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A DIMENSION-DEPENDENT MAXIMAL INEQUALITY
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Abstract In this short note we show that sup{‖Mν‖ : ν is a measure on R
n}, where ‖Mν‖ denotes the

centred Hardy–Littlewood maximal operator, depends exponentially on n.
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1. Statement of the problem

Let ν be a σ-finite measure on the Borel subsets of R
n. Define the Hardy–Littlewood

centred maximal operator associated with ν by

Mνf(x) = sup
r>0

(
1

ν(Br(x))

) ∫
Br(x)

|f | dν, x ∈ R
n.

It was proved in [1,2] that

‖Mνf‖Lp(Rn,ν) � C‖f‖Lp(Rn,ν), 1 < p < ∞,

where C does not depend on ν. We present a simple construction showing that C depends
exponentially on n. This answers the question posed in [2,3].

2. Construction

Claim 2.1. There is an absolute constant α > 1 such that one can find [αn] points
x1, x2, . . . , x[αn] on the Euclidean sphere Sn−1 such that

‖xi − xj‖ > 1, i �= j.

The maximal value of α is immaterial. A simple argument based on volume estimates
yields α � e(π/6)2/2.

Let us fix x1, x2, . . . , x[αn] as in the claim and put

ν = δ{0} +
∑

i

δ{xi}.
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Define f = δ{0}. Then ‖f‖Lp(Rn,ν) = 1. On the other hand,

(Mνf)(xi) � 1
ν(B1(xi))

∫
B1(xi)

|f | dν = 1
2 , i = 1, . . . , [αn].

Hence, ‖Mνf‖Lp(Rn,ν) � 1
2 [αn].

This is the end of the construction.
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