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A COMMUTATIVITY THEOREM FOR RINGS WITH 
INVOLUTION 

M. CHACRON 

A ring with involution R is an associative ring endowed with an an t iau to-
morphism * of period 2. One of the first commuta t iv i ty results for rings with * 
is a theorem of S. Montgomery asserting t ha t if R is a prime ring, in which 
every symmetr ic element 5 = s* is of the form s — sn(s) (n(s) ^ 2), then 
either R is commutat ive or 7̂  is the 2 X 2 matrices over a field, which is a 
nice generalization of a well-known theorem of N. Jacobson on rings all of 
whose elements x = xn{x). Another classical commuta t iv i ty theorem, due to 
I. N. I lerstein, asserts tha t any ring R with centre Z such tha t every element 
x satisfies x — x2 • px{x) (i Z, where px is a polynomial having integral coeffi­
cients, is in fact a commutat ive ring. This theorem was extended to prime 
rings R with * in the following way: If for every symmetric s, s — .s2 • ps(s) G Z, 
either S Ç Z o r S is as in Montgomery 's theorem. On the other hand Herstein 's 
theorem was extended to the context of rings wi thout involution in the follow­
ing way : If 7̂  is a semiprime ring and c is a fixed element of 7̂  such t ha t c 
commutes with .v — x2 • p(x) (p, depending on c and x) then c is a central 
element. In this paper, we offer an extension to rings with * of the later com­
muta t iv i ty theorem. We show the following. 

T H E O R E M 5. Let R be any prime ring with * having characteristic 0 or greater 
than 5. Suppose that a fixed element c is such that for each symmetric s — s* there 
is p, a polynomial having integral coefficients, so that c and s — s2 • p(s) commute. 
If, further, R is not the 2 X 2 matrices over a field then c is in fact in the centre 
ZofR. 

At the end of the paper we comment on the restriction about the character­
istic of 7̂  and the nature of the polynomial p intervening in Theorem 5. 
Essential to this paper will be a result of ours concerning subalgebras preserved 
by the group of unitaries in matr ix algebras with * over division rings con­
taining more than 5 elements. 

Definitions, Notations, and Conventions. Throughout the paper all rings have 
characteristic 0 or greater than 5. Except in one case, all homomorphisms 
preserve the involution and the characteristic assumption. All polynomials p 
have integral coefficients and all subrings A are *-closed (A = A*). For 
a Ç R, we let C(A) = CR(a) = {x Ç R\xa = ax} {centralizer of a in R). For 
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1122 M. CHACRON 

r/, b t R, [a, h) = (ib -~ ba {commutator). 5 , K, Z s tand respectively for the 
symmetries, the skews, and the central elements of R. For A a subring of 7^, 
Z(A) or ZA will denote the centre of A viewed as a ring, S (A) or5,4, the sym­
metries of the ring A, and K(A) or KA, the skews of the ring A. Finally, 
X+ (resp. À"~) will denote the subset of symmetr ies (resp. the skews) in the 
subset X of R. 

Definitions l .a) A co-integral expression in x f A is a polynomial expression 

of the form 

xk - x^-pix); 

p a polynomial having integral coefficients. The integer k is called the index. 
b) When for every v R there is some co-integral expression belonging to 

the fixed subring .1 of R, we shall say t ha t R is co-integral over A. If, moreover, 
the expressions can be taken with fixed index r, we use the term "co-integral 
of index r" . 

c) The ring R is said to be ^-co-integral (resp. ^-co-integral of index r) if for 
each symmetr ic v i R, there is some co-integral expression in x (resp. co-
integral expression in x of index r) belonging to A. 

Definitions 2 (Alain definitions). Let R be any ring. Set: 

a) T = TR = \a z R\\/x e Rip; [a, x ~ x2 • p(x)} = 0} 

= {a (z R\R, co-integral of index 1 over CR(a)\ 

b) H = HiRt*) = \a C 7^|VA; € 5 Jp; [a, x - x2p(x)] = 0} 

= {a t R\R, *-co-integral of index 1 over CR{a)\ 

The subsets T and 77 are called respectively co-hypercenter and *-co-hyper-
center of R. 

1. Bas ic f a c t s . In this section we assemble some basic properties of the 
*-co-hypercentre true for a rb i t ra ry rings or on the other extreme for simple 
art inian rings. We begin with formal facts using closure of the co-integral 
expressions of index 1 under composition of polynomials and s tandard proper­
ties of commuta tors . 

Remarks 1. 
a) \/a G 77, VA: G S, \/n ^ 1,1 p; 

(i) [a,x - x2n • p(x)] = 0. 

In part icular if 5 is a symmetr ic ni lpotent (stl = 0) , then [a, s] = 0. 

b) V«i , • • • , (tn ë H, VA: = x*, 3 p 
(ii) [au x - v'2 • p(x)} = 0, V Î = 1, . . . , n. 

c) Va e H,Vxu . . . ,x„ £ S,lp 
(ni) [a, Xf - Xf2 • p(xj] = 0, Vi = 1, . . . , 11. 

https://doi.org/10.4153/CJM-1978-094-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-094-x


RINGS WITH INVOLUTION 1123 

Remark 1-c) shows that H is a subring of A, containing evidently the co-
hypercenter T = TR, and hence, containing the centre Z of R. We record 
these facts as follows. 

Remark 2. For any ring R, the *-co-hypercenter H is a subring containing 
the co-hypercenter, and contained in the centraliser C(N+), of the symmetric 
nilpotents N+ of R. 

Remark 1-b) yields another important property of the *-co-hypercenter H; 
namely, H viewed as a ring, will satisfy a polynomial identity of fairly low 
degree, that it is now convenient to make explicit. Let H0 be any finitely 
generated *-closed subring of H generated by ai, . . . , an. Given x = x* Ç 
HoQR, there is p(t) with 

[a,, x — x2 • p(x)] = 0, for all i = 1, . . . , n. 

Since the a /s generate H0, x — x2 • p{x) Ç Z0 = Z(H0) follows. By the results 
in [4, p. 1125], HQ satisfies the polynomial identity 

[>i, ^ sz, sA]2 G Z0n N+(H0), for all st = st* G S(#o), 

where [$i, s2, s3, s A] is the value of the standard polynomial in four non-com­
muting variables for the specialization Si, s2, $3, s4 in Ho. Since N+(H0) C 
N+(R), and since N+(R) centralizes i7, wre get the following. 

Remark 3. iJ, viewed as a ring with *, satisfies the polynomial identity: 

v*i, J2, sh s, c- 5(ff)f t i , s2,53, s4]
2 e z r\ m c z+(#). 

Two more general facts are in order. 

Remarks 4a) For every subring i^0 = Ro* of R, H C\ R0 C H(RQ*). 

b) If e = e* is a symmetric idempotent, then eHe C\ H(eRe*). 

We digress for a while on quasi-unitaries. Recall that if R is a ring with 1, 
the element x is called unitary, if x is an invertible element such that xx* = 1. 
It is natural in the absence of 1, to call a a quasi-unitary element, if a + a* 
+ aa* = a + a* + a*a = 0. Such an element induces the quasi-inner auto­
morphism 

(1) x —> (1 + a)x(l + a)" 1 = x -\- ax + xa* + axa*, 

coinciding with the inner automorphism induced by the unitary 1 + a if R 
happens to possess a unity 1. Generally the automorphism in (1) preserves 
S, K, it leaves the elements of Z invariant, and commutes with the integral 
polynomial expressions. It follows that this automorphism preserves H, for 
all quasi-unitaries. In accordance with [2], we shall call H an invariant sub-
ring, if it is preserved by the quasi-inner automorphisms induced by all quasi-
unitary elements of R. We have shown: 

Remark 5. H is an invariant subring. 
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The invar iant proper ty of H will be exploited in wha t follows for R, a simple 
ar t inian ring, viewed as the n X n matrices over a division ring D. T h e involu­
tion * induces an involution on D. Since R is by our convention of characterist ic 
greater than 5, it follows t ha t D contains more than 5 elements and is 2-torsion 
free. T h u s [2] applies and yields the following. 

Remarks 6 ([2]). Let W be any invariant subalgebra with centralizer V of 

1) For n > 2, either W C Z, or V = Z. 
2) For n = 2, either W = 0 , Z, or F = Z, or else the ground involution is 

the identi ty mapping, and 

W= Z + 
0 

L-qx 
^ = W* 

O j / ^ D 

contains no symmetr ic matr ix bu t the scalars. 
3) If W satisfies any polynomial ident i ty , then W = Z or R, or else W is 

as in 2)-i) . 

T o be able to apply Remarks G, we must handle the case n = 1. This is 
done in our first proposition. 

PROPOSITION 1. / / R is a division ring either S Ç Z (so R = H) or II = Z. 

Proof. Suppose tha t S Çt Z, but H ^ Z. There must be a Ç 77, with yl = 
CR(O) 9^ R. We claim t h a t every symmetr ic s = 5* in R has some power 

sn(s) j n ̂ ^ Clearly we may assume 5 $ / l . If /7 is the subfield generated by 5 
over the subfield Z + of central symmetries , then F contains strictly F C\ A, 
which is a subfield. Now R is *-co-integral of index 1 over A since, in fact, 
a Ç H. Consequently F is co-integral of index 1 over the subfield F0 = F Pi A 
( tha t is, for every x G F, there is a co-integral expression of index 1 in x be­
longing to 7y,

0). By a general result of fields [8], F is algebraic over a finite field. 
T h u s 5 is a root of unity, so certainly sn(s) G A, some n(s) ^ 1. Since A 9e R, 
by a theorem of Herstein and ours [3], all norms and traces of R would be 
central , and consequently in view of the 2-torsion freeness, 5" Ç Z, which it is 
not. This shows t ha t H = Z necessarily as wished. 

PROPOSITION 2. If R is simple artinian and if R = H, then either S Q Z, or 
R is the 2 X 2 matrices over an algebraic field extension of a finite field, with * a 
canonical transpose admitting no symmetric nilpotents. 

Proof. If R = Hj then by Remark 3, 7̂  is P I , so, by a well-known result of 
I. Kaplansky, R is finite dimensional over the centre, whence finitely generated 
over the centre. By the a rgument used in the proof of Remark 3, s — ^2 • ps(s) 
d Z follows, all s = 5*. We then quote [4, Theorem 3]. 

We can now describe fully the simple ar t inian case. 

T H E O R E M 1. If R is a non-commutative simple artinian ring, either H = Z or 
H = R. In the latter case, R must be of one of the following types: 
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(1) R is a division ring whose symmetries coincide with the centre, so R is a 
^-dimensional division ring. 

(2) R is the 2 X 2 matrices over a field, which is an algebraic extension of a 
Galois field, with * a canonical transpose admitting no symmetric nilpotents. 

(3) R is the 2 X 2 matrices over a field with * the symplectic involution so that 
the symmetries coincide with the centre. 

Proof. By Proposition 1, we may assume tha t R has rank n greater than 1. 
Un > 2, by Remarks 6, H = Z or R. The la t ter case being ruled out by 

Proposition 2, we get H = Z necessarily. 
If n = 2. Ei ther * is canonical transpose or symplectic. In the la t ter case, 

S = Z necessarily, so evidently R = H is of type (3). In the first case, if 
H 9^ Z, necessarily H = R or 

(i) H = Z + 
0 

L—qx x£D 

where D is a field, and * = *(gi, q%) is defined by 

. ^ 2 0 1 d 

If H = R we use, again, Proposition 2 to get tha t R is of type (2). We are 
left with the case (i), t ha t we shall now rule out. 

For let 0 ^ 
0 

[_—qx 
G H. Given a Ç D, a field, s is a sym­

metric matrix. By the assumption, for some polynomial p(t) with integral 
0 x 

coefficients, 0 ^ 
-qx OJ 

commutes with 

1 — 1 • p(s) = 
a" • p(a) 

0 

This is possible only if a = a2 • p(a). Thus D is co-integral over the zero sub-
ring. I t follows tha t D is algebraic over a finite field. 

If R contained some symmetric nilpotent matrix, the subalgebra IF generated 
by all these would be a non-zero invariant subalgebra obviously not of the 
form (i), so necessarily would coincide with R. Since H centralizes W, this 
contradicts the relation H $£ Z. This shows tha t R contains no symmetr ic 
nilpotents. Because D is algebraic over a finite field so will be R, and in the 
absence of symmetr ic nilpotents, every symmetric in R becomes co-integral 
of index 1 over the zero subring (in fact, of the form s = sn(s), n(s) ^ 2). But , 
in the lat ter case, H = R, which is ruled out. Wi th this the theorem is proved. 

We inspect the nature of the simple art inian ring R in the special case 
H+ ( = H H S) ÇL Z. To begin with, R can not be of type (1) in Theorem 1, or 
type (3). By Theorem 1, R is necessarily of type (2). Something more can be 
said about type (2). Since R contains no symmetric nilpotents, R contains no 
skew nilpotents either. For otherwise, the involution * would induce a non-
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trivial involution on the ground field, forcing * to be of the second kind. On 
the other hand, we claim tha t every commuta t ive subring F of R consisting 
entirely of symmetries must be central. For by Remarks 0, adjoining the center 
Z to F , we get the subalgebra 

w = v + z c z + I 0 I 
-qx 0J) XÇD 

and consequently F4~ Ç W+ Q Z. We record these facts in the following 

corollary. 

COROLLARY 1. Any simple right artinian ring R such that 77+ (£ Z, is neces­
sarily of type (2) as in Theorem 1. It follows that R contains no skciv or symmetric 
nilpotents. Moreover, every invariant commutative subring of symmetries must be 
central. 

2. Nil radical of 77. At the outset (Theorem 5) R is taken to be a prime ring. 
However, a t later stages of the paper it will be necessary for us to deal with 
certain subrings of R tha t can be of a rb i t rary prime radical. For this reason 
we shall relax throughout the prime condition by *-prime (e.g. non-zero 
*-dosed ideals in R). We wish to show tha t 77, viewed as a ring, contains no 
non-zero nil ideals. This is carried out by looking first a t the *-prime, not 
prime, case. As one would expect, the prime case is more complex, and will be 
studied alone. 

2.1 *-prime case. Suppose tha t 7̂  contains a non-zero ideal 7 of the type 
7 T\ 7* = 0. Denote by R the factor ring R/I (the involution * is disregarded 
in R), 77", the image of 77 in R, and by J , the image of 7* in 7^. 

PROPOSITION 3. For every â G II, and every x G / , a non-zero ideal of R, 
[â, x — x2p(x)] = 0. 

Proof (sketched). Pick any x G 7*, and apply the basic proper ty of a G 77 
via the symmetr ic x © x* G 7 © 7*. Then pass to R/I. 

In [1] we have shown tha t if 7̂  is any semiprime ring then T — Z. This 
proper ty is used freely throughout . Proposition 3 suggests the following. 

Question. If R is a prime ring and a is a fixed element of 7̂  such t ha t for some 
non-zero ideal / of R, J is co-integral of index 1 over / C\ CR(a), does it follow 
tha t a G Z: 

All our concern in this section is the s tudy of the nilpotents and for these 
special elements we get indeed t ha t they commute with such elements a. This 
is the content of the following result. 

PROPOSITION 4. Tel R be a *-prime, not prune, ring. Then the *-co-hypercentre 
has the following properties. 

1) 77 centralizes all symmetric nilpotents of R. 
2) 77 contains no symmetric nilpotents (other than 0) . 
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Proof. I t suffices to prove this for the image 77 of R in the factor ring (de­
prived of involution) R = R/I, with 7 ^ 0 an ideal verifying I C\ I* = 0. 

1) By Proposition 3, 77 centralizes all nilpotents in / = I*/I. Then let 
e = e2 G H. If y = ex — exe, x G J, then y is a square-zero element in / . 
Then y a = ay, d G II. Thus (ex — exe) de = â(ex — <?xe)e = 0, for ail x d J. 
Consequently eJ(\ — e)âe = 0. Since i t is prime, if then e 7e 0, (1 — e)âe = 0 
follows, t ha t is, de = eâe. By symmetry , ed — ede — âe, for all e = e2, and 
d G 5 . 

2) Suppose tha t a2 = 0, â G 7?. By an argument similar to [1], it can be 
shown tha t d' • J is co-integral of index 2 over the zero subring. This forces 7s? 
to be primitive with a socle containing d • J. I t follows tha t J is primitive with 
socle. If J has a unity, by the primeness of R, R = / , placing d in T(R) = 
Z(R), so â = 0. If, on the other hand, J has no unity, the socle Jo of / must be 
generated by nilpotents centralized by d. Thus d centralizes the ideal JoJJo 
of R, giving à G Z, whence d = 0. 

2.2 Prime case. We take R to be prime, and let P — P* be a nil ideal of H 
viewed as a ring. Concerning the center ZH of II, or the *-center ZH

+ of the 
ring H, it is convenient to notice tha t ZH (as well as H) contains P+, and con­
tains along witli 2x, the element x (by 2-torsion freeness). Also, since the quasi-
unitaries induce automorphisms on II, then ZH, ZH

+ are invar iant subrings. 
In this connection we recall a remark due to Herstein [7, Theorem 6.1.1]. 

Remark 7. If W is any invariant subring of R such tha t 2x G W implies 
x G W, then for every quasi-unitary skew k of R, and every a G IT, 

(1 - fe)-1^., fe] (1 + &)-1 G W. 

We proceed to a very special case t ha t will be used par t ly in this section, 
and fully a t later par ts of the paper. 

PROPOSITION .1. If R is a prime PI ring such that H+ ÇË Z, then necessarily R 
is as in Theorem 1, type (2). Consequently R contains no symmetric nilpotents. 

Proof. Wre claim tha t R cannot be a domain. If not, take any a G H, a G Z. 
For every s = 5* G R, Z+[s] is a commutat ive domain, which is co-integral of 
index 1 over Z+{s] H CR(a). By [4, Lemma 5], the field of quotients of Z+[s] 
is radical over the subfield of quotients of Z+[s] C\ CR(a). Thus for some integer 
n, and some n,v 9^ 0 (z CR(a), usn{s) = v G CR(a). Consequently 

0 = [a, v] = [a, usn] = u[a, sn]. 

I t follows tha t [a, sn<s)] = 0, t ha t is, sn^ G CR{a), all s = s* G R. If R = 
J^Z"1")"1 is the ring of fractions of 7 ,̂ wre get a division ring, for 7? satisfies a 
polynomial identi ty. By the above, for every symmetric s in R, sn(s) G CR(a) = 
C j B (a ) (Z + ) _ 1 . Since a G Z, CR(a) 9^ R. By [3, Theorem 1], all symmetries in 
R are central, contradicting the assumption on 7u This showrs t ha t R cannot 
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be a domain. Equivalent ly R is a simple finite dimensional algebra having 
rank greater than 1. 

Let W be the subalgebra generated by the symmetr ic idempotents . Clearly 
W is an invariant sul.)algebra. Now the centralizer I" of W is necessarily Z(R). 
This is certainly true if R has rank ^ 3. For R of rank 2, the case where * is 
symplectic in R must be ruled out as S(R) ÇË Z(R). T h u s by Remarks G, if 
F ^ Z necessarily W has all its diagonal matrices with equal diagonal coeffi­
cients, which is evidently false as * is canonical transpose. 

Now let .v G 77 (s can be any element in 77) and let e = e* = e2 G R, with 
[s, c) 9* 0. Wri te e = / • z<r\ f = f* G S(R), z0 G Z+(R). Given z G Z+, it is 
clear t ha t / • ,c G S(R). By the basic proper ty of s, we have [s, / • s] = 
[5, ( fa)2^(fs)] , for some p(i). Now 

T h u s 

[5, ^os] = [s, e(z0z)2p(z0z)); 

(zoz - (zQz)2p(z0z))[s,e] = 0; 

ses = (zoz)2p(zoz); 

Z = Zo32p(2oS); 

s = s2Zi, for some si G Z + . 

T h u s Z + is a field, so Z is a field, giving R = RZ~l = 7 .̂ We then quote 
Theorem 1. 

If 7? is a PI *-prime ring with 77 Çt Z, wha t can be said about R? T o begin 
•with, if S Ç Z, this forces 7̂  to be a prime ring. For if in the contrary case, we 
get trivially tha t R = Z, contrary to the assumption 77 $£ Z. Since 7̂  is a 
prime non-commutat ive ring verifying S Ç Z, it follows tha t R must be an 
order in the 2 X 2 matrices with the symplectic involution. Next suppose tha t 
S $= Z. The first a rgument in the proof of Proposition 5 shows tha t R cannot 
be a domain. T h u s R must be simple ar t inian verifying S ÇË Z and 77 $£ Z. By 
Theorem 1 from Section 1, necessarily R must be of type (2) of t ha t theorem. 
We have shown the following. 

COROLLARY. If R is a PI *-prime ring such that 77 $£ Z, then necessarily R 
is a prime ring, which is either an order in the 2 X 2 matrices with symplectic 
involution, or simple artinian of type (2) in Theorem 1. 

PROPOSITION G. Let R be a prime ring with a square-zero symmetric a such thai 
aka = 0. Then R contains a *-closed prime subring R(] containing a, which is an 
order in the 2 X 2 matrices over a field. 

Proof, This proposition is essentially a special case of a theorem of S. 
Montgomery [7, Theorem 2.5.1]. For the convenience of the reader we give 
a self-contained proof. By an observation due to Herstein and Montgomery , 
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R satisfies the generalized polynomial identi ty [ax, ay]2 = 0, all x, y G R. By 
a theorem of Mart indale [10], the central closure Q — R - C of R is a primitive 
ring with socle, whose underlying division ring D must be a field, and a is of 
rank = 1. In fact, aQ satisfies the polynomial identi ty [xf, y']2 = 0, all x', y' G 
aQ. If then aQ = cQ, c = e1 G Socle (Q), then eQe is primitive with polynomial 
identi ty [x, y]2 = 0, giving tha t eQe = D is a field. 

Wri te e = ay, y G Q- We have e* = y*a, and e*£ — y*a2y = 0 follows. If 
f = c -}- e* — ee* = (e — |cc*) + (e — è ^ * ) * , a routine computat ion shows 
tha t : e\ = c{2 = e — \ee*\ eiex* = £i*<?i = 0; <?i() = e(X Consequently fQf = 
eiQei © Ci*Qci* tt Do. Also, (/ G / (? / . For the equality aQ = eQ = C]Ç gives 
/ a = <?ia + <?i*a = </ + £i*^ = a + (<?*<̂  — %ee*a) = ^ since e*a = (y*a)a = 0, 
and similarly af — r/. 

Since Q is a subring of the ring of quotients of R, for every x G Ç, there is 
an ideal 0 9e I of 7? such tha t x7 Ç 7<*. In part icular there mus t be J 7e 0 with 

J 7 ÇZ R and J*/ Ç | ^ = iv . 

Then / / / * / C 7^, where / / * = 7 ^ 0 is an ideal of R. Let R0 = R C\fQf. 
Clearly R0 is a subring containing a, satisfying the s tandard identi ty in 4 
variables. ]f uR{)v = 0; u, v G R{), then u(fJJ*f)v = 0. Since n, z; G 7^0 Ç^fQf, 
uf = u and /^ = i', so a(JJ*)v = z/7z; = 0. Since 7 is an ideal of the prime ring 
R, either u = 0 or y = 0. This shows tha t 7^0 = Ro* is a prime ring, which by 
the above satisfies the s tandard identity in 4 variables. Now R0 contains the 
square-zero element a. Consequently R0 is an order in the 2 X 2 matrices over 
a field. 

COROLLARY. If R is prime with a = a* a square-zero element in H such that 
aKa = 0, then a = 0 necessarily. 

Proof. If a were 9e 0, by Proposition 6, there is a prime PI subring R0 = R(* 
containing a. Clearly a = a* G H(R0), with a2 = 0, so H+(R0) Ç£ Z(R0). In 
view of Proposition 5, 7^0 contains no symmetric nilpotents, a contradiction. 
We have to agree tha t a = 0 necessarily. 

PROPOSITION 7. If R is prime, then H contains no non-zero symmetric nil­
potents. 

Proof. The proof breaks in several steps. 

Step 1. If R contains an idempotent e with e ® e* = 1, then H contains no 
symmetric nilpotents. 

Let TcRe be the co-hypercenter of eRe, and let ZeRe be the center of eRe. 
We have TeRe = ZcRe. Given a G 77", and x G eRe, we have 

0 = \a, (x + x*) — (x + x*)2p(x + x*)] 

= [a, x — x2p(x)] + [a, x* — x*2p(x*)]. 

Then [eae, x — x2/?(x)] = 0 necessarily, placing eae in TeRe = ZeRe. Now let 
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a Ç Z//+ ( = *-center of 77) and let k t K. T h e element kx = e&e* is a square-
zero skew. Since k\ is quasi-unitary, (1 + ki)a{l — k\) Ç ZH follows, t h a t is, 
kid — dki — kxiiki t ZH. Changing kx to 2kx gives \ku <t] G Z7/. T h u s 
[//, [a, fti]] = 0. On the other hand, 

[a, eke + e*kc*\ = [cae + c*ae* + e*ae + e*ae, eke + c*ke*] 

— [e*ae + cae*, e&c + e*ke*], 

for [e&e, cae] = [e*ke*, e*ae*\ = 0. T h u s 

[a, e&c + c*^e*] = (cae* + e*ae, <?&e + e*ke*] 

= eac*kc* + e*aeke — ekeac* — e*ke*ac 

= (eae*&e* — ekeae*) + (e*aekc — c*ke*ac). 

Now 

5i = eae*ke* — ekeae* = eae*ke + (eae*ke*)* 

is a square-zero symmetric . T h u s [a, Ji] = 0, and similarly for 52 — c*aeke — 
c*ke*ae. From this ja, [a, e&e + e*&c*]] = 0. Since we had [a, [a, &i]] = 0, 
we get [a, [a, k]] = 0, for all k G K. 

If then a = a* is a square-zero element in 77, a c Zu
 f follows giving 

[a, [a, k]] = —2aka = 0, so aka = 0, for all k (: K. In view of Proposition 5, 
a = 0 necessarily. 

Step 2. 7/ e = e2 is an idcmpotent of R such that ee* = 0, and if a is a square-
zero symmetric in H, then eac* = e*ae = 0. 

For let C\ = e — L> e*e, ex* = c* — he*e. I t was already observed tha t ex © 
cx* = f is a symmetr ic idempotei-4:. If R\ = j'Rf, it is clear t ha t Ri contains in 
its *-co-hypercenter77i = f'Hf. 

Since a G ZU
T, (1 — 2 / ) a ( l — 2/) Ç Z / 7 follows, giving /; = af+fa — 

2/a/ G Z77
+ . Consequently [a, /;] = 0. Since a2 = 0, we get a fa — 2afaf = 

afa — 2/a fa ; (a/) 2 = ( /a) 2 . T h u s ax = faf is a symmetr ic cube-zero in H\. 
Consequently ax G Z77 l , the center of H\, By Step 1, ai = faf = 0 necessarily. 

N o w / = fi + c'i* = e -\- e* — e*e, where e*e is a symmetr ic ni lpotent com­
mut ing with a (E 77. T h u s 

0 = faf = (e + e* — c*e)a{e + e* — e*e) 

= {cae + cae* — ce*ea) + {e*ae + e*ae* — e*e*ca) 

— (e*eea + e*ce*a + c*ee*ea) 

= cae + car* + c*czc + f*c/(7* — 2ae*c. 

Right multiplication l.)y c* combined with the relation cc* = 0 gives 

cae* + e*ae* = 0; 

£Y/e* = —c*ae* = e*(eae*) = (e*e)ae* = ae*ec* = 0; 

e*ae* = 0; cae = 0; 

0 = cae + cae* + e*ae + e*ae* — 2e*ea; = c*at̂  — 2c*ca ; 

c*ae = 2e*ca = (2e*ea)c = 2e*(cae) = 0. 
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StepS. If a2 = 0 with a = a* G H, then ciKa = 0. 
Let v = v\ + v2 with vt (z R, Vi - v2 = 0. For every w ^ 1, we have z/w = 

Vin + z/2
w + v2

n~1 • Vi. Sett ing v = [&, a] , we get for 

Vi = ka, Vo — —ak = z^i*, ^iZ/2 = —ka2k = 0 ; 

a* = (ka)n + (-l)n(ak)n + (n - 1) ( - l ) ^ 1 ^ " 1 ^ ) ) . 

Now 

[a, v] = 2a&a; [a, i>2] = [a, A4] = . . . = [a, î;2n] = 0; 

[a,v2k+1] = 2a(ka)2m+l. 

Since v = v*, we get by the basic definition t h a t 

2aka = [>, v] = [a, v2p(v)] = 2{a1a(ka)* + a2a(ka)5 + . . . } ; 

aka — aiCi(kaY + aid (ko,)* + . . .; 

{ak)2 = axiaky + a2(akY + . . . = (ak)2p((ak)2) (ak)2. 

Let e = e2 = (ak)2p((ak)2). We have e*e = (ka)2p((ka)2) • e = 0. By Step 
2, eae* = 0. Explicitly we get 

0 = 3, = cac* = (ak)2p((ak)2)(ak)2a(ka)2p((ka)2)(kay 

= ai2(ak)2a(ka)2 + (aia2(ak)2a(ka)A + aia2(ak)Aa(ka)2) + . . . 

= (a1
2(ak)A + 2a1a2(ak)' + ...)• a 

= (ai(ak)2 + a2(ak)A + . . . ) 2 • a = p2((ak)2) • a, 

so, 

e = (ak)2 • p((ak)2) = (ak)A • p2(ak)2 = p2(ak)2 • (ak)4 

= p2((ak)2) .a(ka)*k = 0 ; 

(ak)2 = e(afe)2 - 0; (fea)3 = jfe(a£)2a = 0; 

aka = 0LiCi(ka,y + a2a(ka)b + . . . = 0. 

Having shown tha t aka = 0, we then quote the corollary to Proposition 6, 
which completes the proof. 

2.3 Skew nilpotcnts in H. One difference from the symmetr ic case is t h a t H 
could very well contain non-zero skew nilpotents. Take for example R to be 
the 2 X 2 matrices occurring in Theorem 1, type (3). Here H = R certainly 
has skew nilpotents. An other obstruction is t h a t an arb i t rary nil ideal P 
of H is not a priori invariant . We circumvent the lat ter obstruction by choosing 
P to be the prime radical of H. Once we can show tha t P = 0 necessarily, 
using the fact tha t H contains no symmetr ic nilpotents 9e 0, clearly we get 
tha t H contains no nil ideals 7^ 0. To circumvent the former obstruction, let 
us show the following. 

PROPOSITION 8. For every a £ P (= prime radical of H) and every square-
zero skew k, in R, ak is nilpotent. 
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Proof. Since k is quasi-uni tary with quasi-inverse —k, for every a G P, 

(1 + k)a(l — k) G P follows. T h u s ka — ak — kak £ P. Changing k to — k 

gives kak £ P. T h u s akak Ç P, whence ak is ni lpotent . 

PROPOSITION 9. Let R be a prime PI ring, and let a £ H be a square-zero skew 

such that ak is nilpotent for any square-zero skew k. Then a = 0. 

Proof. By the corollary to Proposition 6 (Section 2.2), and the corollary to 
Theorem 1 (Section 1), we may take R to be an order in the 2 X 2 matrices K 
over a field with symplectic involution. Moreover, since R is obtained by local­
izing reZ+(R)1 the proper ty of a remains t rue under the square-zero skews 
in R. Now the square-zero skews in R are of one of the following types : 

i) k = 

ii) k = 

iii) k = X 

0 x 
.0 0. 

"o o" 
.x 0. 

• 1 . 
X ^ 0,Xy = - 1 . 

Since a is a square-zero skew of R, a is of one of the types i)-iii). Assume tha t 

"0 flo" 
a is of type i) , a = 

x 
- 1 . 

0 0 

0 cio 

L0 0. 

. Then 

1 x 

Ly 1. 
a0y —ao 
. 0 0 . 

is certainly non-nilpotent for a0 9e 0, t h a t is, a ^ 0. T h u s 0 ^ a cannot be of 
type i) , and, by symmetry , a is not of type ii). On the other hand, if a is of 
type iii), the a rgument can be reversed. We have to agree t ha t a = 0 necessarily, 

PROPOSITION 10. The prime radical of H is zero. 

Proof. By Proposition 7, from Section 2.2, P consists entirely of square-zero 
skews. 

Step 1. If a G P is such that a Sa = 0, then a = 0. 

Exact ly as in the parallel s i tuation t rea ted in Proposition 6, we can find 
a PI prime subring Ri containing in its *-co-hypercenter the given element 
a = —a* in P. Because ak is ni lpotent for every square-zero skew in R, clearly 
this proper ty holds in 7^i. By Proposition 9, a = 0 necessarily. 

Step 2. If R contains some idempotent e with e © e* = 1, then P = 0. 

Let a G P and let s £ S. We have 

[a, s] = [eae* + e*ae + eae + e*ae*, ese + ese* + ese + e*se*] 

= [eae* + e*ae + eae + e*ae*, ese + e*se*] = [eae* + e*aet ese + e*se*], 
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for [a, ese* + e*se] = 0, since ese*, e*se are symmetric ni lpotents; aea G eHe Q 
TeRe = ZeRe; erne* G e*He* Ç re+re+ = Z**^*. Now 

[a, 5] = [eae* + c*ac, es<? + e*se*\ — 

= (eae*se* + (eae*se*)*) + (£*aes£ + (e+aese)*) 

= si + s2; 

Si2 = 0, s* = s7* (a G P implies a = —a*). 

Thus [a, [a, s]] = [a, $i + s2] = 0, so, asa = 0, all s = s*, t ha t is, aSa = 0. 
By Step 1, a = 0 follows. 

S/e£ 3. If e is any idempotent of R such that ee* = 0, then eae* = e*ae = 0. 

Let / = e + e* — <?*e = Ci © <?i*. Let a G PH, and «i = faf. We have 

(1 - 2 / M l - 2/) f PH, so, af+f- a - 2faf € PH. T h u s n/a - 2afaf = 

— a/a + 2/a/ (observed tha t a ant i -commutes with af + fa — 2faf); afa = 
aM + M« 

afa = ( a / a ) / + / (« /« ) = (afaf + / o / a ) / + f(afaf + fafa) 

= «/«/ + fafaf + / « / « / + fafa = (a/a/ + /« / a ) + 2/a/a/ 

= a/a + 2/a /a / ; / a / a / = 0; 

«i2 = ( M ) ( M ) = / « / « / = 0 . 

Moreover, if &i is a square-zero skew in Pi = /Pf, then ci\k\ is ni lpotent 
(«i • ki = /a/"&i = JV/&1, and a-ikidiki = fafkifafki = fakiaki . . . ) . By Step 2, 
iii = / « / = 0 necessarily. This gives, as in step 2 of Proposition 7, eae* = 
e*ae = 0 necessarily. 

5te£ 4. Every a G P satisfies aSa = 0, so a = 0. 

Set z; = ^i + ZJ2, Î>IÎ>2 = 0, where vi = sa, z/2 = Vi* = — as, and use an argu­

ment similar to Step 3 of Proposition 7, to get a Sa = 0 as wished. 

2.4 ,S&<m> nilpotents in P. So far, we have shown tha t H has no non-zero nil 
ideals where P is any *-prime ring. To get t ha t H+ centralizes all skew nil­
potents , we shall use a subdirect representation argument . In this connection 
we observe tha t any semi-prime ring R, whose characteristic is greater than 5, 
has a subdirect representation into *-prime rings inheriting the characteristic 
assumption. 

Then let a G H+ and let H e a skew nilpotent. Denote by A the subring 
generated by a and k. Factoring out the nil radical P, we get a ring Â whose 
characteristic is zero or greater than 5, which by the above has a subdirect 
representation into *-prime rings A with the same characteristic assumption. 

In any *-prime image A, if a, a are the images of a and k respectively, 
clearly a = a* G H (A), while a is a skew nilpotent. Thus a2 is a symmetr ic 
nilpotent and consequently [a, a2] — 0. Because a2 evidently commutes with a, 
a2 is then a central symmetric, so in view of the *-primeness, a2 = 0 necessarily. 
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Thus aa — aa — aaa f H(A). Changing a to 2a gives aa — aa t H(A) and 
aaa f H(A). Since aaa is a symmetr ic square-zero element in H(A), and since 
by Proposition 4 and 7, H (A) contains no symmetr ic nilpotents, aaa = 0 
follows. Then r = aa — aa is a symmetr ic in H (A), whose square is 

T2 = aaaa -f- acrao- — craV — a(j2a: = —aa2a, 

so r is a symmetr ic nilpotent, whence r2 = 0. T h u s r = 0, t ha t is, [a, a] = 0. 
We return to the suhiing A. We claim tha t (1 + k)~~l [a, k] (1 — k)~l is nil-

potent . In fact in every *-prime image A of A/P and hence of A, it was seen 
tha t [a, k] = 0. However by Remark 7 from Section 2.2, a Ç / / gives (1 + k)~] 

[a, k] (1 — &)"1 c H. T h u s (1 + &)"1 [a, k] (1 — &)_1 is a symmetr ic ni lpotent 
of R, which is *-prime. I t follows t h a t 

(1 + k)~l[a,k] (1 - k)-1 = 0 

giving [a, k] = 0 as desired, and we have proved the following result. 

PROPOSITION 11. If R is *-prime, then H+ centralizes both the symmetric and 
skew nilpotents. 

Using Propositions 4, 7, 10, and 11 (Sections 2.1, 2.2, 2.3), and using a 
routine subdirect representat ion argument , we derive the following interesting 
theorem. 

T H E O R E M 2. Let R be any semi-prime ring. Then II has the following properties: 
i) H contains no non-zero symmetric nilpotents. 

ii) H contains no non-zero nil ideals (in H). 
iii) H+ centralizes both the symmetric and skew nilpotents in R. 

3. Center of H. In this section we will establish an impor t an t step towards 
the main theorem sta ted a t the outse t ; namely, every symmetr ic of the ring / / 
belonging to the centre Z(H) of II is in fact in Z. We will have to break the 
given ring R into subrings having two generators. 

3.1 Subrings with two generators. S ta r t with any ring R, and pick a in II, and 
/; in 5 U K. Denote by A = A (a, b) the subring generated by a and b. Of 
course a will remain in the *-co-hypercenter of A. Denote by B the centralizer 
of b in A. Clearly Z(A) = CA(a) H CA(b). W7e proceed to the following 
proposition. 

PROPOSITION 11. In the ring A, b is co-integral of index 2 over the center, with 
a centralizer B satisfying a polynomial identity. 

Proof. For let s = 5* Ç C(B). By the basic proper ty of a t H (A), there is p 
such, t ha t [s — s2 • p(s), a] = 0. Since s — s2 • p(s) G B, it follows t h a t .v — 
s2p(s) G CA(a) H CA(b) = Z(A). By [4], every r i n g B satisfying s - s2 • p(s) G 
Z(B) mus t satisfy a polynomial identi ty. Moreover, since b2 is certainly sym-
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metric, b2 is co-integral of index 1 over the center of A, which completes the 
proof. 

By a result of S. Montgomery, as generalized by AI. Smith [15], if the ring A 
is in Proposition 11 is a prime ring, then A must satisfy a polynomial identi ty, 

which is precisely the information tha t we are seeking in this subsection. But , 
if A is only a *-prime ring, there is no way to apply directly Montgomery-
Smith 's result, nor to get directly in the non-prime case, tha t H (A) Ç Z(A). 
This is circumvented using related results about centralizers. 

PROPOSITION 12. If A is *-pri?ne, then A must satisfy a polynomial identity. 

Proof. 

Step 1. B is semi-prime. 

If s is a symmetric or skew nilpotent in B, by Theorem 2, s commutes with a. 
Since s £ B, s ([ Z(A ) follows. In view of the *-primeness of R, sr = 0 necessarily. 

Step 2. B con-tu ':s some non-trivial symmetric idempotent. 

Let e = e* = e~ ^ 0, 1 in B. Clearly [a, e] ^ 0. NowT in the course of the proof 
of Proposition 4 (Section 2.1) it wras seen t ha t if A were not prime, necessarily 
H (A) centralizes all symmetric idempotents. Consequently A is necessarily a 
prime ring. We can finish up the proof by a localization argument . But there is 
no need for that . In fact, given z £ Z + , z ^ 0, ze is symmetric, so [a, ze — 
(ze)2p(ze)] = 0 forces z = z2p(z), z Ç Z + . I t follows tha t B is *-co-integral of 
index I over the zero su bring. Now B cannot be nil (otherwise b is ni lpotent , 
so [a, b] = 0, whence A is commutat ive , which we are ruling ou t ) . T h u s R has 
a characteristic p 9e 0, and consequently R is an algebra over a field (Galois 
held). By Montgomery-Smith 's result, A must satisfy a polynomial identi ty. 

Step 3. B contains no non-trivial symmetric idempotents. 

We claim tha t Z f ^ 0 necessarily. Otherwise, take any 0 9^ s = s* Ç B. 
From s — s2p(s) f Z follows s = s2p(s), giving the idempotent e = e* = 
sp(s), which must be then the unity of R, an impossibility. Thus B contains 
no symmetries ^ 0, so b2 = 0, whence [a, b] = 0, resulting in A, commutat ive , 
which is ruled out. 

Now every symmetric s = s*, being of the form d = s — s2p(s) £ Z, is a 
non-zero divisor on R. For if d = 0 the argument above gives t ha t s is indeed 
invertible, while d ^ 0 forces s to be non-zero divisor. Localizing A re Z+ ^ 0, 
B becomes B = 7 i ( Z + ) - 1 , a semi-prime ring all of whose symmetries are 
invertible. By a result of M. Osborn, B must be semi-simple art inian (with the 
extra proper ty tha t B contains no skew nilpotents) . We proceed to show tha t 
b has some central power in R, hence in R — R(Z+)~l. Consider the subring 
Z+[b2} generated by Z+ and b2. This is contained in B, so Z+[b2] must be co-
integral of index 1 over Z+. As the later subring is a commuta t ive domain, 
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we derive t ha t b2 has some power in Z+(Z+)~\ so b2n • zx = z2, for some 

zt G Z+, so ^ 0. I t follows tha t fr2/i G Z+, as wished. 
Having shown tha t /; has some power in Z(R), and t h a t the centralizer B 

of /; in R is semi-simple art inian, we get using [9] tha t 7£ itself is semi-simple 
art inian. A trivial adapta t ion of Montgomery ' s result [12] shows t h a t R is 
then PI, so R must be PI, which completes the proof. 

W h a t can be said about any ring A = A (a, b) of the considered generators 
a, /;? Denote by G the commuta to r ideal of A. (This is the ideal generated by 
all commuta tors in A.) We can prove the following theorem. 

T H E E R K M 3. For any a = a* G H(R), and K S U K , A = A (a, b) satisfies 

a polynomial identity modulo the prime radical, and the commutator ideal G = G (A ) 
of the ring A is ^-co-integral over the zero sub ring. 

Proof. I t suffices to prove the theorem for R = A (a, b), a *-prime ring with 
characteristic zero or greater than o (provided we can establish a ploynomial 
identi ty of fixed degree, the reduction for the PI conclusion is clear. As for 
the nature of the commuta to r ideal G, reduce to the *-prime case by considering 
an ra-system 

M = {2n'^-^,g(s)}njn<r^f_tr^pU) 

and take a *-prime ideal maximal re the exclusion of M, where s = s* is a 
fixed symmetr ic in G). By Proposition 12, 7̂  mus t satisfy a polynomial ident i ty . 
Jf 11+(R) C Z, clearly a G H+(R) commutes with b, so R is commuta t ive , 
whence G = 0. If, on the other hand, H+(R) ÇÈ Z, Proposition 5, applies and 
yields R to be as in Theorem 1, type (2). I t follows tha t R satisfies the s tandard 
identi ty in 4 variables, and t ha t G is clearly *-co-integral over the zero su bring. 
T h e theorem is proved. 

3.3. Symmetric idempotents. We take R to be a *-prime ring, and let a = a* ( 

ZH, the centre of II. We wish to show tha t for every symmetr ic idempotent 
c = c* of R, [a, e] = 0 necessarily. As observed earlier this proper ty is certainly 
true when R is not prime. 

P R O P O S I T I O N 13. 1) If [//, c] 7̂  0, then R must have finite characteristic. 
2) / / /; = (te + ea — 2eae, then b = b* G ZH, [b, c] 9^ 0, and the subring 

A (b, e) generated by b arid e is finite. 

Proof. 1) Suppose, by way of contradict ion, tha t R has characterist ic 0. 
Given any c = c* G II(R) and any x G S W K(R), we know by Theorem 3, 
Section 2.4, t ha t the corresponding subring A = A (c, x) has a commuta to r 
ideal G, which is co-integral over the zero subring. Now G is a subring of R, 
which must be of characterist ic 0, since R is *-prime. Consequent ly G must be 
nil, giving in part icular t ha t [c, x] is nilpotent. Since the later element is again 
in S \J K, by Theorem 2 Section 2.4, [c, [c, x]] = 0 follows. T h u s [c, [c, x]] = 0 
for all x G R. By Herstein 's Sublemma, c G Z follows, all c = c* G H, contra-
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dieting the assumption [a, e] ^ 0, for the considered elements a Ç H+, and 
c t R. We have to agree tha t R has non-zero characteristic, so must be an 
algebra over a Galois held. 

2) Since e = c* is an idempotent , and since ZH is invariant (for H is in­
var iant ) containing/;, it follows tha t (1 — 2e)a(\ — 2c) = a — (2ea + 2ae) + 
4:e(ie kz ZH, resulting in /; = ea + tie — 2eae £ ZH. Observe tha t b = be + eb. 
If then /; commutes with e, we get eb = ebe + eb.be = be + ebe,soeb = be = 0, 
whence /; = eb + be = 0, tha t is, ea + ae — 2eae = 0. From this ea + eae — 
2eae = 0 and eae + ae — 2me = 0, giving ea = eae = ae, which is ruled out. 
Thus [bj e] 9^ 0 necessarily. 

Consider E = \en • / / " )„ = 0 j ; H ^ m f ) , where mo is the algebraic degree of b over 
the underlying Galois field. (In fact, b = ea + ae — 2eae = [ae, e] + [e, ea] 
is in the commuta tor ideal of the subring A(c, a), which, by Theorem 3 
Section 2.4, is co-integral over the zero subring.) By inspection, E has as its 
span over the Galois field precisely A(e, b), so A(e, b) is finite. 

PROPOSITION 14. If R is *-prime, then every symmetric element in the centre of 
II centralizes every symmetric idempotent in R. 

Proof. Let A = A (b, e). By Proposition 13, Section 3.3, A is a finite subring 
of R. Let W = A Pi ZH

+. This is a commutat ive invariant subring of sym­
metries containing b ( invariant re the ring .4). If P is the prime radical of A , 
then the factor ring A/P = A is certainly finite, and W maps onto a commuta­
tive subring of symmetries W containing the image b of a, which is "a lmost 
invar ian t" in the sense tha t IF is preserved under the quasi-unitaries 2/ , / a n y 
symmetr ic idempotent , or 2&(1 — k)~l. The later types of quasi-unitaries are 
in fact liftable re nil ideals. 

Now let A be a *-simple component of Â. Clearly W maps onto a commuta­
tive subring of symmetries containing the image (3 of b, which is almost in­
var iant . In the presence of the finiteness of A (or just the fact tha t the ground 
division ring in A is not 4-dimensional), Remarks 6 extend to the almost 
invariant subalgebras. But we must first ensure t ha t A is simple art inian. If 
not, taking into account tha t e maps onto an idempotent e = e* of A, and tha t 
/; maps onto the element f3 f H+(A), we get immediately [0, e] = 0 necessarily. 
This allows us to take A to be simple. Clearly we may suppose tha t II+(A) ÇË 
Z( A). By Corollary to Theorem 1, Section 1, A enjoys the proper ty t ha t every 
commutat ive subring of symmetries, which is almost invariant , must be central. 
Then [(3, e] = 0 necessarily. 

All in all, we have shown tha t [b, e] = 0 in every *-prime image of A. In view 
of the construction of b, this means tha t /; = 0 in every *-prime image of A, 
resulting in b, a symmetric nilpotent of A. Since v was in ZH

+ Ç H, by Theorem 
2, Section 2.4, /; = 0 follows. Thus [/;, e] — 0, whence [a, e] = 0, proving the 
proposition. 

3.4 Structure of the *-center of H. In this closing subsection, we let 7̂  be any 
•-prime ring and wish to establish tha t every central symmetr ic c of H, is a 
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central element of R. As already observed, we may take R to he with finite 
characteristic (Proposition 13, par t 1) Section 3.3). T h u s every co-integral 
element x ; R over the zero suhring is of the form xnU) = e = e~. If, moreover, 
x is in S U K, :v/H/) is a symmetr ic idempotent of R. By Proposition 14, Section 
3.3, [r, : c M n ! = 0 follows. Let then /; he a fixed element of S V J K(R)} and let 
A(c, b) he the suhring generated hy c and /;. By Theorem 3, Section 2.4, for 
every v = A* in the commuta to r ideal G = G (A) of T , .v is co-integral over the 
zero suhring, and consequently [c, xn(X}] = 0. 

Let A he a *-prime image of the ring A. By Theorem 3. A is PL We claim 
that A is actually commuta t ive . For in the cont rary case, [a, /Jj ^ 0, where a 
and /; map respectively an a and 0. Since a = a* was in II (R) C\ A Ç 11(A), 
it follows tha t « = a* ; 7 / ; ( A). T ims IP (A) ÇË Z( A). In view of Proposition 
."h A is necessarily of type (2) in Theorem 1, Section 1. In part icular A is simple 
and non-commutat ive . T h u s the commuta to r ideal G{A) of .4 maps onto a 
non-zero ideal necessarily equal to A. T h u s a has the proper ty [a, xn'X) = 0, 
for all .v A. Consequently ex centralizes all symmetr ic idempotent s in A. 
However the suhalgehra generated hy these being invariant must he all of A 
forcing ex (._- Z( A). We conclude tha t A was commuta t ive . 

Since \n, b\ is zero in every *-prime image of A (a, b)} it follows t ha t j / / , l\ is 
nilpotent. Because [</, />! S \J K and ^ = <t* ( / / , by Theorem 2, |//, [//, />J] = 
0 follows. Consequently ..-/, :a, x]\ — 0 for all x i: R. By 1 lerstein's Sublemma, 
(/ Z follows. We h a \ e proved the following result. 

44iEOREM 4. // ' R is *-priniL\ then every symmetric element in the centre of II 
is infact a central element of R. 

4. S t r u c t u r e of H. In this section we complete the proof of Theorem 5, as 
s tated a t the outset . We are given any *-prime ring R with characterist ic 0 or 
greater than 5. We now examine the case where H+ ÇÊ Z. 

PROPOSITION lô . If H r Çt Z, then R must be of type (2) in Theorem 1, Section 1. 

Proof. By Theorem 2, / / is a semi-prime ring. By Remark 3, / / satisfies a 
polynomial identi ty. If J = J* is a non-zero ideal of the ring / / , then hy a 
result of L. Rowen [16J, J contains a central element c of / / . If both c + c* and 
cc* were equal to zero, c would be a central square-zero element of / / , cont rary 
to the semi-primeness (and the fact t ha t H ^ 0 necessarily, since IP Çt Z). 
This shows that either c + c* ^ 0 or ce* 9e 0. If cc* ^ 0, J contains the central 
symmetr ic element z = cc* in H. If, on the other hand, c + c* ^ 0, then Si = 
c + c* is a central symmetr ic in J. This shows tha t J must contain an element 
z 9^- 0 in Z ; ( / / ) . By Theorem 4, z - Z(R) follows. T h u s J contains a non-zero 
divisor on R. Consequently II must he a *-prime ring. 

We claim tha t the ring / / must be of type (2), Theorem 1. To see this observe 
tha t since II' $£ Z there must be a = o* <~ II, a (f. Z. By the contra-posit ive of 
Theorem 4, a (' Z{H). In view of the *-primeness of II and the presence of a 
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polynomial identi ty in the ring 77, we can then apply Proposition o, Section 
2.2, and get the desired information on 77. 

Since II is isomorphic to the 2 X 2 matrices over a field with a canonical 
transpose involution, it follows tha t 77" contains a u n i t y / . N o w / is a central 
element 77, so must be central in R. B e c a u s e / = / * = / 2 , by the *-primeness of 
It, f = 1 necessarily, the unity of R. Also 77 contains a symmetric idempotent 
c = e* and some skew k0j such tha t \e, k0] = c ^ 0. Now c = c* is a square-
central symmetr ic in 77, which can of course be taken such tha t c2 ^ 0. I t 
follows tha t e2 ?£ 0 is a central element of R (Theorem 4, Section 3.4), and 
consequently c is a non-zero divisor on R. 

Now let s = s* C CR(e) = 13. Since both s and se are symmetries we can 
find a polynomial p(t) so t ha t [k0, s — s2 • p(s)] = [k0, (se) — (se)2p(se)] = 0. 
Then 

0 = [h, (s - s2p(s)e] = (s - s*p(s))[k0, e] = (s2p(s) - s) • c. 

Since c is a non-zero divisor on R, s = s2p(s) follows for all symmetries s = s* 
in B = CR(e). 

However, eRe and (1 — e)R(l — e) are *-prime rings contained in B = 
CR(e), thus inheriting the co-integral assumption s = s2 • p(s). By Mont­
gomery's result, cRe and (1 — e)R(l — e) are certainly right art inian and PI. 
I t follows tha t 7̂  must be right art inian. Consequently R is semi-simple art i ­
nian. Since B — CR(e) = CR(l — 2e), with (1 — 2e)2 = 1, by a result of 
Montgomery, R satisfies a polynomial identi ty, which completes the proof 
(Proposition 5, Section 2.1). 

PROPOSITION 16. Let R be any *-prime ring, and suppose that H+ C Z. Either 
S Q Z or H Q Z, or else H must be a domain. 

Proof. If Z+ = 0, we claim tha t II = 0 necessarily, s o i f Ç Z would follow. 
In fact, since H+ Ç Z, we get H+ = 0. Given k G H, k is then a skew, so 
&2 = 0. T h u s every element of II is square-zero, giving tha t II is nil. By 
Theorem 2, Section 2.4, H = 0 followrs as wished. This shows tha t we may 
assume Z+ ^ 0. 

Let 7̂  be the partial ring of fractions re Z + , and let H be the expansion of 77. 
Clearly every symmetr ic in 77 must be a central element of 7^, hence an in-
vertible element. Also, since 77 is semi-prime (Theorem 2), H must be also. 
I t follows tha t either H is a division ring, or 77" is a direct product of division 
rings, or else H is the 2 X 2 matrices over a field with symplectic involution. 

Assume tha t 77" is not a domain. This forces 77" to be a non-division ring. By 
the above, 77" contains an idempotent e with e ® e* =• l-g = \R. We shall now 
prove tha t if 5 $£ Z, necessarily 77 Ç Z, which will show the proposition. 

Wri te e = c\ • z~\ z t Z+. Clearly eRe is the localization of the subring 
eiRei. Since eRe is certainly semi-prime, 7 î = e\Re\. must be also. We claim 
tha t for every x t 77, xi — exxei is in the co-hypercenter of R\. For let y (E 
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eiRei. Now y + y* is symmetr ic in R. By the basic proper ty of x, 

(1) [x, (y + y*) - (y + y*)2p{y + 3/*)] = 0. 

However 3/3-x = exUe\z~l = eit0e = et0eu and y*z~l = ei*to*ei*z~l = ei*t0*e* = 
e*t0*ei. T h u s yz~l • y*z~l = eit0e • e*/0*ei = 0 = y*z~l • yz~l, giving yy* = 
y*y = 0. T h u s (1) becomes 

0 = [x, y — y2P(y)] + [x, y* — (y*)2P(y*)]. 

Then 

x(y - y2P(y)) — (y — y2P(y))x = [y* - (y*)2P(y*)>x] 

Now y — y2p(y) £ ciReu so (y — y2p{y))e = e(y — y2p(y)) = (y — 
y2p(y)). T h u s 

(2) xe(y - y2p{y)) - (y - y2p(y))ex = [>* - (y*)2p(y*),x] 

Multiply (2) on the left by e and on the right by e, to get 

[exe, y - y2p(y)] = 0; 
0 = [eixd • z~2, y - y2p(y)] = z~2[eixei, y - y2p(y)]\ 
[eixeu y — y2p(y)] = 0, 

placing A'I = C1XC1 in the co-hypercenter of the ring Rx = e.\Re\. Consequent ly 
C\XC\ is a central element of ejiei. By symmetry , for x as before in H, ei*xci* 
is a central element of Ri*' = e^Rei*. 

Consider an arb i t rary skew k in H, and an arb i t rary symmetr ic 5 = s* in R. 
At this point let us observe tha t since H centralizes all symmetr ic ni lpotents in 
R, so will H in R, and by the above, t ha t eke, e*ke* are respectively central 
elements in the corner subrings eRe and e*Re*. Wri te 

[k, s] = [k, ese + e*se* + e*se + ese*]. 

Since ese* and e*se are symmetr ic nilpotents, we get 

[k, s] = [&, ese + e*se*]. 

Now [&, 5] = [eke + e&e* + e*£e + c*ke*} ese + e*se*]. Since [eke, ese] = 
[e&e, e*se*] = 0 = [e*&e*, e*se*] = [e*ke*, ese], we obtain 

[_&, s] = [e&e* + e*&e, ese + e*se*] = 5i + 52, 

where st are again, symmetr ic nilpotents. T h u s 

(3) [k, [k, s]] = [ft, Sl + 52] = 0. 

Since H is semi-prime, with H+ Ç Z, if then i7 were not contained in Z, 
in part icular 77~ ^ 0. If now i /~ is nil, necessarily k2 = 0 for all ft = — ft* in i / , 
giving by a straightforward linearization ftft' = 0, all ft, ft' 6 ff~. Consequent ly 
/ / w o u l d have the nil radical H~, which is ruled out by Theorem 2, Section 2.4. 
This shows t ha t some k G H~ is a non-square zero. Because ft2 = 3 £ Z, 
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k is a non-zero divisor on R. However, by (3), 

0 = [k, [k, s]] = k2s - 2ksk + sk2 

Since k2 Ç Z, we get 2k2s = ksk, which on cancellation by k gives ks = sk for 
ail 5 = s* G i?, forcing k (z Z, for we had S $£ Z (R), by a well-known result of 
IIerstein. Knowing tha t II contains a central skew, we can now derive trivially 
the conclusion H Ç Z. For if k0 is any skew in H, k0 9^ 0, then k0k is a non­
zero symmetric in H, so &0& G Z with k £ Z whence k0 G Z, all &0 G i7~, 
&o 7e 0, so II = H+ Ç Z, which completes the proof. 

We have all the pieces to prove Theorem 5. We slightly re-phrase the 
s ta tement . 

T H E O R E M 5. Let R be any *-prime ring having characteristic 0 or greater than 5. 
Suppose that the fixed element c of R is such that for every symmetric s = s* of R, 
there is a polynomial p(t) depending on c and s such that c commutes with s — 
s2 • p(s). Then c is in fact a central element, except when R is of one of the following 
types: 

1) R is an order in the 2 X 2 matrices over a field with symplectic involution 
(so, all symmetries are central). 

2) R is the 2 X 2 matrices over an algebraic field extension of a Galois field with 
a canonical transpose involution admitting no symmetric (or skew) nilpotents (so, 
every symmetric satisfies s = sn^s),n(s) ^ 2). 

Proof. Suppose tha t R is not of type (2) and tha t H £ Z. By the contra-
positive of Proposition 15, H+ Ç Z follows. By Proposition 1G, either 5 Ç Z 
or H Ç Z, or else II must be a domain. Since we had H $£ Z, it must be t ha t 
5 Ç Z or t ha t II is a domain. Now the case S Q Z gives tha t R is necessarily 
prime (for R is non-commutat ive, whence R must be of type (1). 

We are left with the following possibility: H+ Ç Z, H~ (£ Z, S ^ Z, and 
H a domain, tha t we must now rule out. 

Step 1. Let A (k, s) be the sub ring generated by a fixed skew k in H, and a 
fixed symmetric s = s* in R. Then A is PI modulo the prime radical, and the 
commutator ideal of A is co-integral over the zero snoring. 

I t suffices to show this assertion for A a *-prime non-commutat ive ring. 
We may of course assume tha t S (A) $£ Z(A), and by Propositions 15, 16, 
t ha t H~(A) consists entirely of non-nilpotent square-central skews. Observe 
t h a t k (z H (A) is one such element. Let B = CA(k). Given a = —a*(zB,we 
claim tha t a is non-nilpotent (for a 9e 0) . Suppose the contrary. Then a2 is a 
symmetr ic nilpotent. By the basic property of k, a2 commutes with k. Since 
a2 G B = CA(s), a2 G Z(A) follows, giving a2 — 0. Because H (A) is invariant , 
we get (1 — (j)k(l + a) G H (A). Changing a to 2a give aka and ak — ka G 
II(A). Because aka is square-zero, aka = 0. I t follows tha t 

(ak - ka)2 = ~ak2a = - a 2 k 2 = 0, 
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so, by the same token, ak = ka. Consequently a G Z, whence a = 0 neces­
sarily. Clearly B contains no symmetr ic nilpotents neither, since in fact, B is 
*-co-integral of index 1 over Z. A trivial adapta t ion of the proof of Proposition 
12, gives t ha t A is P I . By Corollary to Proposition 5, A is either an order in 
the 2 X 2 matrices with symplectic involution, bu t then A = A(k, s( = s*)) 
would be commuta t ive , or, the 2 X 2 matrices over a field, which is algebraic 
over a Calois field. T h u s the later case must occur, giving immediately the 
conclusions in the assertion. 

Step 2. Let e = e* be any symmetric idempotent of K. Then [k, c] = 0. 

Let y = ek + ke — 2eke.\\Je\mvey = —y* G H (using as in a previous case 
the invariance of If via the quasi-uni tary — 2c). Suppose t ha t y ^ 0. By an 
argument (in the fourth paragraph of the proof) of Proposition 15, for every 
/; = /;* G CR(e) there is a polynomial p(t) such t ha t 

[y,c](b - b2-b(b)) = 0. 

N o w 

\y, e] = ye — ey = ye — (y — ye) = 2ye — y = y (2c — 1), 

so 

y ( 2 c - l)(b - b-ph{b)) = 0 . 

On cancellation by y = —y* G IL, and by the formal uni t 2e — 1, we get 
b = b2 • pt>(b), all b = b* G CR(e). As in the proof of Proposition 15, this 
would give tha t R mus t be simple art inian, and Theorem 1 would apply, 
yielding the theorem. This shows t h a t we may assume y = 0, so t h a t [k, e] = 0 
as desired. 

Step 3. Lor every x = x* in the commutator ideal G of A (k, s), [k, x1l(>x)] = 0. 

If [ky s] = 0 there is nothing to prove. If not, we claim t h a t [k, s] is non-
nilpotent. Otherwise, [k, s] would be a symmetr ic nilpotent . Since k G / / , 
0 = [k, [k, s]} = k2s — 2ksk + sk2 follows. Because 0 ^ k2 G Z, we would get 
ks = sk, which is false. T h u s G is non-nil. By 1, G was co-integral over the zero 
subring. Consequently, R mus t be of finite characterist ic, and every x = 
x* G G is of the form xn^ = c = e*. By 2, [k, xn™] = 0 follows. 

We can now easily reach a contradict ion to the assumption [k, s] ^ 0. For 
if A is a *-prime image of A (k, s), this is a PI ring. If A were non-commuta t ive , 
by the corollary to Proposition 5 (noting tha t H(\) $£ Z ( A) and t ha t 5 ( A ) $£ 
Z ( A ) ) , A should be of type (2) in Theorem 1, Section 1, which would yield 
as in a previous si tuation t ha t the image a of k is such tha t [a, x7l(T)) = 0, for all 
x = x* G A, n(x) ^ 2, forcing a G Z ( A ) necessarily. We conclude t h a t [k, s] 
is zero in every *-prime image of A, giving t h a t [k, s] is a symmetr ic nilpotent 
in A Q R, so [k, [k, s]] = 0 whence as in the above [k, s] = 0, all s = s* G R, 
a contradict ion to the assumption k (I: Z and S Ç= Z. T h e theorem is proved. 

https://doi.org/10.4153/CJM-1978-094-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-094-x


RINGS WITH INVOLUTION 1143 

We conclude with some observations and questions. All the results in this 

paper carry over to the rings R with characteristic possibly 3 or 5, provided R 

is an algebra over a field containing more than 5 elements. Actually the results 

remain true for rings R with characteristic 5. This, however, requires ra ther 

heavy computat ions arising in the simple art inian case as our result on invariant 

subalgebras was assuming a ground division ring containing at least 7 elements. 

Concerning algebras over commutat ive rings $, the whole paper will extend 

to this context under a suitable assumption on $ extending the integers ; namely, 

if A is a commutat ive integral domain, which is co-integral over the subalgebra 

B, then A must be radical over the subfield of quotients of B. 

Question 1. Does Theorem 5 carry over to rings with any character is t ic ' 

Question 2. If R is semi-prime, in which, given a = a*, b = />*, [a ~ a2pi(a), 

b — h2 • po(b)] = 0, must R satisfy the s tandard identi ty in 4 variables:' 
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