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A DIMENSION-DEPENDENT MAXIMAL INEQUALITY
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Abstract In this short note we show that sup{||M,| : v is a measure on R"}, where || M, | denotes the
centred Hardy—Littlewood maximal operator, depends exponentially on n.
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1. Statement of the problem

Let v be a o-finite measure on the Borel subsets of R™. Define the Hardy-Littlewood
centred maximal operator associated with v by

1 n
M. f@) = 33%’<u<a~u»> /Brm fldv, @R

It was proved in [1,2] that
||va||Lp(R",u) < C“fHLp(]R",V)a 1 <p<oo,
where C' does not depend on v. We present a simple construction showing that C' depends
exponentially on n. This answers the question posed in [2, 3].
2. Construction

Claim 2.1. There is an absolute constant o > 1 such that one can find [@"] points
T1,%2,--.,T[qn] on the Euclidean sphere S"~1 such that

|zi — x5l > 1, i # .

The maximal value of « is immaterial. A simple argument based on volume estimates
yields a > e(/6)/2,
Let us fix w1, %2,...,%[qn) as in the claim and put

v =010y + ) 0ay
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Define f = d(0y. Then || f||z,®") = 1. On the other hand,

_t L 4= a”
(M, f) () = EACH) /Bl(m fldv =1, 1,...,[a"].

Hence, || M, f||z, &) = %[a”].
This is the end of the construction.
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