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Abstract

A group G is said to be a B(n, k) group if for any n-element subset A of G, |A2| ≤ k. In this paper,
characterizations of B(5, 16) groups and B(5, 17) groups are given.
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1. Introduction

A group G is said to have the small squaring property on n-element subsets if for any
n-element subset A of G, |A2| < n2, where A2 = {ab | a, b ∈ A}. Furthermore, G is
called a Bn-group if |A2| ≤ 1

2 n(n + 1) for all n-element subsets A. Recently, Eddy and
Parmenter generalized these notions to a new notion of B(n, k) groups [3]. A group G is
called a B(n, k) group if |A| = n implies |A2| ≤ k with k ≤ n2 − 1. Therefore a Bn-group
is a B(n, 1

2 n(n + 1)) group, and a group with small squaring property on n-element
subsets is a B(n, n2 − 1) group.

Determining all B(n, k) groups is an interesting problem. For any given k, G is
obviously a B(n, k) group when |G| ≤ k, and such G is referred to as trivial. It is also
easy to see that any abelian group G is a B(n, k) group when k ≥ 1

2 n(n + 1). So what
we are interested in is to determine all nonabelian nontrivial B(n, k) groups.

The B(n, k) groups for n = 2 and n = 3 have been completely characterized in
the literature [1, 3, 4, 9, 10]. For n = 4, all B(4, 10) groups were characterized
by Parmenter in [10], and B(4, k) groups where k = 11, 12, and 13 were recently
characterized by Li and Tan in [7, 8]. The only known result for B(5, k) groups with
k ≥ 15 is the characterization of B(5, 15) groups given by Li and Tan in [6], and it was
shown that G is a nonabelian nontrivial B(5, 15) group if and only if G � Q8 ×C2.
In this paper, we continue the investigation on B(5, k) groups for k = 16 and 17.
We provide the complete characterizations of B(5, 17) non-2-groups and 2-groups in
Sections 2 and 3, respectively. In Section 4 we obtain a complete characterization
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of B(5, 16) groups, and we also give a short proof for the characterization of B(5, 15)
groups.

Throughout the paper, all nonabelian groups are assumed to be finite, and our
notation for groups is standard and follows that in [11]. In particular, we denote the
quaternion group of order eight and the dihedral group of order 2n by Q8 and D2n,
respectively:

Q8 = 〈a, b | a4 = 1, a2 = b2, ab = a−1〉,

D2n = 〈a, b | an = b2 = 1, ab = a−1〉.

2. The characterization of B(5, 17) non-2-groups

In this section, we investigate B(5, 17) non-2-groups. We first work on a necessary
condition for a non-2-group G to be a B(5, 17) group. Afterwards, we will give a
complete characterization of B(5, 17) non-2-groups. Throughout the section, a group
G is assumed to be a non-2-group.

2.1. A necessary condition for B(5, 17) non-2-groups. We first characterize a
Sylow subgroup of odd order of a B(5, 17) group.

L 2.1. Let P be a Sylow subgroup of odd order of a B(5, 17) group G. Then P is
abelian.

P. Suppose on the contrary that P is not abelian. Then P has two maximal
subgroups M and N containing Z(P). Let L = M ∩ N, and hence Z(P) ⊆ L. It was
proved in [1] that there exist a ∈ M − L and b ∈ N − L such that ab , ba.

Let A = {a, b, ab, b2, ab2}. Then A2 contains a subset

B = {a2, a2b, ab2, a2b2, ba, b2, bab, b3, bab2, aba, abab, ab3, abab2,

b2a, b2ab, b4, b2ab2, ab2a, ab2ab, ab4, ab2ab2}.

Since M and N are maximal subgroups of P, M / P and N / P. Since N, aN and
a2N are disjoint, we may write B as a disjoint union of subsets, that is,

B = (B ∩ N) ∪ (B ∩ aN) ∪ (B ∩ a2N)

where

B ∩ N = {b2, b3, b4},

B ∩ aN = {ab2, ab3, b2a, b2ab, b2ab2, ab4, ba, bab, bab2} and
B ∩ a2N = {a2, a2b, a2b2, aba, abab, abab2, ab2a, ab2ab, ab2ab2}.

To show that the 21 elements in B are distinct, we only need to verify that the elements
in each subset above are distinct.

In B ∩ N, since the order of b is odd, the three elements are distinct.
In B ∩ aN, {ab2, b2a, bab} ⊆ b2M, {ab3, b2ab, bab2} ⊆ b3M, and {b2ab2, ab4, ba} ⊆

bM ∪ b4M. Since the subsets b2M, b3M, bM ∪ b4M are disjoint, we only need to show
that the elements in each subset are distinct. Since the order of b is odd, ab2 , b2a. It
is not hard to show that those three elements in each subset are distinct and thus the
nine elements in B ∩ aN are distinct.
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In B ∩ a2N, {a2, abab2, ab2ab} ⊆ M ∪ b3M, {a2b, aba, ab2ab2} ⊆ bM ∪ b4M, and
{a2b2, abab, ab2a} ⊆ b2M. Similar to above, we can show that the nine elements in
B ∩ a2N are distinct.

Therefore |B| = 3 + 9 + 9 = 21, and thus G is not a B(5, 17) group, giving a
contradiction. So P is abelian. �

L 2.2. Let G be a B(5, 17) group of odd order. Then G is abelian.

P. Suppose on the contrary that there exists some finite nonabelian B(5, 17) group
of odd order and let G be such a group with minimal order. It follows from Lemma 2.1
that G is not nilpotent. Since all proper subgroups of G are abelian, G is a minimal
nonnilpotent group. It follows from [11, Theorem 9.1.9] that |G| = puqv, where p and q
are distinct primes. Moreover, G has a normal Sylow q-subgroup Q and a nonnormal
cyclic Sylow p-subgroup P, say P = 〈a〉. Since P is not a normal subgroup of G, there
exists b ∈ Q such that ab < 〈a〉; in particular, ab , ba. We next divide the proof into
two cases according to whether |P| > 3 or |P| = 3.

Case 1: |P| > 3. Let A = {b, a, ba2, a2, ba}. Note that A2 contains a subset

B = {b2, ba, b2a2, ba2, ab, a2, aba2, a3, ba2b, ba3, ba2ba2,

ba4, ba2ba, a2ba2, a4, a2ba, bab, baba2, baba}.

Recall that Q /G. Then we get B ∩ Q = {b2}, B ∩ aQ = {ba, ab, bab}, B ∩ a2Q =

{b2a2, ba2, a2, ba2b, baba}, B ∩ a3Q = {aba2, a3, ba3, a2ba, ba2ba, baba2}, and B ∩
a4Q = {ba2ba2, ba4, a2ba2, a4}. Since subsets B ∩ Q, B ∩ aQ, B ∩ a2Q, B ∩ a3Q and
B ∩ a4Q are disjoint, we just need to find distinct elements in each subset. Note
that a2b , ba2. And by this condition, we also have a , bab and a2 , ba2b (∗). (If
a = bab (that is, ba = b−1), then ba2

= (b−1)a = b, which is a contradiction. Similarly,
if a2 = ba2b (that is, ba2

= b−1), then ba4
= (b−1)a2

= b, which means that ba = ab, and
this is a contradiction.) By (∗), it is easy to know that the 17 underlined elements
above are distinct. Since G is a B(5, 17) group, ba2ba in B ∩ a3Q must be a redundant
element. The only possibility is ba2ba = aba2. A similar argument shows that
baba2 = a2ba. From these two equations, we get ba2b = aba and baba = a2b. Then
aba = ba2b = b2aba, from which we get b2 = 1, giving a contradiction.

Case 2: |P| = 3. We first assume that ba = ab2. Recall that o(a) = 3, b = a−3ba3 = b8,
and thus o(b) = 7. Let A = {a, b2, ab, a2b3, b3}. Then

A2 = {a2, ab2, a2b, b3, ab3, ab4, b4, ab5, a2b4, b5, a2b2, a2b3,

1, b6, a2b5, ab, a2b6, ab6, a}.

Since A2 ∩ Q, A2 ∩ aQ, and A2 ∩ a2Q are disjoint, and the elements in each subset
are distinct, we know that |A2| = 19, which is a contradiction. Thus, ba , ab2. By
replacing a with a2 in the above argument, we can show that ba2 , a2b2, that is,
ab , b2a. We can also show that a−1ba , b−2 (otherwise, we have o(b) = 9 which
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is not co-prime to o(a), giving a contradiction). If a−1ba = b3, then o(b) = 13. Let
A = {a, b2, ab, a2b3, b3}. Then

A2 = {b3, b4, b5, b6, b9, b10, b12, ab2, ab3, ab4, ab6, ab7, ab9, ab10,

a2, a2b, a2b3, a2b4, a2b5, a2b6, a2b8}.

So |A2| = 21, giving a contradiction. Similarly, it is not hard to prove that a−1ba , bk,
where k = 0, ±1, ±2, ±3, ±4 (∗∗). Let A = {a, b, ab, ab2, ab3}. Then A2 contains a
subset

B = {b2, ab, ba, bab, bab2, bab3, ab2, ab3, ab4, a2, abab, a2b, a2b2, a2b3,

aba, abab2, abab3, ab2ab}.

Using the condition (∗∗), it is not hard to show that the elements in B are distinct, and
thus |B| = 18, which gives a contradiction.

In both cases above, we have found contradictions. Therefore any finite B(5, 17)
group G of odd order is abelian. �

L 2.3. Let G be a nontrivial B(5, 17) non-2-group with a nontrivial Sylow 2-
subgroup P. Then G has a normal subgroup T of odd order such that G = T P.

P. Assume to the contrary that G is a B(5, 17) group which does not have a normal
subgroup of odd order with 2-power index. Let H be a subgroup of G with minimal
order such that it does not have a normal subgroup of odd order with 2-power index.
Then every proper subgroup of H has a normal subgroup of odd order with 2-power
index. It follows from [5, Ch. IV, Theorem 5.4] that a Sylow 2-subgroup P1 of H is
normal in H and its exponent is at most 4. Moreover, |H/P1| = qv for some odd prime
q and a Sylow q-subgroup T of H is cyclic, say T = 〈a〉. Since T is not normal in H,
there exists an element b ∈ P1 such that ab < 〈a〉, in particular, ab , ba.

We first assume that |H| ≤ 17. By checking all the groups of order up to 17
which satisfy the above-mentioned properties, we know that H � A4. Let a ∈ T and
b ∈ P1 be the elements of H corresponding to the elements (123) and (12)(34) of A4,
respectively. Since |G| ≥ 18, there exists another element c ∈G − H. Since ab , ba, by
replacing c with ac, bc, or abc if necessary, we can assume that bc , cb, ac , ca. Let
A = {a, b, ab, a2b, c}. Then A2 has a subset

B = (B ∩ H) ∪ (B ∩ (G − H))

= {a2, ab, a2b, b, ba, 1, bab, aba, a, abab, aba2b, a2bab}

∪ {ac, bc, abc, a2bc, cb, ca, cab}.

A straightforward computation shows that the 17 underlined elements in B are distinct.
Next, we consider elements ca and cab. It is not hard to see that ca is different from
ac, bc, cb and cab; cab is different from bc, ca and cb. Since G is a B(5, 17) group,
we may assume that ca is a redundant element. If ca = abc, we note that cab can only
be equal to ac or a2bc. If cab = ac, then cab = abcb = ac, which leads to bcb = c.
Since b corresponds to (12)(34), that is, o(b) = 2, we get cb = bc from the above
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equation, which is a contradiction. If cab = a2bc, then abcb = a2bc, which leads to
bcb = abc, that is, cbc−1 = b−1ab. Since o(cbc−1) = 2, while o(b−1ab) = 3, this gives
a contradiction. We have shown that both cases are impossible. Thus ca , abc. If
ca = a2bc, we note that cab can only be equal to ac or abc. Similarly, we can show
that both cases are impossible. Therefore we conclude that |A2| ≥ 18, and thus G is not
a B(5, 17) group, giving a contradiction.

Next, assume that |H| ≥ 18. Without loss of generality, we may assume that H = G.
Let b be an element of maximal order in P such that ab , ba. As before, we also know
that a2b , ba2. We divide the proof into two cases according to the order of a.

Case 1: o(a) > 3. Let A = {a, b, ab, a−1b, a2}. Then

A2 ∩ P ⊇ {b, b2, a−1ba, a−1bab, aba−1b},

A2 ∩ aP ⊇ {ab, ba, bab, ab2},

A2 ∩ a2P ⊇ {a2, a2b, aba, ba2},

A2 ∩ (a3P ∪ a−2P) ⊇ {a−1ba−1b, a3, a3b, aba2},

A2 ∩ (a−1P ∪ a4P) ⊇ {ba−1b, a4}.

Since P /G and subsets P, aP, a2P, a3P ∪ a−2P and a−1P ∪ a4P are disjoint, it is
not hard to show that the 17 underlined elements above are distinct. Next we show
that there must be another distinct element in A2. If o(a) > 5, it is easy to see that
aba2 is the 18th distinct element. If o(a) = 5, we consider aba−1b in A2 ∩ P. If
aba−1b is not a redundant element, it is the 18th distinct element. We may assume
aba−1b is a redundant element. Note that the only possibility is aba−1b = a−1ba. Then
a−1ba−1b = a−2aba−1b = a−3ba = a2ba, which is different from aba2. So aba2 is the
18th distinct element under this circumstance. Therefore |A2| ≥ 18, and thus G is not a
B(5, 17) group, giving a contradiction.

Case 2: o(a) = 3. Suppose first that o(b) = 4. Let A = {a, b, ab, ab−1, a2}. Then A2

contains a subset

B = (B ∩ P) ∪ (B ∩ aP) ∪ (B ∩ a2P)

= {1, b−1, b, b2, aba2, ab−1a2} ∪ {ab, ba, bab, bab−1, ab2, a}

∪ {a2, a2b, a2b−1, ba2, aba, abab, abab−1, ab−1a, ab−1ab, ab−1ab−1}.

We first show that a , bab, that is, a−1ba , b−1. Otherwise, ba2
= b, and then ab = ba,

giving a contradiction. Recall that ba , ab2. Since P, aP and a2P are disjoint, it is not
hard to show that the 19 underlined elements in B are distinct. Thus |B| ≥ 19, giving a
contradiction.

Therefore o(b) = 2, and then P is elementary abelian. Since |G| ≥ 18 and |T | = 3,
|P| ≥ 8. Then we can choose an element c ∈ P such that c < 〈ba, b〉 ∪ 〈ba2

, b〉 = K.
Note that bc < K. Replacing c by bc if necessary, we can assume that ac , ca. Let
A = {a, b, ab, ac, bca2}. Then A2 contains a subset

B = {a2, ab, a2b, a2c, ba, 1, bab, bac, aba, a, acb, abab, abac, aba2, bc, b, c}.
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As before, we can show that |B| = 17. We next show that at least one of abca2 and
aca2 in A2 is a new distinct element. Otherwise, if both are in B, we note that both
must be in {bc, c, b}. If aca2 < {bc, c, b}, then aca2 is the 18th distinct element. So we
assume that aca2 ∈ {b, c, bc}. If aca2 = b, then c = a−1ba, which contradicts c < K. If
aca2 = c, then ac = ca, which is a contradiction. If aca2 = bc, since abca2 < {aca2, 1},
abca2 can only be equal to b or c. If abca2 = c, then c = aba−1aca2 = aba−1bc, and we
get ab = ba, which is a contradiction. If abca2 = b, then c = ba−1ba, which contradicts
c < K.

Therefore |A2| ≥ 18, and thus G is not a B(5, 17) group, giving a contradiction. �

In what follows, we assume that G is a nontrivial nonabelian B(5, 17) non-2-group
having a Sylow 2-subgroup P and the normal 2-complement T .

L 2.4. T is abelian and not centralized by P.

P. It follows from Lemma 2.2 that T is abelian. Suppose that P centralizes T .
Then G = P × T and since G is not abelian, P is not abelian. It is easy to see that P has
two distinct maximal normal subgroups M and N containing Z(P). Similar to the proof
in Lemma 2.1, we have two elements a ∈ M − N and b ∈ N − M such that ab , ba. Let
A = {a, b, bc, abc, abc2} where c ∈ T − {1}. If a2 , b2, A2 contains a subset

B = (B ∩ (N × T )) ∪ (B ∩ a(N × T ))

= {a2, a2bc, a2bc2, b2, abac, ababc2, abac2, ababc4}

∪ {ab, abc, ba, babc, babc2, bac, babc3, ab2c, ab2c2, ab2c3}.

Since subsets N × T and a(N × T ) are disjoint, it is not hard to show that the 18
elements in B are distinct. If a2 = b2, then

A2 = (A2 ∩ (N × T )) ∪ (A2 ∩ a(N × T ))

= {a2, a2bc, a2bc2, b2c, b2c2, abac, ababc2, ababc3, abac2, ababc4}

∪ {ab, abc, ba, babc, babc2, bac, babc3, ab2c, ab2c2, ab2c3}.

As before, it is easy to show the 17 underlined elements are distinct. Since G
is a B(5, 17) group, we know that ababc2, ababc3 and ababc4 must be redundant
elements. Therefore we get a = bab, b = aba and o(c) = 3, so o(a) = o(b) = 4. Let
A1 = {a, ab, bc, abc, bac2}. Then

A2
1 = {a2, a2b, b, a3, 1, a, abc, a2bc, a2c, ac, bac, bc, a3c, bc2, a3c2, a2c2, ac2, b3c2, c2}.

It is easy to show that the 19 elements in A2
1 are distinct. Thus G is not a B(5, 17)

group, giving a contradiction. �

L 2.5. P has a subgroup Q of index 2 which centralizes T and every element of
P − Q inverts T .

P. We first show that for each b ∈ P either b centralizes T or b inverts T .
Assume that b ∈ P does not centralize T . So ab , ba for some a ∈ T . First we show
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that b2a = ab2. Assume to the contrary that b2a , ab2. Then o(b) ≥ 4. Let A = {a, ab,
ab2, ab3, 1}. Then A2 contains a subset

B = {a2, abab3, ab2ab2, ab3ab, 1, a2b, aba, ab2ab3, ab3ab2,

a2b2, abab, ab2a, ab3ab3, a2b3, abab2, ab2ab, ab3a, ab3}.

Since T /G, ab , ba and b2a , ab2, as before, it is not difficult to show that the 18
elements in B are distinct, and thus G is not a B(5, 17) group, giving a contradiction.
So b2a = ab2.

We now prove that b−1ab = a−1. Assume to the contrary that b−1ab , a−1. We first
assume that o(b) ≥ 4. Let A = {a, ab, a2b, ab2, b2}. Then A2 contains a subset

B = {a2, ab4, b4, a2b, a3b, aba, a2ba, a2b2, ab2, abab, aba2b, a2bab,

a2ba2b, abab2, a2b3, ab3, a3b3, a2bab2}.

We first show that ba , a2b. Otherwise bab−1 = a2. Since b2a = ab2, a = b2ab−2 = a4.
Therefore o(a) = 3, and then bab−1 = a−1, contradicting the assumption. Similarly, we
have ab , ba2 and b−1ab , a−2. In view of these facts, it is not hard to show that the
18 elements in B are distinct. Thus |A2| ≥ 18, and then G is not a B(5, 17) group,
giving a contradiction. Next assume that o(b) = 2. Let A = {a, ab, a2b, b, a−1}. Then
A2 contains a subset

B = {1, a, a2, bab, abab, a2bab, ba2b, aba2b, a2ba2b,

ab, a2b, a3b, aba−1, aba, a2ba−1, a2ba, ba−1, ba}.

As in the proof of Lemma 2.2, we can show that b−1ab = bab , ak, where k =

0, ±1, ±2, ±3, and thus the elements in B are distinct. So |A2| ≥ 18, which means that
G is not a B(5, 17) group, giving a contradiction. Thus we have b−1ab = a−1.

Next we show that b inverts T . Note that we just showed that for each y ∈ T either
yb = y or yb = y−1. Suppose that there exists x ∈ T − {1} such that xb = x. Since xa ∈ T ,
we have either (xa)b = xa or (xa)b = (xa)−1. The former leads to xa−1 = (xa)b = xa,
and then a2 = 1, giving a contradiction. The latter gives that xa−1 = (xa)b = (xa)−1 =

a−1x−1 = x−1a−1, and then x2 = 1, again giving a contradiction. Therefore b inverts T .
Set Q = {g ∈ P | tg = t for all t ∈ T }. Clearly Q is a subgroup of P which centralizes

T and every element b of P − Q does not centralize T . So by what we just proved,
b inverts T . It remains to show that [P : Q] = 2. It follows from Lemma 2.4 that
P , Q, so there exists b ∈ P − Q. Since for every element b′ ∈ P − Q, b′ inverts T , we
have b′b ∈ Q. Thus b′ ∈ Qb−1, proving [P : Q] = 2. �

In the following lemma, Q will denote a subgroup of P of the type determined in
Lemma 2.5.

L 2.6. P is abelian, and the exponent of Q is at most 2.

P. Suppose on the contrary that P is not abelian. Then there exist elements a ∈ Q
and b ∈ P − Q such that ab , ba. Otherwise, if each element b ∈ P − Q centralizes Q,
then b centralizes 〈b, Q〉. Since [P : Q] = 2 and b < Q, 〈b, Q〉 = P, so b ∈ Z(P).
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Thus P − Q ⊆ Z(P). Since P = 〈P − Q〉 ⊆ Z(P), P is abelian, giving a contradiction.
If a2 , 1, let A = {b, ba, t, a, at} where t ∈ T − {1}. Then A2 contains a subset

B = (B ∩ (Q × T )) ∪ (B ∩ b(Q × T ))

= {b2, b2a, bab, baba, t2, ta, tat, a2t, a2t2}

∪ {bt, ba, bat, ba2, ba2t, tb, tba, ab, aba, atb}.

It is easy to show the 18 underlined elements in B are distinct, giving a contradiction.
Thus a2 = 1. If b2 = 1, since ab , ba, we have (ab)2 , 1. Replacing b by ab if
necessary, we may assume that b2 , 1. Let A1 = {b, ba, t, a, bt}. Then

A2
1 = (A2

1 ∩ (Q × T )) ∪ (A2
1 ∩ b(Q × T ))

= {b2, b2a, bab, baba, 1, b2t, babt, at, t2, b2t−1, b2at−1}

∪ {ba, ba2, b, ab, aba, bt, bat, abt, bt−1, bat−1, bt2}.

It is not hard to show that the 18 underlined elements here are distinct, so that |A2
1| ≥ 18,

giving a contradiction. Therefore P must be abelian.
Next we will show that the exponent of Q is at most 2. Suppose on the contrary that

Q contains an element a of order four. Let b ∈ P − Q and t ∈ T − {1}. By replacing b
with ba if necessary, we can assume that o(b) ≥ 4. Consider A = {t, at−1, tab, bt, a2b}.
Then A2 contains a subset

B = {b, ab, a2b, b2, a2b2} ∪ {a3bt, a2b2t, a3b2t, abt−2, a2bt−2, ab2t−2}

∪ {bt2, abt2, ab2t2, a2bt−1, a3bt−1, a2b2t−1, a3b2t−1}.

It is not hard to show that the 18 elements in B are distinct. Therefore G is not a
B(5, 17) group, giving a contradiction. So the exponent of Q is at most 2. �

Summarizing the results proved in the above lemmas, we obtain a necessary
condition for B(5, 17) non-2-groups.

T 2.7. Let G be a nontrivial nonabelian B(5, 17) non-2-group. Then G = T P
where T is a normal abelian subgroup of odd order and P is a nontrivial abelian Sylow
2-subgroup of G. Furthermore, the subgroup Q = CP(T ) has index 2 in P, the exponent
of Q is at most 2, and each element of P − Q inverts T .

2.2. A complete characterization of B(5, 17) non-2-groups. In this subsection, we
complete the characterization of B(5, 17) non-2-groups, and show that there is no
nontrivial nonabelian B(5, 17) non-2-group.

L 2.8. D2n with n ≥ 9 is not a B(5, 17) group.

P. We have D2n = 〈a, x | an = x2 = 1, ax = a−1〉. Let A1 = {a, a6, ab, a2b, a5b}
when n = 9. Then

A2
1 = {a2, a7, a2b, a3b, a6b, a3, a7b, a8b, b, a4b, 1, a8, a5, ab, a5b, a, a6, a4}.
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Let A2 = {a, a2, a4, a5x, a6x} when n ≥ 10. Then

A2
2 = {a2, a3, a5, a6x, a7x, a4, a6, a8x, a8, a9x, a10x, a4x, a3x, ax, 1, a−1, a5x, a2x, a}.

It is easy to see that the 18 elements in A1 are distinct, and the 19 elements in A2 are
distinct. Therefore |A2

1| = 18 and |A2
2| = 19, and then D2n is not a B(5, 17) group. �

T 2.9. There is no nontrivial nonabelian B(5, 17) non-2-group.

P. Let G be a nontrivial nonabelian B(5, 17) non-2-group. It follows from
Theorem 2.7 that G = T P where T is a nontrivial normal abelian subgroup of odd
order and P is a nontrivial abelian 2-group. Moreover, P has a subgroup Q of index 2
such that Q centralizes T , and each element x ∈ P − Q inverts both T and Q. Let n be
the exponent of T . Since T is abelian, there exists an element a ∈ T such that o(a) = n.
We divide the proof into two cases according to whether |P| = 2 or |P| ≥ 4.

Case 1: |P| = 2. Let P = 〈x〉. If n ≥ 9, then 〈a, x〉 = D2n. It follows from Lemma 2.8
that D2n is not a B(5, 17) group, so neither is G, giving a contradiction.

Thus n = 3, 5, 7. Since |G| ≥ 18 and |P| = 2, |T | ≥ 9. Since T is an abelian group of
exponent of 3, 5, 7, it has a subgroup H = 〈a〉 × 〈b〉 = Cn ×Cn. Recall that ax = a−1,
bx = b−1 and o(a) = o(b) ≥ 3. Let A = {a, ax, abx, b2x, 1}. Then

A2 = {a2, a, 1, b−1, ab−2, b, ab−1, a−1b2, a−1b, a2x,

a2bx, ab2x, x, ax, bx, abx, a−1b2x, b2x}.

Since subset T and T x are disjoint, it is easy to check that the 18 elements in A2 are
distinct, and thus G is not a B(5, 17) group, giving a contradiction.

Case 2: |P| ≥ 4. We first assume that n ≥ 5. Let t = ay where y ∈ Q − {1}. Then
o(t) = 2n ≥ 10. Since the elementary abelian 2-group Q has index 2 in P, the exponent
of P is at most 4. If there exists x ∈ P − Q such that o(x) = 2, then the subgroup
〈t, x〉 = D2m (with 2m = 4n ≥ 20). Thus 〈t, x〉 is not a B(5, 17) group by Lemma 2.8, so
neither is G, giving a contradiction.

Thus we must have o(x) = 4 for all x ∈ P − Q. If o(a) ≥ 5, let A =

{a, x, a4x, ax2, ax3}. Then A2 contains a subset

B = {a2, ax, a2x2, a2x3, a−1x, x2, a−4x2, a−1x3, a−1,

a3x, a4x2, a3x3, a3, ax3, a2x, x3, a, x}.

Since P, aP ∪ a−4P, a2P, a3P and a4P ∪ a−1P are disjoint, it is easy to see that the 18
elements in B are distinct, which is a contradiction.

Next assume that o(a) = 3. We first consider |P| = 4. Then |T | ≥ 5. Thus T has a sub-
group H = 〈a〉 × 〈b〉 = C3 ×C3. Let A = {a, ax, abx, b2x, b}, where x ∈ P − Q. Then

A2 = {a2, b2, ab, b2x2, abx2, bx2, x2, ab2x2, a2b2x2, a2bx2, a2x,

a2bx, ab2x, x, ax, bx, abx, a2b2x}.

As before, it is easy to show that |A2| = 18, and so G is not a B(5, 17) group, giving a
contradiction.
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Thus |P| > 4. Then |Q| ≥ 4. So there exist y, z ∈ Q − {1} such that x2 , y and x2 , z.
Let A = {a, x, a2y, azx, xz}. Then

A2 = {a2, y, x2, a2zx2, a, azx2, ax2, a2x2, ax, a2zx,

a2x, ayx, a2yx, yzx, zx, a2yzx, axz, axyz}.

It is not hard to show |A2| = 18, and so G is not a B(5, 17) group, giving a contradiction.
In each case, we have found a contradiction. Thus, there is no nontrivial nonabelian

B(5, 17) group. �

3. The characterization of B(5, 17) 2-groups

We now investigate B(5, 17) 2-groups, and will give a complete characterization of
B(5, 17) groups at the end of this section. We first prove some preliminary results.

L 3.1. Let G be a nonabelian B(5, 17) 2-group such that every proper subgroup
of G is abelian. Then G is a trivial B(5, 17) 2-group.

P. Assume that |G| ≥ 32. Since G is a minimal nonabelian 2-group, it follows
from [5, p. 309] that either

G = G1 = 〈a, b | a2m
= b2n

= 1, b−1ab = a1+2m−1
〉, m ≥ 2 and |G| = 2m+n,

or
G = G2 = 〈a, b | a2m

= b2n
= 1, [a, b]2 = 1〉, m ≥ 2 and |G| = 2m+n+1.

Suppose that G = G1 = {bia j | 0 ≤ i ≤ 2n − 1, 0 ≤ j ≤ 2m − 1}. Note that Z(G) =

〈a2, b2〉. We divide the proof into three cases according to whether m > 3, m = 3 or
m = 2.

Case 1: m > 3. Let A = {a, b, ba, ba2, a5}. Then A2 contains a subset

B = {b2, ba, b2a, a2, ba2, ba3, b2a3, b2a4, ba5, a6, ba6, ba7,

a10, ba1+2m−1
, b2a1+2m−1

, ba2+2m−1
, b2a2+2m−1

, ba3+2m−1
, b2a3+2m−1

}.

It is easy to show that the 19 elements in B are distinct. Therefore |A2| ≥ 19, giving a
contradiction.

Case 2: m = 3. Recall that |G| ≥ 32. We know that n ≥ 2. Let A = {a, b, ba, ba2, b2}.
Then

A2 = {a2, ba5, ba6, ba7, b2a, ba, b2, b2a2, b3, ba2, b2a5, b2a6,

b2a7, b3a, ba3, b2a3, b2a4, b3a2, b4}.

It is easy to show that the 19 elements in A2 are distinct, giving a contradiction.

Case 3: m = 2. As before, we know that n ≥ 3. Let A = {a, b, ab2, ab3, ab5}. Then

A2 = {a2, ba3, b2a2, b3a2, b5a2, ba, b2, b3a, b4a3, b6a3, b3a3,

b4a2, b7a2, b3, b4a, b5, b6, b8, b6a, b7, b10}.

It is not hard to show that the first 20 elements in A2 are distinct, giving a contradiction.
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Next consider G = G2. Let c = [a, b]. Since 〈a, b2〉 is a proper subgroup of G,
it is abelian and thus [a, b2] = 1. Since ccb = [a, b][a, b]b = [a, b2] = 1 and c2 = 1,
we obtain c = cb. Similarly, we have c = ca. Thus c ∈ Z(G). Since ba = abc, each
element of G can be written uniquely as aib jck, where 0 ≤ i ≤ 2m − 1, 0 ≤ j ≤ 2n − 1
and 0 ≤ k ≤ 1.

We divide the proof into two cases according to whether m > 2 or m = 2.

Case 1: m > 2. Let A = {a, b, ab, a3b, a4}. Then

A2 = {a2, a5, a8, ab, a2b, a4b, a5b, a7b, b2, ab2, a3b2, abc, a2bc, ab2c,

a4bc, a2b2c, a3b2c, a4b2c, a6b2c}.

It is easy to see that the 19 elements in A2 are distinct. Thus |A2| = 19, giving a
contradiction.

Case 2: m = 2. Let A = {a, b, ab, a3b, b3}. Then

A2 = {a2, b, ab, a2b, b2, ab2, a3b2, ab3, b4, ab4, a3b4, bc, abc, a2bc,

b2c, ab2c, a2b2c, a3b2c, ab3c, ab4c, a3b4c}.

It is easy to see that the 21 elements in A2 are distinct, giving a contradiction.

Thus G is a trivial nonabelian 2-group. �

L 3.2. If G is a group of order 32 with a maximal subgroup M � Q8 ×C2 =

〈a, b, c | a4 = c2 = 1, a2 = b2, ac = ca, bc = cb, ab = a3〉, then G is not a B(5, 17) group.

P. Let A = {a, b, ab, abc} ⊆ M, B = {a, b, ab, abc, d} = {A, d}, where d ∈G − M.
By replacing d by ad, bd or abd if necessary, we can assume that da , ad and db , bd.
Let dA = {da, db, dab, dabc} and Ad = {ad, bd, abd, abcd}. It is easy to show that
|A2| = 12, and so |B2| ≥ |A2 ∪ Ad| = 16.

Replacing a by a3 if necessary, we can always assume that db < Ad. If da < Ad
or dab < Ad, then |B2| ≥ |A2 ∪ Ad ∪ {da, db, dab}| ≥ 18. So we may assume that both
da ∈ Ad and dab ∈ Ad. We divide the proof into the following three cases.

Case 1: da = abcd. Then dab ∈ Ad − {abcd}, and therefore dabd−1 ∈ Q8. Since
ad−2

= (ab)d−1
cd−1

, we have cd−1
∈ Q8. Therefore cd−1

= a2, implying that c = a2 since
a2 ∈ Z(G), giving a contradiction.

Case 2: da = bd. Since dab ∈ Ad, we have dab = ad, abd, or abcd.

(2.1) If dab = ad, we know that db = b−1dab = b−1ad = abd. Therefore a = bd =

(ab)d2
= ab or a3b since d2 ∈ Q8 ×C2, giving a contradiction.

(2.2) If dab = abd, we assume that dabc ∈ Ad. Then dabc = ad or abcd. If dabc = ad,
we have abdc = ad, and so dcd−1 = b3, giving a contradiction (because
o(dcd−1) = 2, but o(b3) = 4). If dabc = abcd, we have abdc = abcd, and so
dc = cd. Consider A1 = {a, b, ab, ac}. It is easy to show that

|A2
1| = |{a

2, ab, a2b, a2c, a3b, a, a3bc, b, ab2, bc, abc, a2bc}| = 12.
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Note that

A1d = {ad, bd, abd, acd} and dA1 = {da, db, dab, dac} = {bd, a3d, abd, bcd}.

It is easy to show that the six underlined elements in A1d ∪ dA1 are distinct. Let
B = {A1, d}. Then |B2| ≥ |A2

1 ∪ A1d ∪ dA1| ≥ 18.
(2.3) If dab = abcd, we know that db = b−1dab = b−1abcd = a3cd. Therefore a = bd =

(a3c)d2
= a3c or ac, giving a contradiction.

Case 3: da = abd. Since dab ∈ Ad, we have dab = ad, bd, or abcd.

(3.1) If dab = ad, we assume that dabc ∈ Ad. Then dabc = bd or abcd. If dabc =

bd, we have adc = bd, and then dcd−1 = a3b, giving a contradiction (because
o(dcd−1) = 2, but o(a3b) = 4). If dabc = abcd, we have adc = abcd, and
then dcd−1 = bc. Note that o(dcd−1) = 2 and o(bc) = 4, so the above gives a
contradiction. Therefore dabc < Ad, and thus |A2 ∪ Ad ∪ dA| ≥ 18.

(3.2) If dab = bd, we assume that dabc ∈ Ad. Then dabc = ad or abcd. If dabc = ad,
we have bdc = ad, and then dcd−1 = b3a. Note that o(dcd−1) = 2 and o(b3a) = 4,
so the above gives a contradiction. If dabc = abcd, we have bdc = abcd, and then
dcd−1 = b−1abc, giving a contradiction (for o(dcd−1) = 2, but o(b−1abc) = 4).
Therefore dabc < Ad, and thus |A2 ∪ Ad ∪ dA| ≥ 18.

(3.3) If dab = abcd, we assume that dabc ∈ Ad. Then dabc = ad or bd. If dabc = ad,
we have abcdc = ad, and then dcd−1 = b3c, giving a contradiction. If dabc =

bd, we have abcdc = bd, and then dcd−1 = ac. Note that o(dcd−1) = 2 and
o(ac) = 4, so the above gives a contradiction. Therefore dabc < Ad, and thus
|A2 ∪ Ad ∪ dA| ≥ 18.

In each of the above cases, we have shown that |B2| ≥ 18 for some subset B of five
elements of G. Therefore G is not a B(5, 17) group. �

L 3.3. If G is a group of order 32 with a maximal subgroup M � Q16 = 〈a, b |
a8 = 1, a4 = b2, ab = a−1〉, then G is not a B(5, 17) group.

P. Let A = {a, b, ba3, ba7} and B = {a, b, ba3, ba7, c} = {A, c}, where c ∈G − M.
As before, we may assume that ac , ca. It is easy to see that

|A2| = |{a2, ba7, ba2, ba6, ba, a4, a7, a3, ba4, a, 1, b, a5}| = 13.

Note that Ac = {ac, bc, ba3c, ba7c} and cA = {ca, cb, cba3, cba7}. Since o(cac−1) = 8
and o(b) = o(ba3) = o(ba7) = 4, we conclude that ca < Ac, so |B2| ≥ |A2 ∪ Ac ∪ ca| =
|A2| + |Ac| + |ca| = 18. Therefore G is not a B(5, 17) group. �

L 3.4. If G is a group of order 32 with a maximal subgroup M � P = 〈a, b | a4 =

b4 = 1, ab = a3〉, then G is not a B(5, 17) group.

P. Let A = {a, b, ba, b2a} and B = {a, b, ba, b2a, c} = {A, c}, where c ∈G − M. It
is easy to see that

|A2| = |{a2, ba3, b, b2a2, ba, b2, b2a, b3a, ba2, b2a3, b3a2, b3a3, b3}| = 13.
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Thus |B2| ≥ |A2 ∪ Ac| = |A2| + |Ac| = 17. Note that Ac = {ac, bc, bac, b2ac} and cA =

{ca, cb, cba, cb2a}. We can always assume that ac , ca and bc , cb. We may also
assume ca ∈ Ac and cb ∈ Ac, otherwise |B2| ≥ 18.

Case 1: ca = bc. Then:

(1.1) if cb = ac, then cba = aca = abc = ba3c < Ac, which is an 18th distinct element
in B2, so |B2| ≥ 18;

(1.2) if cb = bac, then cba = baca = babc = b2a3c < Ac, which is an 18th distinct
element in B2, so |B2| ≥ 18;

(1.3) if cb = b2ac, then cba = b2aca = b3a3c < Ac, which is an 18th distinct element in
B2, so |B2| ≥ 18.

Case 2: ca = bac. Then:

(2.1) if cb = ac, then cba = aca = abac = bc, and thus cb2a = acba = abc = ba3c < Ac,
so |B2| ≥ 18;

(2.2) if cb = b2ac, then cba = b2aca = b2abac = b3c < Ac, which is an 18th distinct
element in B2, so |B2| ≥ 18.

Case 3: ca = b2ac. Then:

(3.1) if cb = ac, then cba = aca = ab2ac = b2a2c < Ac, which is an 18th distinct
element in B2, so |B2| ≥ 18;

(3.2) if cb = bac, then cba = baca = bab2ac = b3a2c < Ac, which is an 18th distinct
element in B2, so |B2| ≥ 18.

In all cases, we have shown that |B2| ≥ 18. Thus G is not a B(5, 17) group. �

L 3.5. If G is a group of order 32 with a maximal subgroup M � D = 〈a, b, c |
a2 = b2 = c4 = 1, ac = ca, bc = cb, ab = c2a〉, then G is not a B(5, 17) group.

P. Let A = {a, b, ab, bc} and B = {a, b, ab, bc, d} = {A, d}, where d ∈G − M. It is
easy to see that

|A2| = |{1, a, b, c, ac, ac2, ac3, ba, bac, bac2, bac3, bc2, c2}| = 13.

Thus |B2| ≥ |A2 ∪ Ad| = |A2| + |Ad| = 17. Note that Ad = {ad, bd, abd, bcd} and dA =

{da, db, dab, dbc}. As before, we assume that da , ad and db , bd. Next we
assume that da, db ∈ Ad. Since o(a) = 2, but o(ab) = o(bc) = 4, we must have da = bd.
Similarly, since o(b) = 2, we have db = ad. Then dab = bdb = bad < Ad, which is an
18th distinct element in B2. Therefore |B2| ≥ 18, and G is not a B(5, 17) group. �

L 3.6. If G is a group of order 32 with a maximal subgroup M � D8 ×C2 =

〈a, b, c | a4 = b2 = c2 = 1, ac = ca, bc = cb, ab = a3〉, then G is not a B(5, 17) group.

P. Let A = {a, b, ba3, ba3c} and B = {a, b, ba3, ba3c, d} = {A, d}, where d ∈G −
M. We can always assume that da , ad. It is easy to see that

|A2| = |{a2, ba3, ba2, ba2c, ba, 1, a3, a3c, b, a, c, bc, ac}| = 13.
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Note that Ad = {ad, bd, ba3d, ba3cd} and dA = {da, db, dba3, dba3c}. Since
o(dad−1) = 4 and o(b) = o(ba3) = o(ba3c) = 2, we conclude that da < Ad. Thus |B2| ≥

|A2 ∪ Ad ∪ da| = |A2| + |Ad| + |da| = 18. Therefore G is not a B(5, 17) group. �

We are now ready to prove the main result of this section.

T 3.7. There is no nontrivial nonabelian B(5, 17) 2-group.

P. The proof is by the minimal counterexample method. Suppose on the contrary
that there is a nontrivial nonabelian B(5, 17) 2-group G with minimal order. Then
either every proper subgroup of G is abelian or |G| = 32.

Suppose that |G| = 32. We claim that every maximal subgroup M of G is a B(4, 13)
group. Otherwise, there exists a subset A = {a, b, c, d} ⊆ M such that |A2| ≥ 14. Let S =

{a, b, c, d, e} where e ∈G − A. Then S 2 ⊇ A2 ∪ {ae, be, ce, de}, and therefore |S 2| ≥

|A2| + 4 ≥ 18, which implies that G is not a B(5, 17) group, giving a contradiction.
Next we prove that every proper subgroup of G is abelian. Assume that there exists a
nonabelian maximal subgroup M of G. Then M is a B(4, 13) group of order 16. By [7,
Lemma 2.23], M must be one of the following groups: Q8 ×C2, Q16, P, D or D8 ×C2.
However, by Lemmas 3.2, 3.3, 3.4, 3.5 and 3.6, we know that none of these cases is
possible.

Therefore every proper subgroup of G is abelian. By Lemma 3.1, G is a trivial
B(5, 17) group, giving a contradiction. �

Combining Theorems 2.9 and 3.7, we obtain a complete characterization of B(5, 17)
groups.

T 3.8. A group G is a B(5, 17) group if and only if G is either abelian or a
nonabelian trivial B(5, 17) group.

4. On B(5, 15) and B(5, 16) groups

Using the complete characterization of B(5, 17) groups given in the previous section,
we can easily characterize B(5, 15) and B(5, 16) groups.

We first investigate B(5, 16) groups and assume that G is a nontrivial nonabelian
B(5, 16) group. Then |G| ≥ 18. Since |G| is also a nontrivial nonabelian B(5, 17) group,
by Theorem 3.8, no such group exists. We state this result as follows.

T 4.1. A group G is a B(5, 16) group if and only if either G is abelian or G is
a nonabelian trivial B(5, 16) group.

We next consider B(5, 15) groups and provide a short proof for the main result in [6]
which gives a complete characterization of B(5, 15) groups.

T 4.2. A group G is a nontrivial nonabelian B(5, 15) group if and only if
G � Q8 ×C2.

P. Let G be a nontrivial nonabelian B(5, 15) group. We first assume that G is
not a 2-group. Then |G| ≥ 18. Thus, G is a nontrivial nonabelian B(5, 17) group.
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By Theorem 2.9, no such group exists. Next we assume that G is a 2-group. Since G is
a nonabelian B(5, 17) group, it follows from Theorem 3.8 that |G| = 16. It was proved
in [10] that Q8 ×C2 is a B(5, 15) group of order 16. In addition to this group, there are
eight non-abelian 2-groups of order 16. A direct calculation shows that for each such
group G, there exists a subset S of five elements of G such that |S 2| = 16, and thus G
is not a B(5, 15) group (see [2] for the detailed calculation). Therefore G � Q8 ×C2 is
the only nontrivial nonabelian B(5, 15) group. �
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