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Abstract. We construct a subgroup H; of the iterated wreath product G, of d
copies of the cyclic group of order p with the property that the derived length and
the smallest cardinality of a generating set of H, are equal to d while no proper
subgroup of H, has derived length equal to d. It turns out that the two groups Hy
and G, are the extreme cases of a more general construction that produces a chain
H; =K, <--- < K,_1 = G4 of subgroups sharing a common recursive structure. For
ie{l,...,p— 1}, the subgroup K; has nilpotency class (i + 1)%~1.

1991 Mathematics Subject Classification. 20D15

1. Introduction. Certain properties of a finite group can be detected from its 2-
generated subgroups. For example, a deep theorem of Thompson says that G is soluble
if and only if every 2-generated subgroup of G is soluble. Influenced by these results, one
could be tempted to conjecture that there exists a positive integer ¢ with the property
that every finite soluble group contains a c-generated subgroup with the same derived
length. This is false. Consider the iterated wreath product Gg = C, 2 - - - : C, of d copies
of the cyclic group of order p. The derived length of G, is equal to d and coincides
with the smallest cardinality of a generating set. However, if p = 2, then every proper
subgroup of G, has derived length smaller than d (see, for example, [2, Lemma 2]),
so d elements are really needed to generate a subgroup with derived length equal to
d. On the other hand, if p # 2, then G; contains several proper subgroups with the
same derived length and the following questions arise. Does a counterexample to
the previous conjecture exist when p # 2? Does such counterexample appear among
the subgroups of G;? The aim of this paper is to answer to the previous two questions.

THEOREM 1. For any prime p, there exist d elements xi, ..., x; € Gy such that
the subgroup Hy; = (x1, ..., xq) of Gy generated by these elements has the following
properties.:

(1) the derived length of H; is d;
(2) Hy cannot be generated by d — 1 elements;
(3) no proper subgroup of Hy has derived length equal to d.

The interest on p-groups without proper subgroups with the same derived length
has been related with the problem of bounding the order of a finite p-group in terms
of its derived length (a long history starting from Burnside’s papers, see [S] for more
details). Mann [4] showed that if G is a finite p-group, then G # 1 implies log, |G| >
24 4+ 2d — 2. For primes at least 5, groups of length d and order p*' =2 were constructed
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in [1], improving previous examples of Hall of order pzd“ for all odd primes (see [3,
I11.17.7]). These examples can be generated by two elements; our interest goes in a
different direction: indeed, we want to produce examples of p-groups without proper
subgroups of the same derived length but with large elementary abelian factors. As a
consequence, the order of H, is large with respect to the lower bound proved by Mann
(a detailed investigation of the order of H,; is done in Section 4). However, H; has other
minimality properties. It is well known that if a nilpotent group has derived length d,
then its nilpotency class is at least 2¢~!. The nilpotency class of Hy is precisely 2971,
the smallest possible value. It follows also that no proper factor group of H; has the
same derived length as H,.

Our study of the properties of the group H, is made possible by a particular choice
of the notations: the group G acts on the p?-dimensional vector space V', over the field
with p-elements and G;.1 = V; x Gy. In section 2, we define a map y,;: {0,...,p —
1} — ¥V, with the property that the image T'y = y4({0, ..., p — 1}9) is a basis for
Vgover F. Wehave Gy = Vy_1 X (Vy_o ¥ ---x Vy)and Hy = (xy, ..., x4) with x; =
yi—1(1,...,1) € V;_1. An easy formula (see in particular Lemma 3) allows to express,
foranyw € I'yand i € {1, ...,d — 1}, the commutator [w, x;] as a linear combination
of the elements of I';. In Section 5, we discuss a generalization of this construction.
Fork € {1, ..., p — 1}, we can consider the subgroup Xy s = (X1, . . -, Xr.q) of G; with
Xii = vi—i(k, ..., k). If p =2, then H; = G4. Otherwise

Hi=X1a<Xoa<- <Xy 24<Xp—10d=0Gq.

This approach allows to study simultaneously the groups Xj , for the different values
of k: for example the nilpotency class of these groups can be determined with a unified
argument: we prove that the nilpotency class of Xj 4 coincides with (k + 1)?~! (see
Theorem 30).

2. Notations and preliminary results. We fix the following notations: p is a prime
number, F is a field with p elements and V,, = F”" is a vector space over F of dimension
p". For each positive integer n, we define a function 8, : V,_1 x N — V, as follows: if

v={(ai,...,ay ), then
Bn(v,m) = (0"v, 1"v, ..., (p— 1)"v)
=(0"ar, ..., 0"ap 1, ..., (p = D)"ar, ..., (p — D)"ay1).

Notice that if a;, ap are positive integers and a; = a; mod p — 1, then B,(v, a;) =
Bn(v, a). However, if ¢t is a positive integer, then B,(v,0) — B,(v,t(p — 1)) =
(v,0,...,0). Given a € N, we define a as follows: if a = 0, then @ = 0; otherwise a
is the unique integer with 1 <a <p — 1 and a = a mod p — 1. With this notation, it
turns out that B,(v, @) = B,(v, @) for any a € N. Now, for every positive integer n, we
define a function

Yu :N" >V, = F
in the following way:

yi(@) = pi(l,a) = (0%, 1%, ..., (p — 1))
Vn(alv B an) = /3,1(]/,1_1(611, ceey an—l), an) ifn>1.
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Let I, ={0,...,p—1} € N. Since y,(ai,...,a,) = yu(ai,...,a,), we have that
¥a(N") = yu(Z}). Notice that for any choice of (ai, ..., a,) in I}, yu(ai, ..., a,) is a
non zero vector (for example y,(0) = (1, ..., 1)). Moreover, a stronger result holds.

Indeed, we have:
LEMMA 2. The set Ty = {y,(w) |u € I}'} is a basis for the vector space V), over F.

Proof- We use the fact that any v € T',, can be uniquely written in the form v =
Bn(w, a) with w € T',_y and a € I,. Now, for w € T',_ and a € I, let A,, , be elements

of F such that

Z )"w,aﬂn(wa a) =0.

w,da
For 1 <i <p, we have a linear map p;: V, = V,_1 defined by pi(ai,...,ay) =
(@14(i—1)pr1s - - A1 -1y ). In particular, since p;(B,(w, a)) = (i — 1)“w, we get that

0= Pi (Z )\w,aﬁn(wa CZ)) = Z)Hn,a(i - l)aw = Z <Z )\w,a(i - 1)a) w.

By induction, the vectors of I',,_; are linearly independent, so for each w € I',,_; and
eachj € {0, ..., p — 1}, we have that

> hwa* =0.

ael,
This means that (A, 0, ..., Ay p—1) is a solution of the homogeneous linear system
associated to the matrix
0 0 0
1 1 1
2 -1
4= 2 2 2r

p= 117 (- 1y

Since A4 is an invertible matrix, we get that A, ,=0 for each weI',_; and
ael, O

We use the previous definition to construct a sequence of vectors x, € V,_; :

X1 =1
Xpr1 = vu(l, ..., 1) = Bulxy, 1) if n > 0.

Now we start to work in the iterated wreath product G; = C, 2 C, 2 - - - 2 C, where
C, appears d-times. Clearly, G = V), while, if 4 > 1, then V;_; can be identified with
the base subgroup of the wreath product G; = C, : G4—1 = V41 x G4—1. In particular,
X1, ..., X4 can be viewed as elements of G,.

Our aim is to study the subgroup H,; = (x1,...x4) of G, generated by these
elements. Notice that Vo = H| = G| = C, while, if d > 2, then H; = Wy_1 x Hy_,,
where W,;_; is the H;_;-submodule of V,;_; generated by x,.
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LEMMA 3. Let v = yy(ay, ..., aq) € Vg, with and i < d. Consider k = (d — i)+ 1.
If t is a positive integer, then

0ifae =0
[v, 1x;] = ifar=0

ZISCS(T,( (”C")(—t)cyd(al, cey 1, A —C, Ay FC, ..., ag+c) otherwise.

Proof. Since yy(ay, ..., aq) = vqa(a, ..., ay), wemay assume 0 < a; < p — 1 forall
je{l,...,d}. First, we prove this lemma for i = 1. Notice that if wy, ..., w, € V4_1,
then

(Wi, ..o, wp)™ = (wp, Wi, ..., Wpy_1).
In our particular case, since v = B4(w, @) for w = y;_1(ay, ..., as_1), we get that

[v, tx1] = — (0% w, 1%w, ..., (p — D™w) + (0%“w, 1%w, ..., (p — 1)™w)™
=(((=)" = 0“NYw, ..., (( — )" — “Yw, ..., (p — 1 = D" — (p — D*)w).

If ag = 0, then [v, £x;] = 0. Otherwise, since (i — )™ — i% = Y, _, (¥ )=,

we deduce
aq o
[v, tx1] = Z (b)(—l) ““Pyuar, ..., aq-1,b)
0<b<a;—1
ag .
= Z ( )(—l) yd(al, v, dg—1,a — C).
I<c<aq ¢
Now assume i > 1. Since v = By(yqu(ay, ..., as_1), az) and tx; = tB(x;_1, 1), we have
[v, 1x;] = (wy, ..., wp)
with

w; =[G — D*ya-1(ar, ..., ag-1), (t - G — D)xi-1] € V1.
By induction

. a, a . c
w; =(—1) ’Z( Ck>(—l(l—1)) Ya-1(au, ..., -1, @ — ¢, Qey1 +¢, .. ., dg—1+C)

1<c<ai

Aj . N
= Z (C)(—t)"(/ — D" ypa(ar, . @y, ag—c agpr + ¢, aa1 +0).

1<c=<ai
This implies
ar .
[v, txi] =Z( . )(—l) Ba(va-i(air, ..., a1, ax—c, Gy +c, ..., dg—1+C¢), dg + ¢))
1<c<ay

ay
= <C>(—Z)C7/d(a1, e @1y G = €, Q1 H €y Ago1 €, A+ ©).

1<c<ax

This concludes our proof. g
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We define a directed graph Q,; whose nodes are the elements of I'; and
in which there exists an edge with initial vertex w; = y(ay, ..., a4) and terminal
vertex w; = y(by,...,by) if and only if there exists k€ {l,...,d} such that
ar 20 and y(by,...,by)=v(ai,...,a¢—1,ar— 1, a1 +1,...,a;+1). Let o=
va(ay, ..., ag) € Qu: we define the height of w as follows:

ht(ya(ar, ..., aq) = 2""ay + 2 2@ + - - - + 2441 + aq.

LEMMA 4. If (w1, wp) is an edge in 4, then ht(w;) < ht(w;).

Proof. We may assume w; = yy(ay,...,ay) with 0 <a; <p—1 for each i€
{1,...,d} and that wy = y(ay,...,ar_1,ar — l,ap.1 +1,...,a;,+ 1) for some k €
{1, ..., d} with a; # 0. Since
ht(w;) =2'a; +---+a; and
ht(ws) =297 ay + -+ + 297" gL + 27K —1) + 27 N+ 1) + - - + (ag+1)

<2y 4+ 27 g+ 2R —1) 4+ 2 @+ D) + -+ (aat D)

we have

ht(w) — ht(wy) > 27 = Y~ V=1
0<j<d—k—1
hence ht(w,) < ht(w)). ]

Given w € Q4, we denote by Ay(w) the set of the descendants of w € Qy, i.e. the
set of the w* € Q, for which there exists a path in ©, starting from » and ending in w*.

PROPOSITION 5. If w € Qy, then Ay(w) is a basis for the Hi-submodule U(w) of V4
generated by .

Proof. By Lemma 3, U(w) is contained in the subspace of V; spanned by A (w).
To prove the converse it suffices to show that if €, contains the edge (w, w*), then
w* € Ulw). Let w = yy(ay, ...,ay). Weassume 0 < a; <p—1foreachie {l,...,d}.
By definition, there exists a k € {1, ..., d} such that a; # 0 and

w*=y(a1,...,ak_1,ak—1,ak+1+1,...,ad+1).

For0 <c¢ < a, letw, = yylay, ..., a1, ar—c, ary1+c, . .., ag+c). In particular, =
wp and w* = w;. By Lemma 3, for 0 < ¢ < g there exist piccy1, ..., ek € F such that

[we, xi] = Z M j@;.

ctl<j<a
Moreover, u.; # 0 foreachj € {c+1, ..., a;}. Indeed, since 0 < ax < p — 1,
ap — C i
ey = ( . )(—ly £0 mod p.
j—c
Now, forr € {0, ..., ax — 1} consider

prz[w,xi...,xi].
— —

r times
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We claim that

pr=Y_ Apewe, with A, € Fand A, # 0.

r<c<ai

If r =1, then p; = [wo, x;] and X1, = po.. Assume r # 1.

Pr = [prflv xi] = Z Ar—1,e@es Xi | = Z [)"rfl,ca)cs xi]

r—1<c=<ay r—1<c<a
= § Ar—l,e E M j@j | = E Arc@e
r—1<c<a; c+l<j<ai r<c=<ag

with
)”"»]' = Z )"rfl,c‘,uc,j-

r—1<c<j—1

In particular, A, = Ay—1 ,—114r—1,,—1 # 0. Now we can conclude our proof, showing by
induction on gy — cthatw, € U(w)forl < ¢ < ar. Ifar — ¢ = 0, then p,, = Ay 4,00, €
U. Since p,, € U and A, , # 0, we conclude w,, € U(w). Assume w1, ..., w, €
U(w). Since pe.c = 3 i<y Mrjwj € U(w) and . # 0, we deduce o, € U(w). O

3. Derived length and nilpotency class of H;. We will denote with d1(G) the derived
length of G, if G is a soluble group, and with nc(G) the nilpotency class of G, if G is a
nilpotent group.

PrOPOSITION 6. dI(H;) = d.

Proof. The proof is by induction on d. If d = 1, then H is cyclic of order p and
dl(H;) = 1. Assume d > 2. We have H, < G); < (G4_1)F, and so we can consider the
projection ; : H; — G4_;. By Lemma 3,

[xl" xl] = [Vi+1(1’ ceey 1), xl] = _J/H»l(ls D) 13 O)
= —(]/,(1, ey 1), ey j/,'(l, ey 1)) = —(Xl‘,l, e ,X,;]).

Thus, w1 (H)) = (x1, ..., X4—1) = Hq_ and by induction
d—1=dl(Hy1) < di(m(Hp)) < di(H) < di(Gy) =d — 1.

But then, dI(H);)) = d — 1 hence dI(H,) = d. 0

It is well known that G, is isomorphic to a Sylow p-subgroup of Sym(p?), hence
H, can be identified with a subgroup of Sym(p?).

COROLLARY 7. Hy is a transitive subgroup of Sym(p?).

Proof. Assume that @1, ..., Q, are the orbits of H; on theset {I, ... ,pd}. For each
je{l,...,r}, we have |Q;| = p¥ for some s; € N. If Xj is the transitive constituent of
H, corresponding to the orbit €;, then X; is isomorphic to a subgroup of Gy, since
Gy, is a Sylow p-subgroup of Sym(p¥); in particular, dI(X;) < dI(Gy,) = s;. We deduce
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that d = dl(Hy) < max{dl(X;) | 1 <j <r} <max{s; | 1 <j <r}. This is possible only
ifr=1. ]

Define z,; as follows:

Z1 = X1 lfd == 1,
zg = vYa-1(0,...,0) otherwise.

It follows immediately from our definitions that z; = (1, ..., 1) € V,_;. In particular,
(za) < Cy, (Gg—1) < Cy,_(Hy-1).

LEMMA 8. Cy, [ (Hy-1) = (z4)-

Proof. Let v = (x1, ..., Xp1) € Cy, (Hy-1). Since Hy_1 is a transitive subgroup
of Sym(p?~1) it must be x; = x; foralli e {I,..., p"'}, hence v € (z,). O

LEMMA 9. Let d be a positive integer. If ay # 0, then [zq4, vi(ay, ..., aq)] # 0.

Proof. We prove this statement by induction on d. If d = 1, then [z, y1(a))] =
y1(a; — 1) # 0, by Lemma 3. Otherwise, since z; = (z4_1, ..., Z4—1), We have

[za, va(ar, ..., a7)] =
=[(za=1, - -+ 2a=1), O“ya_i(ar, ..., ag-1), .. .. (p — D"yu_1(ai, . .., aqs—1))]
= ([za-1, 0%ya_1(ar, ..., ag-1)), - ... [2za-1, (0 — D" va-r(a1, ..., aqa—1)]) # 0

since [z4_1, Ya_1(a1, ..., az_1)] # 0 by induction. ]
COROLLARY 10. Z(Hy) = (z4) is cyclic of order p.

Proof. If d =1, then Z(H;) = (z1) = (x1) is cyclic of order p. Assume d > 2.
We have H; = W,_| x H;_,. By induction, (z;_1) = Z(H,_;); in particular, z;_; is
contained in every normal subgroup of H;_| and it follows from Lemma 9 that the
action of H,_; on W, is faithful. Hence, by Lemma 8, Z(H,;) < Cw,_(H4-1) =
(za). U

Let a group G act on another group A via automorphism and suppose that 1 =
Ay <--- < A,, = A is a chain of G-invariant subgroups: we say that G stabilizes the
chain {4; | 0 < i < m} if each right coset of A4;_; in A4; is G-invariant for all i with
0 < i < m. The first proof of following result was given by Kaluzhnin.

PROPOSITION 11. Assume that G acts faithfully on A via automorphisms and that G
stabilizes a chain {A; | 0 < i < m} of normal subgroups of A. Then A is nilpotent of class
at most m — 1.

LEMMA 12. Let w € Q4 with m = ht(w). Define Uy(w) =0 and, for any je€
{1,....,m}, let Uj(w) = (0" € Ay(w) | ht(w*) <j —1). Then, Hy stabilizes the chain
{U(w) |0 <i<m+ 1}

Proof. 1t follows immediately from Lemma 3 and Lemma 4. O

LEMMA 13. Hy, acts faithfully on the submodule U; of W, generated by
va(1,0,...,0).
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Proof. By Corollary 8, (z;) is contained in all the nontrivial normal subgroups of
H,;. Now, Lemma 9 guarantees that [z,, y;11(1,0,...,0)] # 0, and this immediately
implies that the action of H; on Uy is faithfull. O

THEOREM 14. nc(H,) = 291,

Proof. 1t is well known that dl(G) < log,(nc(G)) + 1 for every nilpotent group.
Therefore, from Proposition 6, we deduce that nc(G) > 2¢~!. On the other hand,
by Lemma 13, H,; acts faithfully on the Hy-submodule U, of W, generated by
y4(1,0,...,0) and, by Lemma 12, H, stabilizes a chain of U, of length at most
ht(y4(1,0, ..., 0) 4+ 2 = 2971 4 2. Therefore, nc(Hy) < 297! by Proposition 11.  [J

Recall that x;; = y4(1, ..., 1) and that W, is the H;-submodule of V; generated
by x4.1. Since W} is a cyclic H;-module, it contains a unique maximal H;-submodule,
say Yy. Let Ay = Ag(xg41) and Af = Ay \ {x441}. It follows from Proposition 5 that
Ay is a basis for W, and A} is a basis for Y,;. Now let Z; be the F-subspace of
W, spanned by the vectors B;(w, a) with w € A} , and a € I,. Again, we can use
Proposition 5 to deduce that Z, is an H,-submodule of W,;. More precisely:

LEMMA 15. Let X441 = ya(1, ..., 1,0). The set Ay \ {Xay1, Xa+1} is a basis for Z,.
In particular, if yy(ay, ..., aq) € Z4 N Ay, then a; = 0 for somei € {1,...,d —1}.

Proof. Let o = yulai, ..., a5) € A We have 3 __,2/7a < ht(xa1) =2/ —
1 and this is possible only if @; =0 for some ie{l,...,d}. If ;=0 for

someie({l,...,d—1},thenw = ys_1(ai,...,as-1) € A}_, and 0 = Ba(w, ag) € Z,.
Otherwise, w = yy(ai, ..., a4-1,0) with @; 20 for 1 <i <d —1: again, we deduce
from ht(w) < 2¢ — 1 thata; = --- =ag_; = 1, i.e. 0 = Xg41. O

Since Y, is an H,-submodule of W, for any n € N, we have [Y;, x;] < Y; whenever
j < i. On the other hand, if j > i then [Y;, x;] < [Y;, Wj—1] < [H;, W;—1] < Y;_1. This
implies that F; = Y; 1Yy »---Y; is a normal subgroup of H; and H;/F; is an
elementary abelian p-group of order p¢. Since H, can be generated by the d elements
X1, ..., xq we deduce that F; = Frat(H,;) = H),.

LEMMA 16. Ky = Zy 1Zy4 > -+ Z5 is a normal subgroup of Hy.

Proof. Since Z; is an H;-submodule of W; for any i € N, and H;,; = W; x H;, we
have [Z;, x;11] < Z; whenever i > j. So in order to prove our statement, it suffices to
prove that if 2 < i < j then [Z;, x;1] < Z;. Recall that ht(x;1) = 2 — 1 and let

Y =(we Aj|ht(w) < ht(xj4) —2=2-3) < V.

We have ¥; = (13*,%]+1, ni, ..., n;) with

m=y(0,22,...,2),
n =y(1,0,2,...,2),

ni-1=vy1,...,1,0,2),
nj: )/](l,, 1,0):56j+1.
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Nowleth € Z;.Sinceh € Z; < Hipy = (X1, ..., Xiy1), wehave h = x;, ... x;, withr e N
and si,...,s-€{l,...,i+1}. By Lemma 3, [W,, H;, H]] =[Y;, Hj] = Y/* and

[h, xjm] = Z [Xss Xj1] = Z Nj+1-s, mod Y/*

1<t<r 1<t<r

Let / be the numbers of t € {1, ..., r} with x;, = x1. Since gy € Z;if k # jand U; < Z;
we deduce that [, xj;1] = IX;41 mod Z;. On the otherhand,h € Z; < W;--- W, < H;
and i = (x;)) mod W;--- W, soitmustbe/=0 mod p and consequently [A, Xjp1] €
Zj. u

We are interested in the structure of the factor group H;/K,. Let
& =x1Kq. & = 2Ky, & = 2Ky, ..., Eq = xqKy, Eq = XaKy.

LEMMA 17. The group H;/K,; has order p**=". In particular,

(1) (&2, &, ..., Eq, Eg) is a normal subgroup of Hy/Ky and it is an elementary abelian
p-group of order p*@=1.

() (&, ..., &) is a central subgroup of Hy/Ky.
(3) [&1,&] = & foreachi € {2, ..., d)}.

THEOREM 18. If T is a proper subgroup of Hy, then d(T) < d — 1.

Proof. We prove the theorem by induction on d. It is not restrictive to assume
that T is a maximal subgroup of H,. If W,y < T, then T/ W,_; is a proper subgroup
of Hy/ Wy_ = H,_, and by induction 72 < W,_,. It follows that 7¢@-D = 1, and
sodl(T) <d—1.Nowassume Wy £ T :wehave TW;_ | =Hy_ jand TN Wy =
Y41, since Y;_; is the unique maximal H,_;-submodule of W,_;. In particular, there
exist wy, ..., wg_1 € Wy_1 such that

T = (wiX1, ..., Wa—1Xa—1, Ya—1) = (W1 X1, ..., Wg—1X4—1, X, Zg-1).

Since Y; | < Tand W;_| = (Y,4_1, x4) we may assume w; = ¢;x 4 for some ¢; € N.
Therefore, we have T = ((c1xg)x1, ..., (cs—1X4-1)X1, X4, Z4—1) and, since Z,;_1 < Ky,
it follows

TKy/Kq = ((ciéa)&r, - - ., (Ca-180)ea—1, Ea).

By Lemma 17, T'K;/K; is the smallest normal subgroup of TK;/Kd containing
the commutators [(c1€,)€1, (ciEq)€] = c1ci& for ie{2,...,d—1}. This means
that T'Ky/Ky < (&, ..., E4-1), ie. T' < (X2,...,%-1)Kq < Fy < (Hy_). For j e
{1, . ,p}, let U] = <7Tj()~62), ey ﬂj(fcd,l))Fd,1 < Hd—l- Since d(del) =d—1 and
Fy_y = Frat H;_;, it must be U; # Hy_;. By induction, dl(U;) < d — 2. Moreover,
since mj(Ky) < F4—1, we deduce that 7;(7") < U;. But then 7" < U; x ... U, which
implies that dI(7”) < max; dl(U;) < d — 2 and consequently that dI(T') < d — 1. ]

ProOPOSITION 19. If 1 # N < H,, then dI(H;/N) < d — 1.

Proof. Since by Corollary 10, Z(H,) is cyclic of order p, we have that Z(H;) < N.In
particular, nc(Hy/N) < nc(Hy/Z(Hy)) < nc(Hy) — 1 =291 — 1 and so dl(H;/N) <
log,(nc(Hy/N)) — 1 <log,24 1~ 1)+ 1 < d. O
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4. Order of H,;. In this section, we want to say more about the order of
the group Hy. If d =1, then H; is cyclic of order p. If d =2, then W) has
a basis over F consisting of the two vectors y(1) and y,(0) so H, = W) x H;
is a nonabelian group of order p*. However, the order of H; depends on the
choice of the prime p: indeed a basis of W, can be obtained considering the
set A, of the descendants of x3 = y»(1, 1) in the graph I'. If p # 2, then A, =
{121, 1), y2(1, 0), %20, 2), %2(0, 1), 2(0, 0)}: in this case, | H>| = |H\||Wa| = pp° = pb.
However, for p = 2 we have A, = {1»(1, 1), »(1, 0), ¥2(0, 1), 1»(0, 0)} and |H,| = 27.

The dimension of W, over F is related to the function f : N x N — N which is
uniquely determined by the following rules:

1 ifn=0
Sf(n,a)={p" ifa>pandn >0
do<j<af/(n—1l,a+j) ifa<pandn>0.
It can be easily proved that f(n, p — 1) = p" for any positive integer .

Our aim is to prove that | W,| = p/®1. This requires a more detailed investigation
of the properties of the graph €,,.

LEMMA 20. Let w = yy(ay, ..., aq) witha; € {0, ..., p — 1} foreveryi e {1, ...,d}.
If0 <b; <a;foreveryie{l,...,d}, then yy(by, ..., bs) € Ay(w).

Proof- We prove by induction on d —j that if b; < a; for every i € {j,...,d}
then yy(ai, ..., a1, b, ..., bg) € Ay(w). This is certainly true if d —j = 0, since Qg
contains theedge (y4(ay, . .., as—1, ya), Ya(ai, . .., aq—1, ya — 1)) whenever 1 < y; < ay.
Now assume that we have proved our statement for a j # 1, assume that a;_; # 0
and consider w; = yy(a, ..., aj_1, aj’f, oay)withaf =ar—1if g >0and af =0
otherwise. By induction w; € A,(w). Moreover ©; contains the edge (w;, w;) for
wy = vyalar,...,a-1 —1, a]* +1,...,a5+1). By induction,

valar, ...,ai—1 — 1,05, ..., bg) € Ag(wr) € Ag(w)
ifb; <af+ 1foreveryie{j,...,d}. Sincea; < af + 1, we deduce
yd(a17 LR aaj—l - 1’ b]7 .. abd) € Ad((,())

if by <a; for every i€ {j,...,d}. Repeating this argument, we can conclude
va(ar, ..., bj—1,bj, ..., bg) € Ag(w)if b; < a;foreveryie {j—1,...,d}. O

LEMMA 21. If o = yy(ay, - .., aq), ai—y #0and a; = p — 1, then
vaar, ...,ai-1 — L, b,ai1+1,...,a:+ 1) € Ay(w)

foreveryb e {0,...,p—1}.

Proof. By Lemma 20, w; = yy(ay, ..., ai-1,p — 2, diy1, - - -, dq) € Ay(w) and con-
sequently  wp = yu(ar,...,aqi1—1,p—1,ai1+1,...,a;+1) € Ay(w)) € Ay(w).
Again by Lemma 20, y(ay,...,ai1 — 1, b,ai.1+1,...,a;+ 1) € Ag(wn) C Ay(w)
foreveryb € {0,...,p —1}. O

We define a new graph €2, with the same vertices as Q, but with a different set of
edges:letw; = yu(ai, ..., ag) and wy = yu(by, ..., by) with0 < a;, b; < p — 1 : (w1, w2)
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is an edge in Qg if and only if there exists k € {1, ..., d} such thaE: ap #0, b = a; if
i<k, by=a,—1, b=min{a; + 1,p — 1} if i > k. We denote by A,(w) the set of the
descendants of w € I'y. It follows immediately from Lemma 21 that:

LEMMA 22. For every w € I'y, we have A () = Ag(w).
LEMMA 23. Let @ = yu(b, ..., b) with0 < b < p — 1. Then, |Ay(w)| = f(d, b).

Proof. We prove the statement by induction on d. It follows immediately from the
definition that A1 (y1(b)) = {y1(8), y1(b — 1), ..., y1(0)} has cardinality b + 1 = f(1, b).
Let (w;, w;) be an edge in the graph €2,;. We say that (w;, w») is a k-edge if

w1 = yalay, ...,ag) withay, ...,a; € {0,...,p— 1}, ar # 0 and

wy = valay, ..., ak—1, a — 1, min{ag + 1,p — 1}, ..., minf{a; + 1, p — 1}).

Now let w = yy(b, ..., b) with b € {0, ..., p — 1} and let w* € Ay(w). The number of
1-edges in a path connecting w to w* is at most . For j € {0, ..., b}, let Ay(w, j) be the
subset of Ay(w) consisting of the descendants of w connected to w by a path which
contains exactly j 1-edges. Notice thatif * = yu(ay, . .., as) € Ag(w, j),thena; = b —j
and consequently ANd(a)) is the disjoint union of the subsets Ay(w, j), 0 <j < b, and
[Ad(@)| = 203‘51; [Aa(@, ))I.

Clearly, o* = yd(gl, ..., ap) € Ag(w, 0)if and only if w* = va(b, b1, ..., b,_1) with
Va-1(b1, ..., ba_1) € Ay_1(Ya—1(b, ..., b)) so, by induction, |A (wo)| = f(d — 1, b).

Now suppose that there is a path

*
W) =W, D],y ...,04+]1 =@

where (w;, wj;+1) is an 1-edge if and only if j = k. We claim that if k # 0, then there
exist r < k and a path

CNU():(,(),(,T)],...,(;)X+1 :(,()>'<
with s > r and where (w;, wj;1)is a 1-edgeif and only if j = r. Let wx—1 = yula, - .., aq)
withay,...,a; € {0, ..., p — 1} and assume that (w,_1, wy) is an i-edge. Hence,
W = Vd(a]7 ceesdi1, 4 — 17m1n{al+1 + lap - 1}5 e ’mln{ad + 171’ - 1})

w1 = yalar — 1, min{ay + 1, p— 1}, ..., min{a; 1 + 1,p — 1},
a;j, min{a;.; +2,p— 1}, ..., min{a; + 2, p — 1}).

Now, the graph Ay(w) contains also the 1-edge (wy_1, wy) and the i-edge (0}, w; )
with
wp = yalar—1, min{a, + 1, p—1}, ..., {ag + 2, p—1})
wiyy = vala—1, min{ay + 1, p—1}, ..., min{g;_+1, p—1}, min{a;+1, p—1} — 1,
min{a;4; + 2, p—1}, ..., min{ay + 2, p—1}).

If a; # p— 1, then w}, | = wky1 80 Wy, ..., W1, f, Wiy 1 the path we are looking
for. On the other hand, if ¢; = p — | then min{a; + 1, p — 1} — 1 = p — 2 so this case
requires a different argument. We may label the path w, ..., wr_; with the sequence
(i1, - .., ix—1) meaning that (w;_1, w;) is an j-edge for any j € {1, ...,k — 1}. Now we
consider the sequence (i, ..., j;) obtained from (i, ..., i) by removing the entries j;
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whenever i; > i and let wy, ], ..., »; be the unique path starting from wy and labelled
by the sequence (if, ..., /7). It is not difficult to see that

of =yiar...;a1,p=1,...,p—=1).
Now we can continue the previous path adding the 1-edge (o], 0y, ;) with

a)fH=(a1—1,min{a2+1,p—1},...,min{ai,1+1,p—1},p—1,...,p—1}).

By Lemma 20, there is a path o, |, ..., }; = wky1, involving only j-edges with j > i.

In particular, wp, w7, ..., »} is the path we are looking for.
This completes the proof of our claim. Iterated applications of this remark allow
to conclude that if w* € Ay(w, 1) then

o' € Ag(ya(b— 1, min{b+1,p— 1}, ..., min{b+ 1, p — 1})).
In particular,
|Ag(w, D] = |Ag—1(va—1(min{b + 1,p — 1}, ..., min{b + 1, p — 1}).

If b+1=p, then [Ayw, D =R 1(vai(p—1.....p= D) =p* ' =fd—1,b—
1) by Lemma 20. If b+ 1 < p, then |Ay(w, )| = |Ay_1(ya1(b—1,...,6—1))| =
f(d—1,b—1) by induction.

A similar argument allows us to conclude that for any j € {0, ..., b} we have

|Aa(@, )l = 1A j(ya—j(mintb +j,p = 1},...,min{b +j,p — 1}) = f(d — j, b +).

But then |A /(@) = Yooy 1Ba@. )| = Youiup/(d —jo b+ 1) = f(d. b). O

COROLLARY 24. dimp Wy = f(d, 1) and log, |Hal = i<y 1/, 1).

Proof. By the previous Lemma, dimy W, = [Au(ya(l, ..., 1) = f(d, 1) O

COROLLARY 25. If p =2, then H; = G4 = Cy - - - (.

Proof. For any positive integer n, we have that dm W, = f(n, ) = f(n — 1, 1) +
f(n—1,2)=2""1 421 = 2" = dim V,, hence W, =V, and Hy = Wy_,--- Wy =
Vizi-+- Vo = Gy. O

On the other hand, if p > 2 then |H,| is much smaller then |G,|. Indeed, we have

PROPOSITION 26. log, [Hy| < =11 (2= + (p — 2)d) = -L;(log, |Gl + (p — 2)d).

Proof. First, we prove by induction that f(n, 1) <1+ (p" — 1)/(p — 1) for each
n € N. This is clearly true if n = 0 since f(0, 1) = 1. On the other hand, if » > 0 then

n—l_l no__
pp_l +pn—l:1+p

S, D=fh-1,1)+f(n—-1,2) <1+ o1

@.1)
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since f(n — 1,2) = dimz(y,_1(2, ..., 2)) < dimy V,_; = p"~'. In particular,

log, |Hy| = log, Wy -+ Wai| = Y _ log, | Wi

0<i<p

p—1 1 [(pi—1
< > 1+p_1:p_1< — (P —2d).

0<i<d-1 p

To conclude, it suffices to recall that G, = C, ¢ - - -2 C, has order (p? — 1)/(p — 1). O

If p = 3, then it follows from Lemma 20 that f(m, 2) = 3" for every positive integer
m and (4.1) is indeed an equality: hence,

1 /391
Hy| == if p = 3.
|Hyl 2( 3 +d)1P 3

However, if p # 3, then y,,,(i, a2, . . ., @) & A(Ym(2, ..., 2)) whenever i > 3 and this
implies f(m,2) < p™ — (p —3)p"~! = 3p"~!. In particular, if p > 5 then the bound
given in Proposition 26 can still be improved. The following table describes the
behaviour of |H,| when d € {3,4, 5} and p € {3,5,7}.

p=3lp=5p=7
dimy W, 5 5 5
dimp W5| 14| 17| 17
dimp W,| 41| 73| 83
logp | H5| 8 8 8
log, [Hyl| 22| 25| 25
log, |Hs|| 63| 98] 108

5. A generalization. In this section, we introduce a more general construction. it
turns out that the two groups H,; and G, are particular examples of the groups that can
be obtained with this method; in particular, such groups can be studied simultaneously
and share some properties.

We fix aninteger k € {1, ..., p — 1} and we define recursively a sequence of vectors
Xkn € anl :

Xk,1 = k
X1 = Valk, ..., k) = Bu(Xkn, k) if > 1.

Let X 4 be the subgroup of G, generated by xy 1, ..., Xk.q4.
LEMMA 27. Ifkl < ky, then Xkl,d < sz,d- Moreover, Xl,d = H, and Xp—l.d = Gy.

Proof. We make induction on d. Clearly, if d = 1, then X; | = X1 | = (x1) = C,.
So we may assume d > 2. By induction, Hy_; < X, 4—1 < Xk, 4—1. In particular, Xj, 4
contains the (H,_;)-submodule of V;_; generated by xi, s = va—1(ka, ..., k). By
Proposition 5 and Lemma 20, xi, 4 = ya—1(k1, ..., k1) belongs to this submodule.
Hence, X, o = (Xk,.a» Xx,-1.4-1) < Xi,.4. In the particular case when k» = p — 1, the
H,_y submodule of V;_; generated by x,_1 4 = ya—1(p — 1, ..., p — 1) coincides with
V4-1 and the previous argument allows to conclude that X,_1 s = Gy. ]
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We may generalize Lemma 3 to the general case.

LEMMA 28. Letv = yy(ay, ..., aq) € Vg, andi < d. Consider k = (d — i) + 1. Then

0 i =0
. rxr,i]={ vae=

Yiceear (B)(=tr)valar, ... G —c, agq+cr ... ag+cr) otherwise.

Proof. We may assume 0 < a; <p —1forallje{l,...,p—1}. Supposei=1.1If
ag = 0, then [v, tx1] = 0; otherwise, by Lemma 3,

[v, tx.1] = [v, trx1] = Z (a:>(—tr)”]/d(a1, e, dg_1, a4 — C).

1<c<aq

Now assume i > 1. Since v = B(yy—1(ay, - .., ai—1), az) and tx,; = t8(x,;—1, r) we have
[v, 1x] = (wr, ..., wp)

with

w; = [ — D"ya-r(ar, ..., a4-1), tG = 1) )xni-1] € V1.

By induction,

a -
w; :(j—l)“"Z( Ck)(—tr(i—l)’)‘ Va_1(ay, ..., ar — ¢, ay1+cr, ..., ag_1+cr)

1<c<a;

a .
= Z (f)(—lr)”(j — D)y (ay, ..., ax—c, agp +cr, ..., ag_1 + cr).

1<c=ay
This implies

ay .
[v, x,4] =Z( . )(—lr) Ba(vi-1(ay, ..., ax—c, ags1+cr, ..., ag_1+cr), ag + cr))

I<c=w

a
= Z <C>(—lr)t‘7/d(a1, e O — Cy gyl FCTy ., g1+ CTyag + cr).

1<c=<ax
This concludes our proof. O

We recall that T'y = {ys(ai,...,as)|0 <a; <p—1foreveryi €{l,...,d}} is a
basis of V,; over F. For each ke {l,...,p— 1}, we define the k-height of w =
yalay, . .., ag) as follows:

hte(yvalar, ..., aq) = (b + D ay + (k+ D) 2ay + - - - + (k + Dag—1 + aa.

For v=73 . A®#0¢€Vy, we define supp(v) ={w|A,#0} and htx(v) =
max{hti(w) | @ € supp(v)}. We set htx(v) = —1if v = 0. Forn € {0, ..., (k + 1)7}, let
Vian = {v | htg(w) < n— 1}. It follows immediately from Lemma 28 that, for each
nel0,...,(k+1)?—1},[Gs, Vidni1]l < Vi.an- A more precise result can be proved.

LEMMA 29. Suppose v € Vy. If hty(v) =r > 0, then there exists (ji,...,j,) €
{1,...,d} such that [v, xi,, ..., xx;] # 0.
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Proof. We may work by induction on r so it suffices to prove that there exists
i€ {l,...,d}such that hty([v, xx;]) = r — 1. Since hti(v) = r, thereexisti € {1, ..., d}
and @ = y (b1, ..., by) € supp(v) with hty(@) =1, b; #0and b; = 0if j > i. Let

A ={w=1yya,...,ay) € supp(v) | a; # 0 and hti(w) = r}.

For w = y4(ay, ...,ay) € A, define w* = yy(ay,...,a; — 1, ai1 + k, ..., a; + k).
Notice that hty(w*) = r — 1, that ht;(w*) < r — 1 for every w € A and that v} # o} if
w1 # wy. If follows from Lemma 28 that

[, %] =) hoo® mod Vig,

weA
and consequently hty([v, x;]) =r — 1. O
THEOREM 30. nc(Xy ) = (k + 1971
Proof. Notice that

hty(xpq) = hte(yaui(k, ... k) =k(l+ Gk + D+ +(k+ D) =k + 1) - 1.

Therefore, if follows from Lemma 29 that nc(Xjy) > (k+ 1)¢"!. On the other
hand, by Lemma 13, X, acts faithfully on the submodule U, of V,; generated
by ya(1,0,...,0). We have hty(y4(1,0,...,0)) =(k+ )% ! so U, < Vie.d (k1)1 1-
Forie{0,...,(k+ 1)1 41}, let Uy, = Viq;N U,. It follows from Lemma 28 that
X4 stabilizes the chain 0= U < --- < Uy gy1y-141 = Uq. Therefore, nc(Hy) <
(k + 1)?~! by Proposition 11. O
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