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A COMMUTATIVITY THEOREM FOR RINGS WITH
INVOLUTION

M. CHACRON

A ring with involution R is an associative ring endowed with an antiauto-
morphism * of period 2. One of the first commutativity results for rings with *
is a theorem of S. Montgomery asserting that if R is a prime ring, in which
every symmetric element s = s* is of the form s = s*® (n(s) = 2), then
either R is commutative or R is the 2 X 2 matrices over a field, which is a
nice generalization of a well-known theorem of N. Jacobson on rings all of
whose elements v = "%, Another classical commutativity theorem, due to
I. N. Herstein, asserts that any ring R with centre Z such that every element
x satisfles x — x% - p,(x) € Z, where p, is a polynomial having integral coeffi-
cients, is in fact a commutative ring. This theorem was extended to prime
rings R with # in the following way: If for every symmetrics, s — s - p,(s) € Z,
either S € Z or S'is as in Montgomery’s theorem. On the other hand Herstein's
theorem was extended to the context of rings without involution in the follow-
ing way: If R is a semiprime ring and ¢ is a fixed element of R such that ¢
commutes with v — x*- p(x) (p, depending on ¢ and «x) then ¢ is a central
element. In this paper, we offer an extension to rings with * of the later com-
mutativity theorem. We show the following.

THEOREM d. Let R be any prime ring with x having characteristic O or greater
than 5. Suppose that « fived element ¢ 1s such that for cach symmetric s = s* there
is p, @ polynomial having integral cocflicients, so that ¢ and s — s* - p(s) commaite.
If, further, R is not the 2 X 2 malrices over a ficld then ¢ is in fact in the centre
Z of R.

At the end of the paper we comment on the restriction about the character-
istic of R and the nature of the polynomial p intervening in Theorem 5.
Essential to this paper will be a result of ours concerning subalgebras preserved
by the group of unitaries in matrix algebras with * over division rings con-
taining more than 5 elements.

Definitions, Notations, und Conventions. Throughout the paper all rings have
characteristic 0 or greater than 5. IExcept in one case, all homomorphisms
preserve the involution and the characteristic assumption. All polynomials p
have integral coefficients and all subrings A are *-closed (4 = Ax). For
a € R, welet C(4) = Crla) = {x € Rlxa = ax} (centralizer of @ in R). For
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a, b € R, [u, b] = b — ba (commutator). S, K, Z stand respectively for the
symmetrics, the skews, and the central elements of R. For .1 a subring of K,
Z(A) or Z will denote the centre of .1 viewed as a ring, S(«1) or.S, the sym-
metrics of the ring .1, and K(.1) or K4, the skews of the ring 1. Finally,
X+ (resp. X7) will denote the subset of symmetrics (resp. the skews) in the
subset X of R.

Definitions 1.a) A co-integral expression in x — 1 is a polynomial expression
of the form
X = afrl e p(a);
p a polynomial having integral coeflicients. The integer k is called the index.
b) When for every v -+ R there is some co-integral expression helonging to

the fixed subring <1 of R, we shall say that R is co-integral over .1. If, moreover,
the expressions can be taken with fixed index r, we use the term “‘co-integral

of indexr'".
¢) The ring R is said to be x-co-integral (resp. *-co-integrul of index r) if for
cach symmetric x K, there is some co-integral expression in x (resp. co-

integral expression in x of index r) belonging to 1.
Definations 2 (Main definitions). Let R be any ring. Set:
a) I'= 1Ty =luc RVx © RIp;la,x — - plx)] = 0f
= {u ¢ R|R, co-integral of index 1 over Cr(«)}
b)H = Hip+, = {a - Ry < STp;la,x — aplx)] = 0}
= lu © R|R, x-co-integral of index I over Cr(u)}

The subscts 7" and H are called respectively co-hvpercenier and x-co-hyper-
center of K.

1. Basic facts. In this scction we assemble some basic properties of the
*-co-hypercentre true for arbitrary rings or on the other extreme for simple
artinian rings. \We begin with formal facts using closure of the co-integral
expressions of index 1 under composition of polynomials and standard proper-
ties of commutators.

Remarks 1.
A)Va c H,Vx C S, Vu=1,3p;
1) [a,x — x> px)] = 0.
In particular if s is a symmetric nilpotent (s* = 0), then [«, s] = 0.
b) Var, ... w, - H,¥Vx = xx, 3 p
(i) layx — 22 px)l =0, Vi=1,...,mu.
) Va & H,Vxy,...,x, €85,3p
(i) [a,x; —x2-p(x)] =0, Vi=1,..., n
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Remark 1-c¢) shows that H is a subring of 4, containing evidently the co-
hypercenter 1" = 1'p, and hence, containing the centre Z of R. We record
these facts as follows.

Remark 2. For any ring R, the x-co-hypercenter H is a subring containing
the co-hypercenter, and contained in the centralizer C(INt), of the symmetric
nilpotents N* of R.

Remark 1-b) yields another important property of the *-co-hypercenter H;
namely, / viewed as a ring, will satisfy a polynomial identity of fairly low
degree, that it is now convenient to make explicit. Let Ho be any finitely
generated #-closed subring of H generated by ay, ..., a, Given x = x* ¢
Hy C R, there is p(¢) with

[as,x —x*-p(x)] =0, foralli=1,...,n

Since the «¢;'s generate Hy, x — x? - p(x) € Zy = Z(H,) follows. By the results
in [4, p. 1125], H, satisfies the polynomial identity

[51, So, S3, 51]2 € Zo M N’F(Ho), for all N 51* S S(Ho),

where [s1, ss, $3, s4] is the value of the standard polynomial in four non-com-
muting variables for the specialization si, s», s3, ss in Ho. Since N*t(H,) C
N+(R), and since N*(R) centralizes H, we get the following.

Remark 3. H, viewed as a ring with *, satisfies the polynomial identity:
Vsl, S2, S3, St S S(H), [Sl, So, S3, 84]2 € Z M N+ ; Z+(H)
Two more general facts are in order.

Remarks 4a) For every subring Ry = R¢* of R, H M Ry & Hg,».
b) If ¢ = ¢* is a symmetric idempotent, then eHe M Hger.

We digress for a while on quasi-unitaries. Recall that if R is a ring with 1,
the element x is called unitury, if x is an invertible element such that xx* = 1.
It is natural in the absence of 1, to call ¢ a quasi-unitary element, if a + a*
+ aa* = « + «* 4+ a*a = 0. Such an element induces the quasi-inner auto-
morphism

1) x>0+ a)x( 4+ a)! = x 4+ ax + xax + axax,

coinciding with the inner automorphism induced by the unitary 1 4+ ¢ if R
happens to possess a unity 1. Generally the automorphism in (1) preserves
S, K, it leaves the elements of Z invariant, and commutes with the integral
polynomial expressions. It follows that this automorphism preserves H, for
all quasi-unitaries. In accordance with [2], we shall call H an invariant sub-
ring, if it is preserved by the quasi-inner automorphisms induced by all quasi-
unitary elements of R. We have shown:

Remark 5. H is an invariant subring.
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The invariant property of H will be exploited in what follows for R, a simple
artinian ring, viewed as the 7 X 7 matrices over a division ring D. The involu-
tion * induces an involution on D. Since R is by our convention of characteristic
greater than 5, it follows that D contains more than 5 elements and is 2-torsion
free. Thus [2] applies and yields the following.

Remarks 6(|2]). Let W be any invariant subalgebra with centralizer 17 of
R = (D,, *).

1) For n > 2, either W C Z,or IV = Z.

2) For n = 2, either W = O, Z, or 17 = Z, or else the ground involution is
the identity mapping, and

_, o U _
w-ze{[ 5, 5 -

contains no symmetric matrix but the scalars.
3) If W satisfies any polynomial identity, then W = Z or R, or else W is
as in 2)-1).

To be able to apply Remarks 6, we must handle the case n = 1. This is
done in our first proposition.

ProrositioN 1. If R is « division ring ecither S C Z (so R = H) or H = Z.

Proof. Suppose that S € Z, but H # Z. There must be « ¢ H, with 4 =
Cr(a) # R. We claim that every symmetric s = sx in R has some power
s" in 4. Clearly we may assume s ¢ . If I’ is the subfield generated by s
over the subfield Z* of central symmetrics, then I* contains strictly /¥ /M A,
which is a subfield. Now R is x-co-integral of index 1 over /A since, in fact,
« € H. Consequently I"is co-integral of index 1 over the subfield Iy = I"M 4
(that is, for every & ¢ [, there is a co-integral expression of index 1 in x be-
longing to /o). By a general result of fields |8], [ is algebraic over a finite field.
Thus s is a root of unity, so certainly s"® ¢ 1, some n(s) = 1. Since 4 # R,
by a theorem of Ilerstein and ours [3], all norms and traces of R would be
central, and consequently in view of the 2-torsion freeness, S C Z, which it is
not. This shows that // = Z necessarily as wished.

ProprosiTiON 2. If R is simple artinian and if R = H, then cither S C Z, or
R s the 2 X 2 matrices over an «lgebraic field extension of a finite field, with * u
canonical transpose admitting no symmetric nilpotents.

Proof. If R = H, then by Remark 3, R is ’I, so, by a well-known result of
I. Kaplansky, & is finite dimensional over the centre, whence finitely generated
over the centre. By the argument used in the proof of Remark 3, s — s2 - p,(s)
€ Z follows, all s = sx. We then quote [4, Theorem 3].

We can now describe fully the simple artinian case.

THEOREM 1. If R is @ non-commutative simple artinian ring, either H = Z or
H = R. In the latter case, R must be of one of the following lypes:

https://doi.org/10.4153/CJM-1978-094-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-094-x

RINGS WITH INVOLUTION 1125

(1) R is « division ring whose symmetrics coincide with the centre, so R is «
4-dimensional division ring.

(2) R 1s the 2 X 2 matrices over « field, which 1is an algebraic extension of
Galois field, with x « canonical transpose admilting no symmeltric nilpotents.

(3) R s the 2 X 2 matrices over « field with * the symplectic tnvolution so that
the symmetrics cotncide with the centre.

Proof. By Proposition 1, we may assume that R has rank = greater than 1.

If = > 2, by Remarks 6, H = Z or R. The latter case being ruled out by
Proposition 2, we get H = Z necessarily.

If » = 2. Either % is canonical transpose or symplectic. In the latter case,
S = Z necessarily, so evidently R = H is of type (3). In the first case, if
H # Z, necessarily H = R or

O H=2+ {':—(;x S}}GD

where D is a field, and * = x(qi, ¢2) is defined by

[a b]*_[ a cglgfl]
¢ dJ  Lbg™t a4 I

If H = R we use, again, Proposition 2 to get that R is of type (2). We are

left with the case (i), that we shall now rule out.

For let 0 [_qu (;} € H. Given a € D, a field, s = I:g 8] is a sym-

metric matrix. By the assumption, for some polynomial p(¢) with integral
0 X

—qx 0

s—stpls) = [a_“;'ﬂa) 8]

This is possible only if « = «*- p(a). Thus D is co-integral over the zero sub-
ring. It follows that D is algebraic over a finite field.

If R contained some symmetric nilpotent matrix, the subalgebra 1V generated
by all these would be a non-zero invariant subalgebra obviously not of the
form (i), so necessarily would coincide with R. Since H centralizes 1V, this
contradicts the relation H & Z. This shows that R contains no symmetric
nilpotents. Because D is algebraic over a finite field so will be R, and in the
absence of symmetric nilpotents, every symmetric in R becomes co-integral
of index 1 over the zero subring (in fact, of the form s = s"¥, n(s) = 2). But,
in the latter case, I = R, which is ruled out. With this the theorem is proved.

coefficients, 0 # [ :I commutes with

We inspect the nature of the simple artinian ring R in the special case
H+ (=HMNS) & Z. To begin with, R can not be of type (1) in Theorem 1, or
type (3). By Theorem 1, R is necessarily of type (2). Something more can be
said about type (2). Since R contains no symmetric nilpotents, R contains no
skew nilpotents either. For otherwise, the involution * would induce a non-
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trivial involution on the ground field, forcing * to be of the second kind. On
the other hand, we claim that every commutative subring 1" of R consisting
entirely of symmetrics must be central. For by Remarks 6, adjoining the center
Z to 7, we get the subalgebra

W= V+Z_C_Z+{[ o ‘”]l ,
—qy 0 €D
and consequently 1% C 17+ C Z. We record these facts in the following
corollary.

COROLLARY 1. Any simple vight artinian ring R such that H+ & Z, is neces-
sarily of type (2) as in Theorem 1. It follows that R contains no skew or symmelric
nilpotents. Morcover, cvery invariant committative subring of symmetrics must be
central.

2. Nil radical of /. At the outset (Theorem 5) R is taken to be a prime ring.
However, at later stages of the paper it will be necessary for us to deal with
certain subrings of R that can be of arbitrary prime radical. IFor this reason
we shall relax throughout the prime condition by x-prime (e.g. non-zero
x-closed ideals in R). We wish to show that /H, viewed as a ring, contains no
non-zero nil ideals. This is carried out by looking first at the x-prime, not
prime, case. As one would expect, the prime case is more complex, and will he
studied alone.

2.1 s-prime case. Suppose that R contains a non-zero ideal I of the type
I M I* = 0. Denote by R the factor ring R/I (the involution x is disregarded
in R), H, the image of H in R, and by J, the image of I* in .

PROPOSITION 3. For cvery @ « H, und every & ¢ J, a non-zero ideal of R,
@, & — &p(x)] = 0.

Proof (sketched). Pick any x ¢ I*, and apply the basic property of « ¢ H
via the symmetricxy @ x* ¢ [ @ I*. Then pass to R/I.

In [1] we have shown that if R is any semiprime ring then 7" = Z. This
property is used freely throughout. Proposition 3 suggests the following.

Question. If R is a prime ring and « is a fixed element of R such that for some
non-zero ideal J of R, J is co-integral of index 1 over / M Cp(«), does it follow
that« € Z?

All our concern in this section is the study of the nilpotents and for thesc
special elements we get indeed that they commute with such elements «. This
is the content of the following result.

ProrosiTiON 4. Let R be a x-prime, not prime, ring. Then the x-co-hypercentre
has the following properties.

1) H centralizes all symmelric nilpotents of R.

2) H contains no symmelric nilpotents (other than 0).
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Proof. 1t suffices to prove this for the image H of R in the factor ring (de-
prived of involution) R = R/I, with I # 0 an ideal verifying I N I* = 0.

1) By Proposition 3, H centralizes all nilpotents in J = I*/I. Then let
e =¢ e H Ify =cv — exe,x ¢ J, then y is a square-zero element in J.
Then ya = ay, @ « H. Thus (ex — exe)de = a(ex — exe)e = 0, for all x € J.
Consequently eJ (1 — ¢)de = 0. Since R is prime, if then ¢ # 0, (1 — ¢)de = 0
follows, that is, d¢ = ede. By symmetry, ed = ede = ae, for all ¢ = ¢2, and
acH.

2) Suppose that @*> = 0, @ € H. By an argument similar to [1], it can be
shown that @ - J is co-integral of index 2 over the zero subring. This forces R
to be primitive with a socle containing @ - J. It follows that J is primitive with
socle. If J has a unity, by the prineness of R, R = J, placing @ in T(R) =
Z(R),so @ = 0. If, on the other hand, J has no unity, the socle J, of J must be
generated Dby nilpotents centralized by a. Thus @ centralizes the ideal JoJJ,

P

of R, giving a ¢ Z, whence a = 0.

2.2 Prime case. We take R to be prime, and let P = P* be a nil ideal of H
viewed as a ring. Concerning the center Zy of H, or the *-center Z;* of the
ring H, it is convenient to notice that Z, (as well as H) contains P+, and con-
tains along with 2x, the element x (by 2-torsion freeness). Also, since the quasi-
unitaries induce automorphisms on H, then Z,, Z; are invariant subrings.
In this connection we recall a remark due to Herstein [7, Theorem 6.1.1].

Remark 7. 1f W is any invariant subring of R such that 2x € W implies
x € W, then for every quasi-unitary skew k of R, and every ¢ ¢ W,

1=k e, F)J1 4+ k)"t W.

We proceed to a very special case that will be used partly in this section,
and fully at later parts of the paper.

PrOPOSITION 5. If R 1s « prime PI ring such that H- & Z, then necessarily R
is as in Theorem 1, type (2). Consequently R contains no symmetric nilpotents.

Proof. We claim that R cannot be a domain. If not, take any e € H, ¢ ¢ Z.
For every s = s* ¢ R, Z*[s] is a commutative domain, which is co-integral of
index 1 over Z*[s] M Cgr(a). By [4, Lemma 5], the field of quotients of Z*(s]
is radical over the subfield of quotients of Z*[s] M Cg(a). Thus for some integer
n,and some 11,2 # 0 € Cg(e), us"® = v ¢ Cgr(a). Consequently

0 = [a,v] = [a, us"] = ula, s*].

It follows that [«, s"®] = 0, that is, s" € Cr(a),alls = s* € R.If R =
R(Z*)~" is the ring of fractions of R, we get a division ring, for R satisfies a
polynomial identity. By the above, for every symmetric §in R, 5" € Cz(a) =
Crla)(Z*)=1. Since « ¢ Z, Czla) # R. By (3, Theorem 1], all symmetrics in
R are central, contradicting the assumption on R. This shows that R cannot
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be a domain. Equivalently R is a simple finite dimensional algebra having
rank greater than 1.

Let IV be the subalgebra generated by the symmetric idempotents. Clearly
I is an invariant subalgebra. Now the centralizer 17of 11 is necessarily Z (R).
This is certainly true if R has rank = 3. For R of rank 2, the casc where * is
symplectic in R must be ruled out as S(R) € Z(R). Thus by Remarks 6, if
1" # Z necessarily 17 has all its diagonal matrices with cqual diagonal coefh-
cients, which is evidently false as * is canonical transpose.

Now let s ¢ I (s can be any element in /T) and let ¢ = ex = ¢ ¢ R, with
ls,¢] #0. Writece = -3, f = fx = S(R), 50 ¢ ZT(R). Givenz ¢ Z*, it is
clear that [z = S(R). By the basic property of s, we have [s, [-3] =

Ls, (fa)*p(fz)], for some p(r). Now
(fz)* = 2% = 22(e - 20)® = ez0%, ..., (f2)" = e(z02)".
Thus

[s,e202) = [s, e(202)2p(202)];
(02 — (202)*p(302)) s, ] = 0;
202 = (202)2p(203);

= 2022p(22);

= = 2’2, forsome s € Z7.

Thus Z* is a field, so Z is a field, giving R = RZ=' = R. We then quote
Theorem 1.

If Ris a PI %-prime ring with H & Z, what can be said about R? To begin
-with, if S © Z, this forces R to be a prime ring. For if in the contrary case, we
get trivially that R = Z, contrary to the assumption H & Z. Since R is a
prime non-commutative ring verifying S C Z, it follows that £ must be an
order in the 2 X 2 matrices with the symplectic involution. Next suppose that
S & Z. The first argument in the proof of Proposition 5 shows that R cannot
be a domain. Thus R must be simple artinian verifying S & Z and H € Z. By
Theorem 1 from Section 1, necessarily R must be of type (2) of that theorem.
We have shown the following.

COROLLARY. [If R is « PI -prime ring such that H & Z, then necessarilv R
s« prime ring, which 1s either an order in the 2 X 2 malrices with symplectic
involution, or simple artinian of type (2) in Theorem 1.

PROPOSITION 6. Let R be « prime ring with « square-zero symmetric a such thal

(ke = 0. Then R contains « x-closed prime subring R, conluining a, which is an
order in the 2 X 2 matrices over u field.

Proof. This proposition is essentially a special case of a theorem of S.
Montgomery [7, Theorem 2.5.1]. For the convenience of the reader we give
a self-contained proof. By an observation due to Herstein and Montgomery,
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R satisfies the generalized polynomial identity [ax, ay]? = 0, all x, y € R. By
a theorem of Martindale [10], the central closure Q = R - C of R is a primitive
ring with socle, whose underlying division ring D must be a field, and « is of
rank = 1. In fact, «Q satisfies the polynomial identity [x/, ¥']? = 0, all &/, ¥’ €
a@Q. If then «Q = ¢Q, ¢ = ¢* € Socle (Q), then eQe is primitive with polynomial
identity [x, v]* = 0, giving that ¢Qe = D is a field.

Write ¢ = ay, y € Q. We have ex = yxa, and exe = yxa?y = 0 follows. If
f=c¢+ex — cex = (¢ — Leex) + (¢ — 3cex)x, a routine computation shows
that: ey = ¢, = ¢ — Zeex; ere® = ey¥ey = 0; 6,0 = eQ. Consequently fQf =
e1Qer ® e*Qe* x~ Ds. Also, « ¢ [QF. For the equality «Q = eQ = ;0 gives
Ja = e + e*e = g+ er¥a = « + (exa — 3eexa) = «, since exa = (yxa)a = 0,
and similarly «f = «.

Since Q is a subring of the ring of quotients of R, for every x € (, there is
an ideal 0 # [ of R such that xI € R. In particular there must be J # 0 with

JJC R and J+f S R = R.

Then fJJxf € R, where JJx = I 0 is an ideal of R. Let Ry = R M fQF.
Clearly Ry is a subring containing «, satisfying the standard identity in 4
variables. If uRw = 0; 1, v € Ry, then u(fJJ*f)v = 0. Since u, v € Ry C fQ/,
uf = wandfv = v,s0 u(JJx)v = ulv = 0. Since [ is an ideal of the prime ring
R, cither # = 0 or v = 0. This shows that R, = R*is a prime ring, which by
the above satisfies the standard identity in 4 variables. Now R, contains the
square-zero element «. Consequently R, is an order in the 2 X 2 matrices over

a field.

COROLLARY. If R s prime wilth « = «* « square-sero element in H such thal
aKa = 0, then ¢ = 0necessarily.

Proof. If « were # 0, by Proposition 6, there is a prime Pl subring Ry = Ry*
containing «. Clearly « = ax ¢ H(R,), with «? = 0, so H"(R,) & Z(R,). In
view of Proposition 5, Ry contains no symmetric nilpotents, a contradiction.
We have to agree that ¢« = 0 necessarily.

ProrositioN 7. If R is prime, then H conlains no non-zero symmetric nil-
potents.
Proof. The proof breaks in several steps.

Step 1. If R contains an idempotent e with e @ ex = 1, then H contains no
symmetric nilpotents.

Let 7', z. be the co-hypercenter of ¢Re, and let Z,x, be the center of eRe.
We have Tz, = Z.ge- Given « € H, and x € eRe, we have

0= [a, (x + xx) — (x + x%)2p(x + x*)]
la, x — x2p(x)] + [a, xx — xx2p (=) ].

Then [eae, x — x2p(x)] = 0 necessarily, placing eve in 1,5, = Z,z.. Now let
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a C Zy" (= s-center of IT) and let k ¢ K. The element &y = ckex is a square-
zero skew. Since k, is quasi-unitary, (1 4+ ky)a(l — k) £ Zy follows, that is,
b — uky — kwky © Zy. Changing ky to 2k, gives [ky, «] ¢ Zy. Thus
la, la, k1]] = 0. On the other hand,
[a, eke 4 exkex| = [cac -+ exuex + exae 4+ exae, eke - cxkex)
= [exac + caex, cke -+ exkex],
for [eke, eac] = [exkex, exaex] = 0. Thus

[a, cke -+ exkex] = [ecacx 4 exae, cke + exkex]
= caexkex -+ exaeke — eckeaex — exkexac
= (ewexkex — ckeaex) -+ (exaeke — cxkexae).
Now
s1 = eaexkex — ckeaex = caexke + (eaexkex )
is a square-zero symmetric. Thus [«¢, s;] = 0, and similarly for s: = cxueke —
exkexae. I'rom this |, [«, cke 4 exkex]] = 0. Since we had [a, [«, ki]] = 0,
we get [«, |«¢, k]] = 0, for all k ¢ K.

If then « = «* is a squarc-zero element in If, « ¢ Zy* follows giving
la, la, k]] = —2cka = 0, s0 ake = 0, for all & ¢ K. In view of Proposition 5,
« = 0 necessarily.

Step 2. If ¢ = ¢* 15 an idempotent of R such that cex = 0, and if a 1s « square-
sero symmelric in H, thei cacx = exue = 0.

Forlet ey = ¢ -- bexe, epx = e — dexe. [t was already observed that ¢, ®
ex = [1s a symmetric idempoter.t. If Ry = fRf, it is clear that R, contains in
its x-co-hypercenter [{; = [H]/.

Since « C Zyt, (1 — 20a(l = 2f) € Zy follows, giving b = «f + fu —
2faf € Zyt. Conscquently [«, 6] = 0. Since «? = 0, we get afa — 2ufuf =
afa = 2fafa; («f)* = (fu)? Thus «i = fuf is a symmetric cube-zero in H,.
Consequently «y ¢ Zy,, the center of Hy, By Step 1, ¢ = fuf = 0 necessarily.

Now [ = ¢1 + e1x = ¢ 4+ ex — exe, where ese is a symmetric nilpotent com-
muting with « € A. Thus

0 =fuf = (¢ 4+ ex — exe)ale + ex — exe)
= (ecac + caex — cexea) 4 (exae -+ exaex — cxexea)
— {(excow + exeexa + excexea)
= cae + cuex + exae + exaex — 2aexe.
Right multiplication by ex combined with the relation cex = 0 gives

caex + exaex = (;

cuex = —exuex = ex(eaex) = (exe)aex = aekcex = 0
exaex = 0; eae = 0;

0 = eae + ecaex 4 exae 4+ exaex — 2exeq; = cxae — 2exea;

exae = 2exeq = (2exca)e = 2ex(eae) = 0.
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Step 3. If > = Qwitha = ax ¢ H, then aKa = 0.
Let v = vy + v, with v; € R, v;-vs = 0. For every n = 1, we have v" =
v1" 4 0" + v."7! vy Setting v = [k, ¢, we get for

v = ka, vy = —ak = v*, v = —katk = 0;

(ka)" + (=1)*(ak)" + (n — 1) (=1)"" (ak"* (ka)).

n

v
Now

[a,v] = 2aka; (@, v?] = |a,2Y] = ... = [a,v¥] = 0;

[a, v¥+1] = 2a(ka)2™+1,
Since v = v#, we get by the basic definition that

2aka = [a,v] = [, v2p ()] = 2{aa(ka)® + asa(ka)® + .. .};

aka = aya(ka)® 4+ asa(ka)® 4+ .. .;

(ak)? = ar(ak)t 4+ as(ak)® + ... = (ak)*p((ak)?) (ak)?.

Let e = ¢* = (ak)*p((ak)?). We have exe = (ka)?p((ka)?) - ¢ = 0. By Step

2, caex = 0. Explicitly we get

0 =y = caex = (ak)2p((ak)?) (ak)*a(ka)p((ka)?) (ka)?
ai*(ak)*alka)? + (oqas(ak)?a(ka)t + araz(ak)ia(ka)?) + . ..
(a2 (ak)* + 2c100(ak)® +...) -«
(a1 (ak)? + as(ak)* 4+ .. )2 a = p2((ak)?) - «,

Il

Il

S0,

e = (ak)? p((ak)?) = (ak)*- p2(ak)? = p2(ak)® - (ak)*

= p2((ak)?) - a(ka)®k = 0;
(ak)? = e(ak)? = 0; (ka)® = k(ak)*a = 0;
aka = aya(ka)® + ara(ka)® 4+ ... = 0.

Having shown that ¢ka = 0, we then quote the corollary to Proposition 6,
which completes the proof.

2.3 Skew nilpotents in H. One difference from the symmetric case is that H
could very well contain non-zero skew nilpotents. Take for example R to be
the 2 X 2 matrices occurring in Theorem 1, type (3). Here H = R certainly
has skew nilpotents. An other obstruction is that an arbitrary nil ideal P
of H is not a priori invariant. We circumvent the latter obstruction by choosing
P to be the prime radical of H. Once we can show that P = 0 necessarily,
using the fact that H contains no symmetric nilpotents # 0, clearly we get
that H contains no nil ideals # 0. To circumvent the former obstruction, let
us show the following.

ProrosiTiON 8. For cvery a ¢ P (= prime radical of H) and every square-
zero skew k, in R, ak 1s nilpotent.
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Proof. Since k is quasi-unitary with quasi-inverse —k, for every a« ¢ P,
(1 + k)a(1 — k) € P follows. Thus ke — ek — kak ¢ P. Changing k to —k
gives kak € P. Thus akak € P, whence «k is nilpotent.

ProrositioN 9. Let R be « prime PI ring, and let « € H be a square-zero skew
suchthat ak is nilpotent for any square-zero skew k. Then a = 0.

Proof. By the corollary to Proposition 6 (Section 2.2), and the corollary to
Theorem 1 (Section 1), we may take R to be an order in the 2 X 2 matrices R
over a field with symplectic involution. Moreover, since R is obtained by local-
izing reZ*(R), the property of « remains true under the square-zero skews
in R. Now the square-zero skews in K are of one of the following types:

vi=[5 i)
=[G
iii) £ = A[l

}V
Since « is a square-zero skew of R, a is of one of the types i)-iii). Assume that

ais of type i), a« = {O Uo:l . Then

0 0
[ =)ol =)=y ]
y —147 Lo odLy —1d LoO 0
is certainly non-nilpotent for ¢, ## 0, thatis, « # 0. Thus 0 # « cannot bhe of

type 1), and, by symmetry, « is not of type ii). On the other hand, if « is of
typeiii), the argument can be reversed. We have to agree that « = 0 necessarily,

—xl:l’ AN# 0,y = —1.

]

ProrositioN 10. The prime radical of H is zero.

Proof. By Proposition 7, from Section 2.2, P consists entirely of square-zero
skews.

Step 1. If a« € P s such that aSa = 0, then a = 0.

Exactly as in the parallel situation treated in Proposition 6, we can find
a PI prime subring R, containing in its %-co-hypercenter the given element
@ = —axin P. Because «k is nilpotent for every square-zero skew in R, clearly
this property holds in &,. By Proposition 9, « = 0 necessarily.

Step 2. If R contains some idempotent e withe @ ex = 1, then P = 0.
Leta € P and let s € S. We have

[a, s] = [eaex + exac + eae + exaex, ese + esex + ese + exsex]

= [eaex 4 exae + cae + exaex, ese + exsex] = [eaex + exae, ese + exsex],
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for [«, esex 4 exse] = 0, since esex, exse are symmetric nilpotents; cea € eHe C
Tige = Zoge; exack € exHex C 1o = Zowper. NOW
[a, s] = [eaex + exace, ese + exsex] =
(eaexsex + (ecaexsex)x) -+ (exaese + (exaese)*)
= 51+ So;

512 = O, S; = §;

Il

* (a € Pimplies ¢ = —ax).

Thus [a, [a, s]] = la, s1 + s2] = 0, s0, asa = 0, all s = s*, that is, aSa = 0.
By Step 1, « = 0 follows.

Step 3. If ¢ is any idempotent of R such that eex = 0, then eaex = exae = 0.

Letf =¢ 4+ ex —exe = ¢y @ er*. Let ¢ € Py, and «; = faf. We have
(I —=2f)a(@ —2f) € Py, so, «f +f-a —2faf ¢ Py. Thus afe — 2afaf =
—afe + 2faf (observed that ¢ anti-commutes with «f + fa — 2faf); afa =

afaf + fafa

afe = (efa)f + f(afa) = (afaf + fafa)f + f(afaf + fafa)
= afaf + fafaf + fofaf + fafe = (afaf + fafa) + 2fafaf
= afa + 2fafaf; fafaf = 0;
wi? = (faf) (faf) = fafaf = 0.

Moreover, if k; is a square-zero skew in R; = fRf, then a1k, is nilpotent
(ay+ k1 = fufky = faky, and aikwiks = fafkifafky = fakiak, . ..). By Step 2,
«y = faf = 0 necessarily. This gives, as in step 2 of Proposition 7, eaex =
exae = 0 necessarily.

Step 4. Every a ¢ P satisfies aSa = 0, so a = 0.

Setv = v; + vy, 9192 = 0, where v; = sa, v» = v;* = —as, and use an argu-
ment similar to Step 3 of Proposition 7, to get aSe = 0 as wished.

2.4 Skew nilpotents in R. So far, we have shown that H has no non-zero nil
ideals where R is any #-prime ring. To get that H* centralizes all skew nil-
potents, we shall use a subdirect representation argument. In this connection
we observe that any semi-prime ring R, whose characteristic is greater than 5,
has a subdirect representation into #-prime rings inheriting the characteristic
assumption.

Then let ¢« ¢ H* and let k£ be a skew nilpotent. Denote by 4 the subring
generated by « and k. Factoring out the nil radical P, we get a ring A whose
characteristic is zero or greater than 5, which by the above has a subdirect
representation into *-prime rings A with the same characteristic assumption.

In any *-prime image A, if «, ¢ are the images of ¢« and k respectively,
clearly @« = o* € H(A), while ¢ is a skew nilpotent. Thus ¢2 is a symmetric
nilpotent and consequently [«, ¢?] = 0. Because ¢* evidently commutes with o,
a?is then a central symmetric, so in view of the *-primeness, ¢> = 0 necessarily.
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Thus ca — ae — cas & H(A). Changing ¢ to 2¢ gives sa — as ¢ H(A) and
cac C H(A). Since sao is a symmetric square-zero element in /7 (A), and since
by Proposition 4 and 7, H(A) contains no symmetric nilpotents, cac = 0
follows. Then 7 = ca — ac is a symmetric in H(A), whose square is

2 2 2y = 2
T“=aaaa+aaaa—-aaa—aaa— —aaco,

so r is a symmetric nilpotent, whence 7> = 0. Thus r = 0, that is, [o, o] = 0.

We return to the subring 4. We claim that (1 + k)= [, k] (1 — k)~!is nil-
potent. In fact in every *-prime image A of A /P and hence of A, it was seen
that [«, k] = 0. However by Remark 7 from Section 2.2, « ¢ H gives (1 + k)~!
la, k] (1 — k)=t = H.Thus (1 + k)~ ']a, k] (1 — k)~!isasymmetric nilpotent
of R, which is x-prime. It follows that

I+ k), k] (1 —k)P=0
giving [«, k] = 0 as desired, and we have proved the following result.

ProrositioN 11. If R s x-prime, then HY centralizes both the symmetric and
skew nilpotents.

Using Propositions 4, 7, 10, and 11 (Sections 2.1, 2.2, 2.3), and using a
routine subdirect representation argument, we derive the following interesting
theorem.

THEOREM 2. Let R be any semi-prime ring. Then H has the following properties:
1) H contains no non-zero symmetric nilpotents.

1) H contuins no non-zero nil ideuls (in H).

i) H+ centralizes both the symmetric and skew nilpotents in K.

3. Center of /. In this section we will establish an important step towards
the main theorem stated at the outset; namely, every symmetric of the ring /7
belonging to the centre Z(H) of H is in fact in Z. We will have to break the
given ring R into subrings having two generators.

3.1 Subrings with two generators. Start with any ring R, and pick « in H, and
b inS\U K. Denote by A4 = A («, b) the subring generated by « and b. Of
course « will remain in the x-co-hypercenter of A. Denote by B the centralizer
of b in . Clearly Z(1) = C(«) M C4(b). We proceed to the following
proposition.

ProrosirioN 11. In the ring A, b is co-integral of index 2 over the center, with
« centralizer B salisfying « polynomial identity.

Proof. For let s = sx € C(B). By the basic property of « € H(A4), thereis p
such that [s — s*- p(s), «] = 0. Since s — s2 - p(s) € B, it follows that s —
s2p(s) € Cyla) Y C4(0) = Z(A). By |4], every ring B satisfying s — s« p(s) ©
Z(B) must satisfy a polynomial identity. Moreover, since 2 is certainly sym-
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metric, 0% is co-integral of index 1 over the center of 4, which completes the
proof.

By a result of S. Montgomery, as generalized by M. Smith [15], if the ring 4
as in Proposition 11 is a prime ring, then 1 must satisfy a polynomial identity,
which is precisely the information that we are seeking in this subsection. But,
if A4 is only a *-prime ring, there is no way to apply directly Montgomery-
Smith’s result, nor to get directly in the non-prime case, that H(4) C Z(A4).
This is circumvented using related results about centralizers.

ProOPOSITION 12, If A is *-prime, then A must satisfy « polynomicl identity.
Proof.
Step 1. Bis semi-prime.

If s is a symmetric or skew nilpotent in 5, by Theorem 2, s commutes with «.
Since s € B,s ¢ Z(A) follows. In view of the x-primeness of R, s = 0 necessarily.

Step 2. B con:. " :s some non-trivial symmetric idempotent.

Lete = ex = ¢* 0, 1in B. Clearly [«, ¢] ¥ 0. Now in the course of the proof
of Proposition 4 (Section 2.1) it was seen that if 4 were not prime, necessarily
H(A) centralizes all symmetric idempotents. Consequently A is necessarily a
prime ring. We can finish up the proof by a localization argument. But there is
no need for that. In fact, given 5 € Z*, z 5 0, z¢ is symmetric, so [«, z¢ —
(ze)2p(ze)] = O forces z = z2p(z), 2 € Z*. It follows that B is x-co-integral of
index 1 over the zero subring. Now B cannot be nil (otherwise b is nilpotent,
so |«, b] = 0, whence 4 is commutative, which we are ruling out). Thus R has
a characteristic » # 0, and consequently R is an algebra over a field (Galois
field). By Montgomery-Smith’s result, A1 must satisfy a polynomial identity.

Step 3. B conlains no non-trivial symmelric idempotents.

We claim that Z* # 0 necessarily. Otherwise, take any 0 5 s = sx ¢ B.
From s — s*p(s) ¢ Z follows s = sp(s), giving the idempotent ¢ = ex =
sp(s), which must be then the unity of R, an impossibility. Thus B contains
no symmetrics # 0, so 1* = 0, whence [«, b] = 0, resulting in 4, commutative,
which is ruled out.

Now every symmetric s = sx, being of the formd = s — s2p(s) € Z,is a
non-zero divisor on R. For if d = 0 the argument above gives that s is indeed
invertible, while d ## 0 forces s to be non-zero divisor. Localizing 4 re Z+ ## 0,
B becomes B = B(ZT)™!, a semi-prime ring all of whose symmetrics are
invertible. By a result of M. Osborn, B must be semi-simple artinian (with the
extra property that B contains no skew nilpotents). We proceed to show that
b has some central power in R, hence in R = R(Z*+)~L. Consider the subring
Z*b?] generated by Z* and 02 This is contained in B3, so Z*[b?] must be co-
integral of index 1 over Z*. As the later subring is a commutative domain,
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we derive that 0% has some power in Z+(Z1)™}, so b* -z = 2, for some
2; € 2% 50 £ 0. It follows that 02 ¢ Z+, as wished.

[Taving shown that b has some power in Z(R), and that the centralizer B
of b in R is semi-simple artinian, we get using [9] that R itself is semi-simple
artinian. A trivial adaptation of Montgomery’s result [12] shows that R is
then PI, so R must be P17, which completes the proof.

What can be said about any ring 4 = A («, b) of the considered generators
«, b? Denote by G the commutator ideal of 4. (This is the ideal generated by
all commutators in /.) We can prove the following theorem.

THEEREM 3. For any « = ax € H(R),and b € S\U K, A = A(«, b) satisfies
« polynomial identily modulo the prime radical, and the commuitator ideal G = G (A)
of the ring A 1s x-co-inlegral over the zero subring.

Proof. 1t suffices to prove the theorem for R = A («, b), « *-prime ring with
characteristic zero or greater than 5 (provided we can establish a ploynomial
identity of fixed degree, the reduction for the 1 conclusion is clear. As for
the nature of the commutator ideal G, reduce to the *-prime case by considering
an m-system

Moo= {2m 3 37’&'(5)}n.m.r;0=zr—z’“p(l)

and take a x-prime ideal maximal re the exclusion of 1/, where s = sx is a
fixed symmetric in (). By Proposition 12, R must satisfy a polynomial identity.
If HY(R) € Z, clearly « = Ht(R) commutes with b, so R is commutative,
whence G = 0. If, on the other hand, H*(R) € Z, Proposition 5, applies and
vields R to be as in Theorem 1, type (2). It follows that R satisfies the standard
identity in 4 variables, and that G is clearly *-co-integral over the zero subring.
The theorem is proved.

3.3. Svmmelric idempotents. We take R to be a *-prime ring, and let « = «x* ¢
Zy, the centre of H. We wish to show that for every symmetric idempotent
¢ = exof R, |u, ¢] = 0 necessarily. As observed earlier this property is certainly
true when R is not prime.

ProrositioN 13. 1) If [«, e} 5 0, then R must have finite characlerislic.
2) LM b = ae + ca — 2eqe, then b = bx € Zy, |b, ¢] # 0, and the subring
A (b, e) generated by b and e is finite.

Proof. 1) Suppose, by way of contradiction, that R has characteristic 0.
Given any ¢ = ¢+ ¢ H(R) and any x ¢ S\U K(R), we know by Theorem 3,
Section 2.4, that the corresponding subring .1 = (¢, x) has a commutator
ideal G, which is co-integral over the zero subring. Now G is a subring of R,
which must be of characteristic 0, since R is *-prime. Consequently G must be
nil, giving in particular that [¢, x] is nilpotent. Since the later element is again
in.S\U K, by Theorem 2 Section 2.4, [¢, [¢, x]] = 0 follows. Thus |c, [¢, x]] = 0
for all x € R. By Herstein's Sublemma, ¢ ¢ Z follows, all ¢ = ¢x € H, contra-
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dicting the assumption [«, ¢] ## 0, for the considered elements « € H*, and
e ¢ R. We have to agree that R has non-zero characteristic, so must be an
algebra over a Galois field.

2) Since ¢ = ¢* is an idempotent, and since Zy is invariant (for H is in-
variant) containing b, it follows that (1 — 2¢)a(1 — 2¢) = « — (2e« + 2ae) +
deae € Zy, resulting in b = ea 4+ we — 2eue € Zy. Observe that b = be + ¢b.
If then b commutes with ¢, we get eb = ebe + eb, be = be + ¢be,soeb = be = 0,
whence b = eb + be = 0, that is, e« + «we — 2eae = 0. From this e« + eae —
2eae = 0 and ewe + we — 2eae = 0, giving ea = eae = ue, which is ruled out.
Thus [0, ¢] # 0 necessarily.

Consider 12 = {¢" - D™}, —0 1.m=mq, Where 1y is the algebraic degree of b over
the underlying Galois field. (In fact, b = e« + ae — 2eae = [ue, ¢] + [e, ea]
is in the commutator ideal of the subring A (e, «), which, by Theorem 3
Section 2.4, is co-integral over the zero subring.) By inspection, /£ has as its
span over the Galois field precisely 4 (e, b), so A (e, b) is finite.

ProrositioxN 14. If R is x-prime, then every symmetric element in the centre of
H centralizes every symmelric idempotent in R.

Proof. Let sl = A (b, ¢). By Proposition 13, Section 3.3, /1 is a finite subring

of R. Let TV = .1 M Z,+. This is a commutative invariant subring of sym-
metrics containing & (invariant re the ring 4). If P is the prime radical of 4,
then the factor ring 1 /P = /1 is certainly finite, and 1" maps onto a commuta-

tive subring of symmetrics 1V containing the image b of «, which is “almost
invariant”” in the sense that 1V is preserved under the quasi-unitaries 2f, f any
symmetric idempotent, or 2k(1 — £)~% The later types of quasi-unitaries are
in fact liftable re nil ideals.

Now let A be a x-simple component of .1. Clearly W maps onto a commuta-
tive subring of symmetrics containing the image 8 of b, which is almost in-
variant. In the presence of the finiteness of A (or just the fact that the ground
division ring in A is not 4-dimensional), Remarks 6 extend to the almost
invariant subalgebras. But we must first ensure that A is simple artinian. If
not, taking into account that ¢ maps onto an idempotent e = ex of A, and that
b maps onto the element 8 € H*(A), we get immediately [8, €] = 0 necessarily.
This allows us to take A to be simple. Clearly we may suppose that H+(A) &
Z(A). By Corollary to Theorem 1, Section 1, A enjoys the property that every
commutative subring of symmetrics, which is almost invariant, must be central.
Then [B, €] = 0 necessarily.

All in all, we have shown that [0, ¢] = 0in every *-prime image of 4. In view
of the construction of b, this means that b = 0 in every #-prime image of A4,
resulting in 0, a symmetric nilpotent of 4. Since v wasin Z,+ C H, by Theorem
2, Section 2.4, b = 0 follows. Thus [0, ¢] = 0, whence [«, ¢] = 0, proving the
proposition.

3.4 Structure of the x-center of H. In this closing subsection, we let R be any
x-prime ring and wish to establish that every central symmetric ¢ of H, is a
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central clement of K. As already observed, we may take R to be with finite
characteristic (Proposition 13, part 1) Section 3.3). Thus every co-integral
clement x - R over the zero subring is of the form " = ¢ = ¢ If, morcover,
visin S WA, A" s a symmetric idempotent of R, By Proposition 14, Section
3.3, e, T = 0 follows. Let then b be a fixed element of S\ K(R), and let
Ae. i) be the subring generated by ¢ and 5. By Theorem 3, Section 2.4, for
every x = vk in the commutator ideal G = G(A4) of A1, v is co-integral over the
sero subring, and consequently [¢, ¥ = 0.

Iet A be a #-prime image of the ring 1. By Theorem 3, 41 1s 7. We claim
that A is actually commutative. For in the contrary case, |a, 8] # 0. where «
and b map respectively an o and 8. Since « = ax was in H(R) M .1 © H(A),
it follows that @ = ax « H (). Thus H(A) € Z(A). In view of Proposition
5. Ads necessarily of type (2) in Theorem 1, Section 1. In particular A is simple
and non-commutative. Thus the commutator ideal G(4) of - maps onto a
non-zero ideal necessarily equal to A. Thus « has the property {a, ¥ = 0,
for all v - A Consequently « centralizes all symmetric idempotents A
[Towever the subalgebra generated by these being invariant must be adl of A
forcing « + Z(A). We conclude that A was commutative.

1s zero in every x-prime image of A («, b), it follows that [«, 4] s
a, 0] = S\UKanda = ax ¢ I, by Theorem 2, [«, [«, 0]] =
0 follows. Consequenty [« {«, x| = 0 forall & - R. By Herstein's Sublemma,

Since {u, b
nilpotent. Because

« o« Z follows. We have proved the following result.

TuareoreM 4. I R is w-prime, then cvery svmmetric element in the centre of 11
isin fuct u central element of R.

4. Structure of /1. In this section we complete the proof of Theorem 5, as
stated at the outset. We are given any *-prime ring K with characteristic 0 or
greater than 5. We now examine the case where [+ & Z.

PROPOSITION 15, [f [T+ & Z, then R must be of type (2) in Theorem 1, Section 1.

Proof. By Theorem 2, H is a semi-prime ring. By Remark 3, /1 satisfies a
polynomial identity. If J = J* is a non-zero ideal of the ring 71, then by a
result of L. Rowen [16], 7 contains a central element ¢ of /7. If both ¢ 4 ¢x and
cox were equal to zero, ¢ would be a central square-zero element of /1, contrary
to the semi-primeness (and the fact that 71 # 0 necessarily, since H* & Z).
This shows that either ¢ + % 3 0 or cex # 0. If cex 2 0, J contains the central
symmetric element = = ccx in M. If, on the other hand, ¢ + ¢* # 0, then gy =
¢+ c* s a central symmetric in J. This shows that / must contain an element
c#= 0in Z7(H). By Theorem 4, ¢« Z(R) follows. Thus ./ contains a non-zero
divisor on K. Consequently 77 must be a #-prime ring.

We claim that the ring 77 must be of type (2), Theorem 1. To see this observe
that since H+ & Z there must be v = ax ¢ H, « 7 Z. By the contra-positive of
Theorem 4, « ¢ Z(H). In view of the x-primeness of H and the presence of a
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polynomial identity in the ring H, we can then apply Proposition 5, Section
2.2, and get the desired information on H.

Since H is isomorphic to the 2 X 2 matrices over a field with a canonical
transpose involution, it follows that A contains a unity f. Now f is a central
element H, so must be central in R. Because [ = f* = f2, by the *-primeness of
R, f = 1 necessarily, the unity of R. Also / contains a symmetric idempotent
¢ = ex and some skew kg, such that le, k] = ¢ # 0. Now ¢ = ¢* is a square-
central symmetric in 77, which can of course be taken such that ¢z # 0. It
follows that ¢* # 0 is a central element of R (Theorem 4, Section 3.4), and
consequently ¢ is a non-zero divisor on K.

Now let s = sx ¢ Cgr(e) = B. Since both s and se are symmetrics we can
find a polynomial p(¢) so that [k, s — s> - p(s)] = [ke, (s¢) — (se)*p(se)] = 0.
Then

0 = lko, (s — s2p(s)e] = (s — s2p(s))ko, €] = (s2p(s) — ) - c.

Since ¢ is a non-zero divisor on R, s = s*p(s) follows for all symmetrics s = s*
in B = Cgrle).

IHowever, eRe and (1 — ¢)R(1 — ¢) are *-prime rings contained in B =
Cr(e), thus inheriting the co-integral assumption s = s*- p(s). By Mont-
gomery's result, ¢Re and (I — ¢)R(1 — e¢) are certainly right artinian and /.
It follows that R must be right artinian. Consequently R is semi-simple arti-
nian. Since B = Cgr(e) = Cr(1 — 2¢), with (1 — 2¢)? = 1, by a result of
Montgomery, R satisfies a polynomial identity, which completes the proof
(Proposition 5, Section 2.1).

ProrositioN 16. Let R be any *-prime ring, and suppose that H+ C Z. Either
SC ZorHC Z, or else H must be a domain.

LProof. If Z+ = 0, we claim that H = 0 necessarily, so H C Z would follow.
In fact, since Ht C Z, we get H* = 0. Given k ¢ H, k is then a skew, so
k* = 0. Thus every element of H is square-zero, giving that / is nil. By
Theorem 2, Section 2.4, H = 0 follows as wished. This shows that we may
assume Z1 # 0.

Let R be the partial ring of fractions re Z*+, and let H be the expansion of H.
Clearly every symmetric in / must be a central element of R, hence an in-
vertible element. Also, since H is semi-prime (Theorem 2), H must be also.
It follows that either H is a division ring, or H is a direct product of division
rings, or else H is the 2 X 2 matrices over a field with symplectic involution.

Assume that  is not a domain. This forces H to be a non-division ring. By
the above, I contains an idempotent ¢ with ¢ @ ex = 1z = 15 We shall now
prove that if S & Z, necessarily H C Z, which will show the proposition.

Write ¢ = ¢, -27!, 2 ¢ Zt. Clearly ¢Re is the localization of the subring
e1Rey. Since eRe is certainly semi-prime, R, = ¢;Re;. must be also. We claim

that for every x € H, x; = ejxe; is in the co-hypercenter of R;. For let y €
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e1Re;. Now v + yx is symmetric in R. By the basic property of x,

(1) [, v+ %) — (v 4+ a0)p(y + y5)] = 0.

However yz=! = eloerz™! = eitoe = elger, and yxz~! = e*f¥e*z=! = e**e* =
extoy¥er. Thus yzmloyxs™l = eyfge - exty*e; = 0 = yiz Tl vzl giving yyx =
yxy = 0. Thus (1) becomes

0= [v,y — )] + [x, yx — (y%)*p(y%)].
Then
@y =2p() = (v = yp))x = [yx — (y%)*p(yx), x]
Now y — ¥2p(y) € eikerys0 (v — y°p(¥))e = ely — ¥°p(y)) = (v —
y*p(v)). Thus
(2) xely =2 () — (v — ¥*p())ex = [yx — (yx)*p(y%), x]
Multiply (2) on the left by ¢ and on the right by ¢, to get
lexe, y — ¥*p(y)] = 0;

0 = [ewer- =75y — ¥2p(¥)] = s7%ewer, y — ¥°p(¥)];

lewver, y — ¥2p(y)] = 0,
placing x; = eyve; in the co-hypercenter of the ring Ry = ¢;Re;. Consequently
cixer is a central element of e¢;Re;. By symmetry, for x as before in H, e;*xe,*
is a central element of R* = ¢,*Re,*.

Consider an arbitrary skew # in H, and an arbitrary symmetric s = s* in R.
At this point let us observe that since H centralizes all symmetric nilpotents in
R, so will H in R, and by the above, that eke, exkex are respectively central
clements in the corner subrings eRe and exRex. Write

Lk, s] = |k, ese + exsex + exse + esex].
Since esex and exse are symmetric nilpotents, we get
Lk, s] = |k, ese + exsex].
Now |k, 5] = [cke + ckex + exke + exkex, ese + exsex]. Since [eke, ese] =

cke, exsex] = 0 = |exkex, cxsex] = |exkex, ese], we obtain

Lk, s] = |ekex + exke, ese + exsex] = s; + so,
where s; are again, symmetric nilpotents. Thus
3) [k, Lk, s]] = [k, s1 + s2] = 0.
Since H is semi-prime, with H* C Z, if then H were not contained in Z,
in particular H— # 0. If now H~is nil, necessarily k* = O forall k = —kxin H,

giving by a straightforward linearization kk’ = 0, all k, &’ ¢ H—. Consequently
H would have the nil radical H—, which is ruled out by Theorem 2, Section 2.4.

This shows that some & € H~ is a non-square zero. Because k> = 3 € Z,
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k is a non-zero divisor on R. However, by (3),
0 = [k, [k, s]] = k% — 2ksk + sk?

Since k* € Z, we get 2k%s = ksk, which on cancellation by k gives ks = sk for
all s = sx € R, forcing b € Z, for we had S & Z(R), by a well-known result of
Herstein. Knowing that H contains a central skew, we can now derive trivially
the conclusion H C Z. For if kg is any skew in H, ko # 0, then kok is a non-
zero symmetric in H, so kok ¢ Z with & ¢ Z whence ky € Z, all kg € H™,
ko # 0,50 H = HT € Z, which completes the proof.

We have all the pieces to prove Theorem 5. We slightly re-phrase the
statement.

THEOREM 5. Let R be any *-prime ring having characteristic O or greater than 5.
Suppose that the fixed element ¢ of R is such that for every symmetric s = s* of R,
there 1is « polynomiul p (1) depending on ¢ and s such that ¢ commutes with s —
s p(s). Then c isin fuct « central element, except when R 1s of one of the following
types:

1) R is an order in the 2 X 2 matrices over a field with symplectic involution
(so, all symmetrics are central).

2) Rs the 2 X 2 matrices over an algebraic field extension of « Galois field with
« canonical transpose involution admitling no symmetric (or skew) nilpotents (so,
every symmelric satisfies s = s"9, n(s) = 2).

Proof. Suppose that R is not of type (2) and that H € Z. By the contra-
positive of Proposition 15, H* C Z follows. By Proposition 16, either S C Z
or H C Z, or else H must be a domain. Since we had H & Z, it must be that
S C Z or that H is a domain. Now the case S C Z gives that R is necessarily
prime (for R is non-commutative, whence R must be of type (1).

We are left with the following possibility: H+ C Z, H- &€ Z, S € Z, and
H a domain, that we must now rule out.

Step 1. Let A(k, s) be the subring generated by a fixed skew k in H, and «
Jixed symmelric s = sx in R. Then A is Pl modulo the prime radical, and the
commuttator ideal of A is co-integral over the zero subring.

It suffices to show this assertion for A a #-prime non-commutative ring.
We may of course assume that S(4) € Z(4), and by Propositions 15, 16,
that H=(A) consists entirely of non-nilpotent square-central skews. Observe
that 2 € H(A) is one such element. Let B = C, (k). Given ¢ = —ox € B, we
claim that ¢ is non-nilpotent (for ¢ # 0). Suppose the contrary. Then o2 is a
symmetric nilpotent. By the basic property of k, o> commutes with k. Since
o2 € B = Cy(s), 0% € Z(A) follows, giving ¢? = 0. Because H(4) is invariant,
we get (1 — o)k(1 + o) € H(4). Changing ¢ to 20 give gko and ok — ko €
H(A). Because oko is square-zero, cka = 0. It follows that

(ck — ko) = —ok?c = —a2%k? =0,
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s0, by the same token, ¢k = kg. Consequently o < Z, whence ¢ = 0 neces-
sarily. Clearly B contains no symmetric nilpotents neither, since in fact, 53 is
x-co-integral of index 1 over Z. A trivial adaptation of the proof of Proposition
12, gives that 1 is 1. By Corollary to Proposition 5, A is either an order in
the 2 X 2 matrices with symplectic involution, but then A = A (k, s(=s%))
would bhe commutative, or, the 2 X 2 matrices over a field, which is algebraic
over a Galois field. Thus the later case must occur, giving immediately the
conclusions in the assertion.

Step 2. Let ¢ = cx be any symmetric idempolent of R. Then [k, ¢] = 0.

Lety = ck + ke — 2cke. We have y = —yx € H (using as in a previous case
the invariance of 71 via the quasi-unitary —2e). Suppose that y # 0. By an
argument (in the fourth paragraph of the proof) of Proposition 15, for every
b = bx C Cg(e) there is a polynomial p(¢) such that

[y, (b — 02D (b)) = 0.
Now

ly,e] =ye —cy =ye— (y —ye) =2ye —y =y(2 — 1),
SO

y(2¢ — DO — b*p, (b)) = 0.

On cancellation by v = —yx € H, and by the formal unit 2¢ — 1, we get
b =0%py(h), all b =0bx ¢ Cr(e). As in the proof of Proposition 15, this
would give that R must be simple artinian, and Theorem 1 would apply,
yielding the theorem. This shows that we may assume y = 0, so that [k, ¢] = 0
as desired.

Step 3. Ior cvery x = xx in the commulator ideal G of A(k, s), [k, x"] = 0.

If [k, s] = 0 there is nothing to prove. If not, we claim that [k, s] is non-
nilpotent. Otherwise, [k, s] would bhe a symmetric nilpotent. Since k ¢ I,
0 = |k, |k, s]] = k% — 2ksk 4 sk* follows. Because 0 # k> ¢ Z, we would get
ks = sk, which is false. Thus G is non-nil. By 1, G was co-integral over the zero
subring. Consequently, K must be of finite characteristic, and every x =
xx € (s of the form " = ¢ = ex. By 2, [k, x"@] = 0 follows.

We can now ecasily reach a contradiction to the assumption |k, s] # 0. For
if Aisa *-prime image of /1 (k, s), thisis a PI ring. If A were non-commutative,
by the corollary to ’roposition 5 (noting that H(A) € Z(A) and that S(A) &
Z(A)), A should be of type (2) in Theorem 1, Section 1, which would yield
as in a previous situation that the image ¢ of k is such that |o, 2"] = 0, for all
x =ax & A n(x) = 2, forcing ¢ € Z(A) necessarily. We conclude that [k, s]
is zero in every x-prime image of A, giving that [k, 5] is a symmetric nilpotent
ind C R, so [k, |k, s]] = 0 whence as in the above |k, s] = 0, all s = s% € R,
a contradiction to the assumption k& ¢ Z and S € Z. The theorem is proved.
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We conclude with some observations and questions. All the results in this
paper carry over to the rings K with characteristic possibly 3 or 3, provided R
is an algebra over a field containing more than 5 elements. Actually the results
remain true for rings R with characteristic 5. This, however, requires rather
heavy computations arising in the simple artinian case as our result on invariant
subalgebras was assuming a ground division ring containing at least 7 elements.
Concerning algebras over commutative rings @, the whole paper will extend
to this context under a suitable assumption on ® extending the integers; namely,
if .1 is a commutative integral domain, which is co-integral over the subalgebra
53, then I must be radical over the subtield of quotients of 5.

Question 1. Does Theorem 5 carry over to rings with any characteristic?

Question 2. 1f R is semi-prime, in which, given « = a*, b = b*, [« — «?*p1(a),
O — 0% pa(d)] = 0, must KR satisfy the standard identity in 4 variables?
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