv ◦ detv)νs) = I(2sα̃, χv ◦ detv)

equals

(1.5) r(s, χv ◦ detv,w) =
L(2s, χ2

v)

L(2s + 1, χ2
v)ε(2s, χ2

v, ψv)
,

where the L-functions and ε-factors are the Hecke ones for the central character χ2
v of

χv ◦detv. For the case GL2 ⊂ Sp4 the normalizing factor of the standard intertwining
operator A(s, χv ◦ detv,w) acting on the induced representation

I(s, σv) = Ind
Sp4(kv)

GL2(kv) ((χv ◦ detv)νs) = I(sα̃, χv ◦ detv)

equals

r(s, χv ◦ detv,w) =(1.6)

L(s + 1/2, χv)

L(s + 3/2, χv)ε(s + 1/2, χv, ψv)
×

L(s − 1/2, χv)

L(s + 1/2, χv)ε(s − 1/2, χv, ψv)

×
L(2s, χ2

v)

L(1 + 2s, χ2
v)ε(2s, χ2

v, ψv)
,

where the L-functions and ε-factors are the Hecke ones for χv and for the central

character χ2
v of χv ◦ detv.

1.3 Non-Split Case

In this subsection let v be a place of k where D does not split. We define the nor-

malization factors for the standard intertwining operators attached to an irreducible

unitary representation π ′
v
∼= σ ′

1,v ⊗ · · · ⊗ σ ′
n,v of the Levi factor

M ′
0(kv) ∼= GL ′

1(kv) × · · · × GL ′
1(kv)
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of the group G ′
n(kv) or H ′

n(kv). Since GL ′
1(kv) has no proper parabolic subgroups, π ′

v

and all σ ′
i,v are supercuspidal.

For w ∈ W ′ and s ∈ a
∗
C

, the standard intertwining operator A(s, π ′
v,w) is defined

as the analytic continuation of the usual integral (see [33] or [8, §1.3]). Here we stress

that the Haar measures used in the definition of the standard intertwining operators
for the split and non-split cases are chosen compatibly as explained in [33, §2]. That

enables the transfer of the Plancherel measure between the split case and its non-split

inner form as in [33], which is crucial in the proof of the holomorphy and non-
vanishing of the normalized intertwining operators defined below.

In the definition of the normalizing factor for A(s, π ′
v ,w) we use the local lift of

representations from GL ′
1(kv) to GL2(kv) defined using the local Jacquet–Langlands

correspondence at the beginning of this section. If πv
∼= σ1,v ⊗ · · · ⊗ σn,v denotes the

local lift of π ′
v from M ′

0(kv) to M0(kv), then the normalizing factor is defined to be

(1.7) r(s, π ′
v ,w) = r(s, πv,w)

and the normalized intertwining operator N(s, π ′
v,w) by

A(s, π ′
v,w) = r(s, π ′

v,w)N(s, π ′
v,w).

Observe that πv is square-integrable as the local lift of a supercuspidal representation.

Proposition 1.4 Let π ′
v
∼= σ ′

1,v ⊗ · · · ⊗ σ ′
n,v be an irreducible unitary representa-

tion of the Levi factor M ′
0(kv) ∼= GL ′

1(kv) × · · · × GL ′
1(kv) of G ′

n(kv) or H ′
n(kv) and

s = (s1, . . . , sn) ∈ a
∗
C

. Then for every w ∈ W ′, the normalized intertwining oper-

ator N(s, π ′
v,w) is holomorphic and non-vanishing in the closure of the positive Weyl

chamber Re(s1) > · · · > Re(sn) > 0.

Proof The proof is essentially the same as the proof of [8, Proposition 1.11]. De-
composition of the standard intertwining operator reduces the proof to the maximal

proper parabolic cases treated in [8, Proposition 1.10] except the new case GL ′
1 ⊂ H ′

1.

But that case is settled in the same way, since the result on the Plancherel measure
from [33] holds.

Again, we collect here the normalizing factors for the maximal proper parabolic
cases. But in the non-split case the normalizing factors are given using the normal-

izing factors of the split case. Hence, the maximal parabolic cases are given by equa-

tions (1.1) for GL ′
1 ×GL′

1 ⊂ GL ′
2, (1.2) for GL ′

1 ⊂ G ′
1 and (1.3) for GL ′

1 ⊂ H ′
1.

Nevertheless, we rewrite these equations in a more appropriate manner just for the

one-dimensional unitary representations of GL ′
1(kv).

As already mentioned [7, Theorem 8.1], the local lift of a one-dimensional unitary

representation χv ◦ det′v of GL ′
1(kv), where χv is a unitary character of k×v , is the

Steinberg representation Stχv
. Hence, in the equations for the normalizing factor

the Rankin–Selberg of pairs and principal Jacquet L-functions and ε-factors for the

Steinberg representations appear, as well as the Hecke L-function and ε-factor of
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the central character of Stχv
. By [16, Theorem 3.1, §§8, 9] and [14, §3.1] those L-

functions and ε-factors can be written as

L(s, Stχ1,v × Stχ−1
2,v

) = L(s + 1, χ1,vχ
−1
2,v )L(s, χ1,vχ

−1
2,v ),

ε(s, Stχ1,v × Stχ−1
2,v
, ψv) = ε(s + 1, χ1,vχ

−1
2,v , ψv)ε(s, χ1,vχ

−1
2,v , ψv)2ε(s − 1, χ1,vχ

−1
2,v , ψv)

×
L(1 − s, χ−1

1,vχ2,v)L(−s, χ−1
1,vχ2,v)

L(s − 1, χ1,vχ
−1
2,v )L(s, χ1,vχ

−1
2,v )

,

L(s, Stχv
) = L(s + 1/2, χv),

ε(s, Stχv
, ψv) = ε(s + 1/2, χv, ψv)ε(s − 1/2, χv, ψv)

L(1/2 − s, χ−1
v )

L(s − 1/2, χv)
,

L(s, ωStχv
) = L(s, χ2

v),

ε(s, ωStχv
, ψv) = ε(s, χ2

v, ψv).

Therefore, for the case GL ′
1 ×GL′

1 ⊂ GL ′
2, the normalizing factor of the standard

intertwining operator A((s1, s2), (χ1,v ◦det′v)⊗ (χ2,v ◦det′v),w) acting on the induced

representation

I
(

(s1, s2), (χ1,v ◦ det′v) ⊗ (χ2,v ◦ det′v)
)

= Ind
GL ′

2 (kv)

GL ′

1 (kv)×GL′

1 (kv)

(
(χ1,v ◦ det′v)νs1 ⊗ (χ2,v ◦ det′v)νs2

)

equals

(1.8) r
(

(s1, s2), (χ1,v ◦ det′v) ⊗ (χ2,v ◦ det ′v),w
)

= r2(s1 − s2, χ1,vχ
−1
2,v ),

where, for s ∈ C and a unitary character χv of k×v ,

r2(s, χv) =
L(s + 1, χv)L(s, χv)

L(s + 2, χv)L(s + 1, χv)ε(s + 1, χv, ψv)ε(s, χv, ψv)2ε(s − 1, χv, ψv)

×
L(s, χv)L(s − 1, χv)

L(−s, χ−1
v )L(1 − s, χ−1

v )
.

For the case GL ′
1 ⊂ G ′

1, the normalizing factor of the standard intertwining operator

A(s, χv ◦ det′v,w) acting on the induced representation

I(s, π ′
v) = Ind

G ′

1 (kv)

GL′

1 (kv)
(π ′

vν
s)

equals

(1.9) r(s, χv ◦ det′v,w) =
L(2s, χ2

v)

L(1 + 2s, χ2
v)ε(2s, χ2

v, ψv)
.
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For the case GL ′
1 ⊂ H ′

1 , the normalizing factor of the standard intertwining operator
A(s, χv ◦ det′v,w) acting on the induced representation

I(s, π ′
v) = Ind

H ′

1 (kv)

GL′

1 (kv)
(π ′

vν
s)

equals

r(s, χv ◦ det′v,w)(1.10)

=
L(s + 1/2, χv)

L(s + 3/2, χv)ε(s + 1/2, χv, ψv)ε(s − 1/2, χv, ψv)

L(s − 1/2, χv)

L(1/2 − s, χ−1
v )

×
L(2s, χ2

v)

L(1 + 2s, χ2
v)ε(2s, χ2

v, ψv)
.

1.4 Global Normalization

In this subsection we combine the local results of the previous subsections in or-
der to get the normalization factor for the global intertwining operators attached

to a cuspidal automorphic representation π ′ ∼= σ ′
1 ⊗ · · · ⊗ σ ′

n of the Levi factor

M ′
0(A) ∼= GL ′

1(A) × · · · × GL ′
1(A) of the group G ′

n(A) or H ′
n(A), where σi are cuspi-

dal automorphic representations of GL ′
1(A) which are either all not one-dimensional

or all one-dimensional.

For w ∈ W ′ and s ∈ a
∗
C

, the global standard intertwining operator A(s, π ′,w)

decomposes according to the restricted tensor product π ′ ∼=
⊗

v π
′
v when acting on a

pure tensor fs =
⊗

v fs,v ∈ I(s, π ′) into the product of the local standard intertwining

operators A(s, π ′
v,w). Hence, it is natural to define the global normalizing factor to

be the product over all places of the local ones, i.e.,

r(s, π ′,w) =
∏
v

r(s, π ′
v,w).

The holomorphy and non-vanishing of the global normalized intertwining opera-

tors N(s, π ′,w) defined by A(s, π ′,w) = r(s, π ′,w)N(s, π ′,w) “deep enough” in the
positive Weyl chamber is proved in the following theorem.

Theorem 1.5 Let π ′
= σ ′

1 ⊗· · ·⊗σ ′
n be a cuspidal automorphic representation of the

Levi factor M ′
0(A) ∼= GL ′

1(A)×· · ·×GL ′
1(A) of the group G ′

n(A) or H ′
n(A) such that σ ′

i

are either all not one-dimensional or all one-dimensional. Then for every w ∈ W ′, the

global normalizing factor r(s, π ′,w) is a meromorphic function of s. If all σi are not one-

dimensional, then the global normalized operator N(s, π ′,w) is holomorphic and non-

vanishing for s in the closure of the positive Weyl chamber Re(s1) > · · · > Re(sn) >

0. If all σi are one-dimensional, then the global normalized operator N(s, π ′,w) is

holomorphic and non-vanishing for s in the positive open Weyl chamber

Re(s1) > · · · > Re(sn) > 0.
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Proof The local normalizing factors r(s, π ′
v ,w) are defined in terms of the local

L-functions and ε-factors. At all split places v 6∈ S these are the L-functions and

ε-factors of the same global cuspidal automorphic representation of a split classical
group. Therefore, the product over all split places of the normalizing factors con-

verges absolutely for s deep enough in the positive Weyl chamber and its analytic

continuation is given using the partial L-functions and ε-factors which are mero-
morphic. Since the normalizing factors at the remaining finite number of non-split

places v ∈ S are meromorphic, the global normalizing factor r(s, π ′,w) is meromor-

phic.
The global normalized intertwining operator decomposes into the tensor prod-

uct of the local ones. At almost all places the representation π ′
v is spherical, and

therefore, the local normalized intertwining operator N(s, π ′
v,w) just sends the suit-

ably normalized invariant vector of I(s, π ′
v) for the fixed maximal compact subgroup

to the suitably normalized invariant one of I(w(s),w(π ′
v)). At the remaining finite

number of places the local normalized intertwining operator is holomorphic and

non-vanishing in the required region by Propositions 1.1, 1.2, 1.3 and 1.4. Hence,

the global normalized intertwining operator N(s, π ′,w) is holomorphic and non-
vanishing in the required region.

At the end of every subsection above we collected the local normalizing factors for
the maximal proper parabolic subgroup cases. Here we collect the global normalizing

factors for those cases. First, assume that all σ ′
i are not one-dimensional representa-

tions of GL ′
1(A). Then by our definition at the beginning of this section, the local lift

σi,v of σ ′
i,v from GL ′

1(kv) to GL2(kv) is compatible with the global lift σi . Moreover, σi

is a cuspidal automorphic representation of GL2(A). Therefore, the product over all
places of the local normalizing factors in equations (1.1), (1.2), (1.3), and (1.7) can be

written using the global L-functions and ε-factors attached to cuspidal automorphic

representations. For the case GL ′
1 ×GL′

1 ⊂ GL ′
2 the global normalizing factor of the

standard global intertwining operator A((s1, s2), σ ′
1 ⊗ σ ′

2,w) acting on the induced

representation

I((s1, s2), σ ′
1 ⊗ σ ′

2) = Ind
GL′

2 (A)

GL′

1 (A)×GL′

1 (A)
(σ ′

1ν
s1 ⊗ σ ′

2ν
s2 ),

equals

(1.11) r((s1, s2), σ ′
1 ⊗ σ ′

2,w) =
L(s1 − s2, σ1 × σ̃2)

L(1 + s1 − s2, σ1 × σ̃2)ε(s1 − s2, σ1 × σ̃2)
,

where the L-functions and ε-factors are the global Rankin–Selberg ones of pairs. For
the case GL ′

1 ⊂ G ′
1 the global normalizing factor of the standard global intertwining

operator A(s, σ ′,w) acting on the induced representation

I(s, σ ′) = Ind
G ′

1 (A)

GL ′

1 (A)

(
σ ′νs

)

equals

(1.12) r(s, σ ′,w) =
L(2s, ωσ)

L(1 + 2s, ωσ)ε(2s, ωσ)
,
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where the L-functions and ε-factors are the global Hecke ones for the central char-
acter ωσ of σ. For the case GL ′

1 ⊂ H ′
1 the global normalizing factor of the standard

global intertwining operator A(s, σ ′,w) acting on the induced representation

I(s, σ ′) = Ind
H ′

1 (A)

GL′

1 (A)
(σ ′νs)

equals

(1.13) r(s, σ ′,w) =
L(s, σ)

L(1 + s, σ)ε(s, σ)
×

L(2s, ωσ)

L(1 + 2s, ωσ)ε(2s, ωσ)
,

where the L-functions and ε-factors are the global principal Jacquet ones for σ and
the Hecke ones for the central character ωσ of σ.

Next, assume that all σ ′
i are one-dimensional cuspidal automorphic representa-

tions of GL ′
1(A), i.e., σ ′

i = χi ◦ det′, where χi are unitary characters of A
×/k×. Now

the local and global lift are not compatible, and hence, the local normalizing factors

at split places in equations (1.4), (1.5), and (1.6) are not of the same form as the local
normalizing factors at non-split places in equations (1.8), (1.9) and (1.10). There-

fore, in the global normalization factors for maximal proper parabolic cases, along

with global Hecke L-functions and ε-factors, the local Hecke L-functions appear.
For the case GL ′

1 ×GL ′
1 ⊂ GL ′

2 the global normalizing factor of the standard

global intertwining operator A
(

(s1, s2), (χ1 ◦ det′) ⊗ (χ2 ◦ det′),w
)

acting on the

induced representation

I
(

(s1, s2), (χ1◦det′)⊗(χ2◦det′)
)

= Ind
GL ′

2 (A)

GL ′

1 (A)×GL′

1 (A)

(
(χ1◦det′)νs1 ⊗(χ2◦det′)νs2

)

equals

(1.14) r
(

(s1, s2), (χ1 ◦ det ′) ⊗ (χ2 ◦ det′),w
)

= r(s1 − s2, χ1χ
−1
2 ),

where, for s ∈ C and a unitary character χ of A
×/k×,

r(s, χ) =
L(s, χ)L(s − 1, χ)

L(s + 2, χ)L(s + 1, χ)ε(s + 1, χ)ε(s, χ)2ε(s − 1, χ)

×
∏

v∈S

L(s + 1, χv)L(s, χv)

L(1 − s, χ−1
v )L(−s, χ−1

v )
,

and the L-functions and ε-factors are the global and local Hecke ones. For the case
GL ′

1 ⊂ G ′
1 the global normalizing factor of the standard global intertwining operator

A(s, χ ◦ det′,w) acting on the induced representation

I(s, χ ◦ det′) = Ind
G ′

1 (A)

GL′

1 (A)
((χ ◦ det ′)νs)

equals

(1.15) r(s, χ ◦ det′,w) =
L(2s, χ2)

L(1 + 2s, χ2)ε(2s, χ2)
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where the L-functions and ε-factors are the global Hecke ones. For the case
GL ′

1 ⊂ H ′
1 the global normalizing factor of the standard global intertwining oper-

ator A(s, χ ◦ det′,w) acting on the induced representation

I(s, χ ◦ det′) = Ind
H ′

1 (A)

GL′

1 (A)((χ ◦ det ′)νs)

equals

r(s, χ ◦ det′,w)(1.16)

=
L(2s, χ2)

L(1 + 2s, χ2)ε(2s, χ2)

L(s − 1/2, χ)

L(s + 3/2, χ)ε(s + 1/2, χ)ε(s − 1/2, χ)

×
∏

v∈S

L(s + 1/2, χv)

L(1/2 − s, χ−1
v )

where the L-functions and ε-factors are the global and local Hecke ones.

2 Construction

In this section we construct the certain parts of the residual spectrum of the hermitian

quaternionic classical groups G ′
n(A) and H ′

n(A), as well as the split groups SO4n(A)

and Sp4n(A). The residual spectrum of a reductive algebraic group is decomposed
using the Langlands spectral theory [23]. (See also [28].) Briefly stated, the decom-

position of the part of the residual spectrum of a reductive algebraic group supported
in a proper parabolic subgroup is realized as the sum of the spaces of automorphic

forms obtained after the iterated cancellation of the poles inside the closure of the

positive Weyl chamber of the Eisenstein series attached to cuspidal automorphic rep-
resentations of the Levi factor. The constant term map shows that the analytic prop-

erties of the Eisenstein series such as the position and order of the poles coincide with

the properties of the constant term of the Eisenstein series. On the other hand, the
constant term equals the sum of the standard intertwining operators

(2.1)
∑

w∈W (M)

A(s, π,w),

where M is the Levi factor of a selfconjugate parabolic subgroup, W (M) the normal-

izer of M modulo M, π a cuspidal automorphic representation of M(A) and s ∈ a
∗
M,C.

The assumption that a parabolic subgroup is selfconjugate simplifies the notation and
causes no harm since in our case M ′

0 is the Levi factor of a selfconjugate parabolic

subgroup of G ′
n or H ′

n. In order to study the poles inside the positive Weyl chamber
of the sum (2.1), we use the normalization of the standard intertwining operators of

Section 1.

Before passing to the calculation of the residual spectrum in Theorem 2.2 below,

we collect the well-known analytic properties of the global and local L-functions in-

volved. The proof for the Hecke L-functions can be found in [40], for the principal
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Jacquet L-functions for GL2 in [15], and for the Rankin–Selberg L-functions of pairs
for GL2 ×GL2 in [13]. Observe that the global Hecke L-function L(s, 1) for the trivial

character 1 of A
×/k× is nothing other than the complete ζ-function of the algebraic

number field k.

Lemma 2.1 The global Rankin–Selberg L-function L(s, π1 ×π2) of cuspidal automor-

phic representations π1 and π2 of GL2(A) has simple poles at s = 0 and s = 1 if π1
∼= π̃2

and it is entire otherwise. It has no zeroes for Re(s) > 1.

The global principal Jacquet L-function L(s, π) of a cuspidal automorphic represen-

tation π of GL2(A) is entire. It has no zeroes for Re(s) > 1.

The global Hecke L-function L(s, µ) of a unitary character µ of A
×/k× has simple

poles at s = 0 and s = 1 if µ is trivial and it is entire otherwise. It has no zeroes for

Re(s) > 1. The local Hecke L-function L(s, µv) of a unitary character µv of k×v has a

real simple pole at s = 0 if µv is trivial and it is entire otherwise. It has no zeroes.

Theorem 2.2 Let π ′ ∼= σ ′
1 ⊗· · ·⊗σ ′

n be a cuspidal automorphic representation of the

Levi factor M ′
0(A) ∼= GL ′

1(A) × · · · × GL ′
1(A) of the minimal parabolic subgroup of the

group G ′
n(A) or H ′

n(A) such that one of the following holds:

(i) all σ ′
i are not one-dimensional cuspidal automorphic representations of GL ′

1(A)

with the unitary central character;

(ii) all σ ′
i
∼= χi ◦ det′ are one-dimensional cuspidal automorphic representations of

GL ′
1(A), where χi is a unitary character of A

×/k× and for the group H ′
n the char-

acter χn is nontrivial;

(iii) the group is H ′
n, all σ ′

i
∼= χi ◦ det ′ are one-dimensional cuspidal automorphic

representations of GL ′
1(A), where χi is a unitary character of A

×/k× and χn is

trivial.

Let s0 ∈ a
∗
C

be

s0 =






(n − 1/2, . . . , 3/2, 1/2) in case (i),

(2n − 3/2, . . . , 5/2, 1/2) in case (ii),

(2n − 1/2, . . . , 7/2, 3/2) in case (iii),

and we consider only the part of the residual spectrum obtained as the iterated residue

of the Eisenstein series at s0. The Eisenstein series attached to π ′ has the simple iterated

pole at s0 if and only if

case (i)






for the group G ′
n, all σ ′

i are isomorphic and have trivial central character;

for the group H ′
n, all σ ′

i are isomorphic and have trivial central character,

and L(1/2, σi) 6= 0, where σi is the global lift of σ ′
i ;

case (ii)





for the group G ′
n, all χi are equal and χ2

i is trivial,

for the group H ′
n, all χi are equal, χ2

i is trivial, and χi,v is nontrivial at every

place v ∈ S;

case (iii) all χi are trivial.

The space of automorphic forms spanned by the iterated residue at s0 is a constituent of

the residual spectrum which is denoted by A(π ′). In all cases, by the constant term map,

A(π ′) is isomorphic to the image of the normalized intertwining operator N(s0, π
′,wl),

https://doi.org/10.4153/CJM-2009-042-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-042-3


Residual Spectra of Split Classical Groups and their Inner Forms 795

where wl ∈ W ′ is the longest Weyl group element. The image is irreducible except for

the group H ′
n in case (ii), when the image is the sum of the irreducible representations of

the form
⊗

v Π
′
v, where Π

′
v is the irreducible image of N(s0, π

′
v,wl) for v ∈ S, and Π

′
v is

one of at most two non-isomorphic irreducible components of the image of N(s0, π
′
v,wl)

for v 6∈ S and it is unramified for almost all v.

Proof The poles of the Eisenstein series coincide with the poles of its constant term,

i.e., the sum (2.1) of the standard intertwining operators

(2.2)
∑

w∈W ′

A(s, π ′,w),

where s ∈ a
∗
C

. In Section 1 we normalized the standard intertwining operators using

the scalar meromorphic normalizing factors r(s, π ′,w). The main result is Theo-

rem 1.5, showing that the normalized intertwining operators are holomorphic and
non-vanishing in the positive open Weyl chamber of a

∗
C

, i.e., for all s = (s1, . . . , sn) ∈
a
∗
C

such that Re(s1) > Re(s2) > · · · > Re(sn) > 0. Observe that s0 is in the positive
open Weyl chamber and hence the poles of the terms in (2.2) are the poles of their

normalizing factors.

The normalizing factor r(s, π ′,w) is given as a product of the normalizing fac-
tors for the maximal proper parabolic cases appearing in the decomposition of the

standard intertwining operator A(s, π ′,w) as in [34, §2.1] according to a reduced

decomposition of the Weyl group element w into simple reflections. Although the
reduced decomposition of the Weyl group element is not unique, the obtained nor-

malizing factor is independent of the chosen reduced decomposition. Therefore, let
us fix an algorithm for decomposing the elements of the Weyl group W ′ by specify-

ing its action on a
∗
C

and on representations of M ′
0(A). It is well known that W ′ ∼=

Sn ⋉C2
n, where Sn is the group of permutations of n letters and C2 the multiplicative

group {±1}. The action of the Weyl group element w = (p, c), where p ∈ Sn and

c = (c1, . . . , cn) ∈ C2
n, on s = (s1, . . . , sn) ∈ a

∗
C

is given by

w(s) = (cp−1(1)sp−1(1), . . . , cp−1(n)sp−1(n)),

and on a representation π ′ ∼= σ ′
1 ⊗ · · · ⊗ σ ′

n of M ′
0(A) by

w(π ′) = σ ′c
p−1 (1)

p−1(1)
⊗ · · · ⊗ σ ′c

p−1 (n)

p−1(n)
,

where σ ′1
i = σ ′

i and σ ′−1
i = σ̃ ′

i . Let

I+
w =

{
j ∈ {1, . . . , n} : c j = 1

}
and I−w =

{
j ∈ {1, . . . , n} : c j = −1

}
.

The simple reflections in the Weyl group W ′ correspond to the transpositions w j =

( j, j + 1) ∈ Sn for j = 1, . . . , n − 1 and the element w0 = (1, . . . , 1,−1) ∈ C2
n. The

algorithm for a reduced decomposition of w = (p, c) ∈ W ′ is as follows:

(1) Using the transpositions w j , move the representation with the maximal index in

I−w to the rightmost position. In this step transpositions interchange the position
of a representation with the index in I−w and either a representation with the

higher index in I+
w or the contragredient of a representation with the higher index

in I−w
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(2) Apply w0 to take the contragredient of the representation moved to the rightmost
position in step (1).

(3) Repeat steps (1) and (2) with all the other elements of I−w , always choosing the
maximal element not used in the previous steps. As a result we obtain the rep-

resentations with indices in I+
w on the left with increasing indices and the contra-

gredients of the representations with indices in I−w on the right with decreasing
indices.

(4) Using the minimal number of transpositions w j arrange the representations with

indices in I+
w to be ordered as required by the action of w but still all of them on

the left, i.e., keeping the contragredients of the representations with indices in I−w
fixed. In this step every transposition interchanges the position of a representa-
tion with index in I+

w and a representation with the higher index in I+
w

(5) As in step (4), using the minimal number of the transpositions w j , arrange the

contragredients of the representations with indices in I−w to be ordered as re-
quired by the action of w but still all of them on the right, i.e., keeping the repre-

sentations with indices in I+
w fixed. In this step every transposition interchanges

the position of the contragredient of a representation with index in I−w and the
contragredient of a representation with lower index in I−w

(6) Using the minimal number of the transpositions w j , arrange all the indices as
required by the action of w. In this step every transposition interchanges the

position of a representation with index in I+
w and the contragredient of a repre-

sentation with index in I−w

Now the normalizing factors appearing in the maximal proper parabolic cases

corresponding to the simple reflections in the above steps are given at the end of
Subsection 1.4, in equations (1.11), (1.12), and (1.13) for case (i), and in equations

(1.14), (1.15), and (1.16) for cases (ii) and (iii). Using the analytic properties of the
L-functions involved given in Lemma 2.1, we see that the possible singular hyper-

planes of the normalization factors in case (i) are

si − s j = 1 for 1 6 i < j 6 n, si + s j = 1 for 1 6 i < j 6 n,

2si = 1, for 1 6 i 6 n,

and in cases (ii) and (iii),

si − s j = 2 for 1 6 i < j 6 n, si + s j = 2 for 1 6 i < j 6 n,

2si = bi for 1 6 i 6 n,

where bi = 3 if the group is H ′
n and χi is trivial, and bi = 1 otherwise. At all the

possible singular hyperplanes, the pole is at most simple. Observe that s0 in all cases
is the intersection of precisely n among the possible singular hyperplanes. Moreover,

it is the so-called regular point since there are no possible poles of the Eisenstein series
deeper in the positive Weyl chamber. The hyperplanes intersecting at s0 in case (i) are

si − si+1 = 1 for i = 1, . . . , n − 1 2sn = 1,
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in case (ii),
si − si+1 = 2 for i = 1, . . . , n − 1 2sn = 1,

and in case (iii),

si − si+1 = 2 for i = 1, . . . , n − 1 2sn = 3.

In order to have the iterated pole of the Eisenstein series at s0, all n possible sin-
gular hyperplanes intersecting at s0 have to be singular. The hyperplane of the form

si − si+1 = a, where a ∈ {1, 2}, is singular for the intertwining operator A(s, π ′,w)
if and only if σ ′

i
∼= σ ′

i+1 and in the reduced decomposition of w the interchange of

the positions of either σ ′
i and σ ′

i+1, or σ̃ ′
i+1 and σ̃ ′

i , occurs. The hyperplane 2sn = 1

in case (i) for the group G ′
n is singular for the intertwining operator A(s, π ′,w) if

and only if σ ′
n has trivial central character and cn = −1, where w = (p, c). The

hyperplane 2sn = 1 in case (i) for the group H ′
n is singular for the intertwining op-

erator A(s, π ′,w) if and only if σ ′
n has trivial central character, the global L-function

L(1/2, σn) 6= 0 for the global lift σn of σ ′
n and cn = −1, where w = (p, c). The

hyperplane 2sn = 1 in case (ii) for the group G ′
n is singular for the intertwining op-

erator A(s, π ′,w) if and only if χ2
n is trivial and cn = −1, where w = (p, c). The

hyperplane 2sn = 1 in case (ii) for the group H ′
n is singular for the intertwining op-

erator A(s, π ′,w) if and only if χ2
n is trivial and χn,v is nontrivial for all places v ∈ S

and cn = −1, where w = (p, c). The hyperplane 2sn = 3 in case (iii) is singular for

the intertwining operator A(s, π ′,w) if and only if χn is trivial and cn = −1, where

w = (p, c). Therefore, the necessary conditions for the pole of the Eisenstein series
at s0 are as claimed in the theorem.

Assume that the necessary condition for the pole holds. Looking at the reduced
decomposition algorithm, we see that in order to get the singular hyperplane of the

form si − si+1 = a for the intertwining operator corresponding to w ∈ W ′, both i

and i + 1 must be elements of the same set I+
w or I−w . Since cn = −1, in order to get

the singular hyperplane 2sn = b, we conclude n ∈ I−w . Therefore, I−w = {1, . . . , n}
and I+

w is empty, i.e., if w = (p, c), then c = (−1, . . . ,−1). For such w, during the

first three steps of the reduced decomposition algorithm the singular hyperplanes of
the form si − si+1 = a do not occur. Afterwards, in step (5) we have to obtain all such

hyperplanes, and hence p must be the identity permutation id.
Therefore, if the necessary condition for the pole holds, the Eisenstein series in-

deed has a pole at s0 and the only element of the Weyl group W ′ such that the cor-

responding intertwining operator in (2.2) has an iterated pole at s0 is the longest
element wl = (id, (−1, . . . ,−1)). The iterated residue of the constant term is, up

to a nonzero constant, equal to the image of the normalized intertwining operator

N(s0, π
′,wl).

The square integrability of the obtained space of automorphic forms follows from

the Langlands square integrability criterion [23, p. 104], because

wl(s0) =






(−(n − 1/2), . . . ,−3/2,−1/2) in case (i),

(−(2n − 3/2), . . . ,−5/2,−1/2) in case (ii),

(−(2n − 1/2), . . . ,−7/2,−3/2) in case (iii),
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and, by the criterion, if wl(s0) = (s′1, . . . , s
′
n), then the square integrability condition

is
j∑

i=1

s′i < 0 ∀ j = 1, . . . , n.

Thus the iterated residue at s0 of the Eisenstein series attached to π ′ gives a con-
stituent A(π ′) of the residual spectrum.

It remains to describe the image of N(s0, π
′,wl), which is done for every place v

of k separately. If π ′
v is tempered, then the image of N(s0, π

′
v,wl) is irreducible by the

Langlands classification, since s0 is in the open positive Weyl chamber and wl is the
longest element of the Weyl group W ′. Observe that this is always the case if v ∈ S.

Let v 6∈ S and assume π ′
v is not tempered. Since all σ ′

i are isomorphic, in case (i)

this means that σi,v is a complementary series representation of GL2(kv), i.e., the fully

induced representation of the form

σi,v
∼= IndGL2(kv)

GL1(kv)×GL1(kv)(χv| · |
−r ⊗ χv| · |

r),

where χv is a unitary character of k×v and 0 < r < 1/2. In cases (ii) and (iii),

σi,v
∼= χv ◦ detv is a one-dimensional representation of GL2(kv), i.e., the unique

irreducible subrepresentation of the induced representation

IndGL2(kv)
GL1(kv)×GL1(kv)(χv| · |

−r ⊗ χv| · |
r),

where r = 1/2. If we denote by τv
∼= χv ⊗· · ·⊗χv the representation of the maximal

split torus T(kv) ∼= GL1(kv) × · · · × GL1(kv) of SO4n(kv) or Sp4n(kv),

s′0 = (r,−r, r,−r, . . . , r,−r) ∈ a
∗
T,C, and w ′

= (1, 2)(3, 4) . . . (n − 1, n) ∈ S2n

the element of the absolute Weyl group of SO4n(kv) or Sp4n(kv), then the image of

N(s0 + s′0, τv,w
′) is isomorphic to I(s0, π

′). Therefore, the image of N(s0, π
′
v,wl) is

isomorphic to the image of N(s0 + s ′0, τv,wlw
′). Now τv is tempered and wlw

′ is the
longest element of the Weyl group for SO4n(kv) or Sp4n(kv). Hence, if s0 + s′0 is in the

open positive Weyl chamber, the image is irreducible by the Langlands classification.
This is the case except for the group Sp4n(kv) in case (ii).

Finally, let the group be Sp4n(kv) in case (ii). Then

s0 + s′0 = (2n − 1, 2n − 2, . . . , 1, 0),

which is not in the open positive Weyl chamber for Sp4n. Writing the longest Weyl
group element wlw

′ for the Weyl group of Sp4n as wlw
′

= w1w0, where w1 is the

longest element of the Weyl group modulo the Levi factor isomorphic to GL1 × · · ·×
GL1 × SL2 and w0 = (1, . . . , 1,−1) is the simple reflection corresponding to the root
2e2n of Sp4n, the normalized intertwining operator decomposes into

N(s0 + s′0, τv,wlw
′) = N(s0 + s′0, τv,w1)N(s0 + s′0, τv,w0).
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The operator N(s0 + s ′0, τv,w0) is actually the SL2(kv) intertwining operator acting on
the induced representation

IndSL2(kv)
GL1(kv)χv

∼= τ+
v ⊕ τ−v ,

which is the sum of at most two irreducible tempered components τ±v , where the

sign in the superscript denotes the sign of the action of N(s0 + s′0, τv,w0) and τ−v is
trivial if and only if χv is trivial. Then the image of N(s0 + s′0, τv,wlw

′) is the sum of

the images of N(s0 + s′0, τv,w1) acting on the two induced representations

Ind
Sp4n(kv)

GL1(kv)×···×GL1(kv)×SL2(kv)

(
χv| · |

2n−1 ⊗ χv| · |
2n−2 ⊗ · · · ⊗ χv| · |

2 ⊗ χv| · | ⊗ τ±v
)
,

which we denote by Π
±
v , and Π

−
v is trivial if and only if χv is trivial. These images

are irreducible by the Langlands classification, since w1 is the longest Weyl group
element modulo GL1 × · · · × GL1 × SL2, χv ⊗ · · · ⊗ χv ⊗ τ±v is tempered and (2n −
1, 2n−2, . . . , 1) is in the open positive Weyl chamber. Observe that Π

+
v is unramified

at unramified places. Therefore, the irreducible representation Π
′
v in the statement

of the theorem is one of the representations Π
±
v and it is Π

+
v for almost all v.

In fact, Theorem 2.2 gives the decomposition of the parts of the residual spectrum
of G ′

n(A) and H ′
n(A) obtained as the iterated residues at s0 of the Eisenstein series

attached to cuspidal automorphic representations π ′ of the Levi factor M ′
0(A) of the

minimal parabolic subgroup such that either all σ ′
i are not one-dimensional, or all

σ ′
i are one-dimensional. Denote those parts of the residual spectrum by L2 for both

G ′
n(A) and H ′

n(A). It will be clear from the context to which group we refer. Then L2

decomposes according to the cases of Theorem 2.2 into

L2 ∼=

{
L2

(i) ⊕ L2
(ii) for the group G ′

n,

L2
(i) ⊕ L2

(ii) ⊕ L2
(iii) for the group H ′

n,

where every component denotes the part of the residual spectrum at s0 coming from

the cuspidal automorphic representations of the corresponding case. Now Theo-
rem 2.2 gives the decompositions of the following corollary.

Corollary 2.3 In the notation as above, L2
(i)

∼=
⊕

π ′ A(π ′), where the sum is over all

case (i) cuspidal automorphic representations π ′ of M ′
0(A) such that for the group G ′

n all

σ ′
i are isomorphic and have trivial central character, while for the group H ′

n all σ ′
i are

isomorphic, have trivial central character, and L(1/2, σi) 6= 0 where σi is the global lift

of σ ′
i . Also, L2

(ii)
∼=

⊕
π ′ A(π ′), where the sum is over all case (ii) cuspidal automorphic

representations π ′ of M ′
0(A) such that for the group G ′

n all χi are equal and χ2
i is trivial,

while for the group H ′
n all χi are equal, χ2

i is trivial, and χi,v is nontrivial for every

v ∈ S. Finally, L2
(iii)

∼= A(1M ′

0
), where 1M ′

0

∼= (1 ◦ det′) ⊗ · · · ⊗ (1 ◦ det′) is the trivial

representation of M ′
0(A).

Next we introduce a similar notation for the split groups SO4n and Sp4n. Let L2
M0

be just the part of the residual spectrum of SO4n(A) and Sp4n(A) obtained as the

iterated residue at

t0 = (n − 1/2, . . . , 3/2, 1/2) ∈ a
∗
M0 ,C
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of the Eisenstein series attached to cuspidal automorphic representations of the Levi
factor M0(A) ∼= GL2(A) × · · · × GL2(A). Note that L2

M0
is not the full residual spec-

trum with the cuspidal support in M0(A). For the group SO4n let L2
T(SO4n) be the

part of the residual spectrum obtained as the iterated residue at

t0 = (2n − 1, . . . , 1, 0) ∈ a
∗
T,C

of the Eisenstein series attached to cuspidal automorphic representations of the max-

imal split torus T(A) ∼= GL1(A) × · · · × GL1(A). For the group Sp4n let L2
T(Sp4n)

denote the part of the residual spectrum obtained as the iterated residue at one of the
points

t0 =

{
(2n − 1, . . . , 1, 0) ∈ a

∗
T,C,

(2n, . . . , 2, 1) ∈ a
∗
T,C,

of the Eisenstein series attached to cuspidal automorphic representations of the max-

imal split torus T(A) ∼= GL1(A) × · · · × GL1(A). Again, note that L2
T(SO4n) and

L2
T(Sp4n) are not the full residual spectra supported in the torus.

Theorem 2.4 In the notation as above, the part L2
M0

of the residual spectrum of

SO4n(A) or Sp4n(A) decomposes into L2
M0

∼=
⊕

π A(π), where the sum is over all cuspi-

dal automorphic representations π ∼= σ1 ⊗ · · · ⊗ σn of the Levi factor M0(A) such that

for the group SO4n all σi are isomorphic and have trivial central character, while for the

group Sp4n all σi are isomorphic, have trivial central character, and L(1/2, σi) 6= 0. The

irreducible space of automorphic forms A(π) is isomorphic to the image of the normal-

ized intertwining operator N(t0, π,wl,M0
), where

t0 = (n − 1/2, . . . , 3/2, 1/2) ∈ a
∗
M0 ,C

and wl,M0
is the longest element of the Weyl group modulo M0.

The part L2
T(SO4) of the residual spectrum of SO4n(A) decomposes into

L2
T(SO4) ∼=

⊕
τ

A(τ),

where the sum is over all cuspidal automorphic representations τ ∼= χ1 ⊗ · · · ⊗ χ2n

of the torus T(A) such that all χi are equal and χ2
i is trivial. The irreducible space

of automorphic forms A(τ) is isomorphic to the image of the normalized intertwining

operator N(t0, τ ,wl,T), where t0 = (2n − 1, . . . , 1, 0) ∈ a
∗
T,C. and wl,T is the longest

element of the Weyl group.

The part L2
T(Sp4n) of the residual spectrum of Sp4n(A) decomposes into

L2
T(Sp4n) ∼= (⊕τA(τ)) ⊕ A(1T(A)),

where the sum is over all cuspidal automorphic representations τ ∼= χ1 ⊗ · · · ⊗ χ2n of

the torus T(A) such that all χi are equal, quadratic, and nontrivial, while the charac-

ter 1T(A) is just the trivial character of T(A). For the nontrivial τ , the space of auto-

morphic forms A(τ) is isomorphic to the sum of the irreducible representations of the
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form
⊗

v Πv, where in the notation of the proof of Theorem 2.2, Πv is one of at most

two irreducible components Π
±
v of the image of the normalized intertwining operator

N(t0, τ ,wl,T), where t0 = (2n − 1, . . . , 1, 0) ∈ a
∗
T,C and wl,T is the longest element of

the Weyl group, such that Πv = Π
+
v for almost all v and the product of all the signs equals

1. The irreducible space of automorphic forms A(1T(A)) is isomorphic to the image of

the normalized intertwining operator N(t0, 1T(A),wl,T), where t0 = (2n, . . . , 1) ∈ a
∗
T,C

and wl,T is the longest element of the Weyl group.

Proof The proof of this Theorem for the split groups goes along the same lines as

the proof of Theorem 2.2 for their inner forms above except for the decomposition
of L2

T(Sp4n) for a nontrivial τ . Therefore, we first comment the split global nor-

malization factors appearing in the calculation and then explain the result in that

exceptional case.
The normalization factors for the local intertwining operators are at all places

defined using the Langlands–Shahidi method for the generic representations at split
places as in Section 1.1. Therefore, the global normalization factors needed for the

decomposition of L2
M0

are the same as for the groups G ′
n and H ′

n in case (i). For the

torus, instead of the complicated normalization factor (1.16) in the GL ′
1 ⊂ H ′

1 case,
now we have just the split GL1 ⊂ SL2 case where

r(s, χ,w) =
L(s, χ)

L(1 + s, χ)ε(s, χ)
,

and instead of (1.14) in the GL ′
1 ×GL′

1 ⊂ GL ′
2 case, we have the split GL1 ×GL1 ⊂

GL2 case where

r((s1, s2), χ1 ⊗ χ2,w) =
L(s1 − s2, χ1χ

−1
2 )

L(1 + s1 − s2, χ1χ
−1
2 )ε(s1 − s2, χ1χ

−1
2 )

.

Observe that for the group SO4n all the simple reflections correspond to GL1 ×GL1 ⊂
GL2 case and that is the reason of a simpler decomposition.

For the group Sp4n and a nontrivial τ , the character χ is nontrivial and hence the

global normalizing factor r(s, χ,w) is holomorphic and non-vanishing for Re(s) > 0.
Thus, the hyperplane 2sn = 1 is not singular and besides the usual singular hyper-

planes si − si+1 = 1 for i = 1, . . . , n − 1 appearing for χ = χi = χi+1, we need

the singular hyperplane sn−1 + sn = 1 occuring if and only if χ = χn−1 = χ−1
n , i.e.,

χ2 is trivial. The iterated pole at t0 = (2n − 1, . . . , 1, 0) indeed occurs for the inter-

twining operators corresponding to the Weyl group elements wl,T and w1, where w1

is as in the proof of Theorem 2.2. Since χ2 is trivial, by the global functional equa-

tion, r(s, χ,w0) = 1 where wl,T = w1w0. Therefore, up to the nonzero constant, the

iterated residue of the sum of the intertwining operators (2.1) equals

N(t0, τ ,w1) + N(t0, τ ,wl,T).

Decomposing according to the restricted tensor product over all places shows that the

residue can be written as N(t0, τ ,w1)[Id +N(t0, τ ,w0)], where N(t0, τ ,w0) is in fact

the SL2(A) intertwining operator acting on the induced representation IndSL2(A)
GL1(A)χ.
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Now the rest of the proof is the same as the end of the proof of Theorem 2.2. The
parity condition on the product of the signs of the representations Πv is just the non-

vanishing condition for the term in square brackets above.

In the next corollary we compare the parts of the residual spectrum of G ′
n(A) and

H ′
n(A) obtained in Theorem 2.2 with the corresponding parts of the residual spec-

trum for the split groups SO4n(A) and Sp4n(A) obtained in Theorem 2.4. We use the
notation of Theorems 2.2 and 2.4.

Corollary 2.5 In case (i) let π be a cuspidal automorphic representation of the Levi

factor M0(A) of the split group SO4n(A) or Sp4n(A) which is the global lift of π ′. For

one-dimensional π ′ in cases (ii) and (iii) let τ denote the one-dimensional cuspidal

automorphic representation of the maximal split torus T(A) of SO4n(A) or Sp4n(A) such

that the global lift π is the unique irreducible quotient of the induced representation

IM0 (A)
T(A) ((1/2,−1/2, . . . , 1/2,−1/2), τ).

Then the map

ı : A(π ′) 7→





A(π) if π ′ is in case (i),

A(τ) if π ′ is in case (ii),

A(1T(A)) if π ′ is in case (iii),

is an injective map from the set of constituents A(π ′) of the part L2 of the residual

spectrum of G ′
n(A) or H ′

n(A) to the set of constituents of the part L2
M0
⊕L2

T(SO4n) or L2
M0
⊕

L2
T(Sp4n) of the residual spectrum of the split group SO4n(A) or Sp4n(A). The image of

the map ı consists of all constituents A(π) of L2
M0

such that πv is square-integrable at

every place v ∈ S and

(a) for the group G ′
n, all constituents A(τ) of L2

T(SO4n),

(b) for the group H ′
n, all constituents A(τ) of L2

T(Sp4n) such that τv is nontrivial at every

place v ∈ S and the constituent A(1T(A)).

Proof The corollary is a direct consequence of Theorems 2.2 and 2.4. For the de-

scription of the image of ı, let us just recall the global lift to GL2(A) of cuspidal

automorphic representations of GL ′
1(A) defined at the beginning of Section 1. By

[7, Theorem 8.3], the global lift is a bijection between the cuspidal automorphic rep-

resentations of GL ′
1(A) which are not one-dimensional and the cuspidal automorphic

representations of GL2(A) having a square-integrable local component at all places
v ∈ S. That gives the condition in part (i) of the image of ı. The global lift, as defined

in Section 1 is also a bijection between the one-dimensional cuspidal automorphic
representations of GL ′

1(A) and the residual automorphic representations of GL2(A).

Hence, there is no reason for the conditions in (a) and (b) due to the global lift. How-

ever, the condition in (b) is a consequence of the decomposition of L2 for H ′
n, where

the same local condition appears. The reason for such local condition lies in the fact

that the local normalizing factors in the case GL ′
1 ⊂ H ′

1 are not of the same form for

split and non-split places.
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Remark 2.6 Observe that by our definition the map ı sends irreducible constituents
to irreducible ones. But if A(π ′) is not irreducible, i.e., π ′ is in case (ii) for the group

H ′
n, then ı(A(π ′)) is also not irreducible. In Theorems 2.2 and 2.4 these spaces of

automorphic forms are described more precisely. The choice of the local components

Π
′
v and Πv at split places is the same, while at non-split places there is just one Π

′
v and

exactly two choices for Πv, since χv is nontrivial. Moreover, the product of all the
signs of Πv must be equal to one, thus reducing the freedom of the choice. Therefore,

we cannot refine the map ı to get matching of the irreducible constituents. The best

we can do is to define ı(
⊗

v Π
′
v) to be the sum of all

⊗
v Πv such that Π

′
v
∼= Πv at all

split places. Thus we obtained matching of the irreducible constituent of A(π ′) with

the sum of 2|S|−1 irreducible constituents of ı(A(π ′)).

Finally, let F be a local field of characteristic zero and DF the quaternion algebra
central over F with the reduced norm det′F. The group of invertible elements of DF is

denoted by GL ′
1(F). Let G ′

n(F) and H ′
n(F) be the groups of isometries of the hermitian

form on the 2n-dimensional right vector space over DF defined at the beginning of
Section 1.

Now we prove, using the global method, that the dual under the Aubert–Schnei-

der–Stuhler involution [4, 37] of the principal series Steinberg representation of
G ′

n(F) and H ′
n(F) is unitarizable. The proof is based on Theorem 2.2, where the

parts of the residual spectrum of groups G ′
n(A) and H ′

n(A) for an arbitrary global

quaternion algebra D central over an algebraic number field k are constructed. In
fact, we show that the Aubert–Schneider–Stuhler dual of the principal series Stein-

berg representation is a local component of an automorphic representation belong-
ing to the residual spectrum of G ′

n(A) or H ′
n(A) for a suitably chosen D and k, and

thus is unitarizable. The principal series Steinberg representation of G ′
n(F) or H ′

n(F)

is the Steinberg representation supported in the minimal parabolic subgroup with
the Levi factor M ′

0(F) ∼= GL ′
1(F)×· · ·×GL′

1(F). For the group G ′
n(F) it is the unique

irreducible subrepresentation of one of the induced representations

I
(

(n−1/2, . . . , 3/2, 1/2), ρ ′⊗· · ·⊗ρ ′
)

= Ind
G ′

n (F)

M ′

0 (F)

(
ρ ′νn−1/2⊗· · ·⊗ρ ′ν3/2⊗ρ ′ν1/2

)
,

where ρ ′ is a not-one-dimensional unitary irreducible representation of GL ′
1(F) with

trivial central character, and

I
(

(2n − 3/2, . . . , 5/2, 1/2), (µ ◦ det′F) ⊗ · · · ⊗ (µ ◦ det′F)
)

= Ind
G ′

n (F)

M ′

0 (F)

(
(µ ◦ det′F)ν2n−3/2 ⊗ · · · ⊗ (µ ◦ det′F)ν5/2 ⊗ (µ ◦ det′F)ν1/2

)
,

where µ is a unitary character of F×, µ2 is trivial, and µ ◦ det′F a one-dimensional

unitary representation of GL ′
1(F). For the group H ′

n it is the unique irreducible sub-

representation of one of the induced representations

I
(

(n−1/2, . . . , 3/2, 1/2), ρ ′⊗· · ·⊗ρ ′
)

= Ind
H ′

n (F)

M ′

0 (F)
(ρ ′νn−1/2⊗· · ·⊗ρ ′ν3/2⊗ρ ′ν1/2

)
,
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where ρ ′ is a unitary irreducible representation of GL ′
1(F) with dimension greater

than one having trivial central character,

I
(

(2n − 3/2, . . . , 5/2, 1/2), (µ ◦ det′F) ⊗ · · · ⊗ (µ ◦ det′F)
)

= Ind
H ′

n (F)

M ′

0 (F)

(
(µ ◦ det′F)ν2n−3/2 ⊗ · · · ⊗ (µ ◦ det′F)ν5/2 ⊗ (µ ◦ det′F)ν1/2

)
,

where µ is a nontrivial unitary quadratic character of F× and µ ◦ det′F a nontrivial

one-dimensional unitary representation of GL ′
1(F), and

I
(

(2n − 1/2, . . . , 7/2, 3/2), (1F ◦ det ′F) ⊗ · · · ⊗ (1F ◦ det′F)
)

= Ind
H ′

n (F)

M ′

0 (F)

(
(1F ◦ det ′F)ν2n−1/2 ⊗ · · · ⊗ (1F ◦ det′F)ν7/2 ⊗ (1F ◦ det′F)ν3/2

)
,

where 1F is the trivial character of F× and 1F ◦ det′F the trivial representation of

GL ′
1(F). The Aubert–Schneider–Stuhler dual of these Steinberg representations is the

unique irreducible quotient of the induced representations. It is in fact the Langlands

quotient since the representations of M ′
0(F) are supercuspidal and all s are in the

positive Weyl chamber.

Corollary 2.7 The Aubert–Schneider–Stuhler dual of the principal series Steinberg

representation of G ′
n(F) and H ′

n(F) is unitarizable, where for the group H ′
n we assume

that representation ρ ′ of GL ′
1(F) satisfies assumption (∗) of the proof below.

Proof Let k be an algebraic number field such that at a place w the completion kw of

k is isomorphic to F. Let D be a quaternion algebra central over k such that w is one

of the places of k where D does not split, i.e., w ∈ S. Then D ⊗k kw
∼= DF.

For a unitary irreducible representation ρ ′ of GL ′
1(DF) ∼= D×

F with dimension

greater than one, let ρ be its local lift to GL2(F) defined using the Jacquet–Langlands
correspondence at the beginning of Section 1. By [33, Lemma 2.1], there exists a cus-

pidal automorphic representation σ ∼= ⊗vσv of GL2(A) having trivial central charac-

ter and such that σw
∼= ρ. For the group H ′

n we assume that ρ ′ is such that there is a
choice of σ satisfying the assumption

(∗) L(1/2, σ) 6= 0,

for a suitable algebraic number field k. Let σ ′ ∼=
⊗

v σ
′
v be the cuspidal automorphic

representation of GL ′
1(A) with the global lift σ. Then σ ′

w
∼= ρ ′. Similarly, for the

nontrivial one-dimensional unitary representation µ ◦ det′F of GL ′
1(F) ∼= D×

F there

exists a nontrivial unitary quadratic character χ of A
×/k× such that χw

∼= µ and

χv is nontrivial at every place v ∈ S. For the trivial one-dimensional representation
1F ◦ det′F of GL ′

1(F) ∼= D×
F , where 1F is the trivial character of F×, we take χ = 1,

where 1 is the trivial character of A
×/k×.

Now by Theorem 2.2, for the representations π ′ ∼= σ ′ ⊗ · · · ⊗ σ ′ and π ′ ∼=
(χ ◦ det′) ⊗ · · · ⊗ (χ ◦ det′) of the Levi factor M ′

0(A) and the corresponding s0 as

in Theorem 2.2, the image of the normalized intertwining operator N(s0, π
′,wl) is
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isomorphic to a constituent of the residual spectrum of G ′
n(A) or H ′

n(A). Therefore,
the image is unitary, and specifically at the place w of k the image of the local nor-

malized intertwining operator N(s0, π
′
w,wl) is unitary. But in Theorem 2.2 we have

also proved that the image of that local normalized intertwining operator is irre-

ducible. More precisely, for different π ′, it is precisely the Langlands quotient of the

induced representations defining the Steinberg representations above. As mentioned
there, the Langlands quotients for those principal series representations are in fact

the Aubert–Schneider–Stuhler duals of the Steinberg representation.
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longueur finie d’un groupe réductif p-adique. Trans. Amer. Math. Soc. 347(1995), 2179–2189 (and
“Erratum.” Trans. Amer. Math. Soc. 348(1996), 4687–4690).

[5] W. Casselman and F. Shahidi, On irreducibility of standard modules for generic representations. Ann.
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[33] G. Muić, and G. Savin, Complementary series for Hermitian quaternionic groups. Canad. Math. Bull.

43(2000), no. 1, 90–99.
[34] F. Shahidi, On certain L-functions. Amer. J. Math. 103(1981), no. 2, 297–355.
[35] , A proof of Langlands’ conjecture on Plancherel measures; Complementary series of p-adic

groups. Ann. of Math. 132(1990), no. 2, 273–330.
[36] B. Speh, Unitary representations of GL(n,R) with nontrivial (g,K)-cohomology. Invent. Math.

71(1983), no. 3, 443–465.
[37] P. Schneider and U. Stuhler, Representation theory and sheaves on the Bruhat–Tits building. Inst.

Hautes. Études Sci. Publ. Math. (1997), no. 95, 97–191.
[38] M. Tadić, Classification of unitary representations in irreducible representations of general linear

group (non-Archimedean case). Ann. Sci. École Norm. Sup. 19(1986), no. 3, 335–382.
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