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Abstract

Let G be a finite group and cd(G) denote the set of complex irreducible character degrees of G. We prove
that if G is a finite group and H is an almost simple group whose socle is a sporadic simple group H0
and such that cd(G) = cd(H), then G′ � H0 and there exists an abelian subgroup A of G such that G/A is
isomorphic to H. In view of Huppert’s conjecture, we also provide some examples to show that G is not
necessarily a direct product of A and H, so that we cannot extend the conjecture to almost simple groups.
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1. Introduction

Let G be a finite group, and let Irr(G) be the set of complex irreducible characters of
G. Denote the set of these character degrees of G by cd(G) = {χ(1) | χ ∈ Irr(G)}. When
the context allows, the set of irreducible character degrees will be referred to simply
as the set of character degrees. There is growing interest in the structural information
which can be determined from the character degree set of G, although it is well known
that the character degree set of G cannot completely determine the structure of G. For
example, the nonisomorphic groups D8 and Q8 not only have the same set of character
degrees, but also share the same character table. The character degree set cannot be
used to distinguish between solvable and nilpotent groups. For example, if G is either
Q8 or S 3, then cd(G) = {1, 2}.

In the late 1990s, Huppert [8] posed a conjecture which, if true, would sharpen
the connection between the character degree set of a nonabelian simple group and the
structure of the group.

Conjecture 1.1 (Huppert). Let G be a finite group, and let H be a finite nonabelian
simple group such that the sets of character degrees of G and H are the same. Then
G � H × A, where A is an abelian group.
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The conjecture asserts that the nonabelian simple groups are essentially
characterised by their character degree set. In addition to verifying this conjecture
for many of the simple groups of Lie type, it is also verified for all sporadic simple
groups [1, 3, 12]. Note that this conjecture does not extend to solvable groups (for
example, Q8 and D8), nor to almost simple groups. In fact, there are four groups G
of order 240 whose character degrees are the same as Aut(A5) = S 5. These groups
are SL2(5) · Z2 (nonsplit), SL2(5) : Z2 (split), A5 : Z4 (split) and S5 × Z2. If we further
assume that G′ = A5, we still have two possibilities for G, namely, A5 : Z4 and S5 × Z2.
Indeed, the groups A5 : Z2n , for n ≥ 1, have the same character degree set as S5.
Although we cannot establish Huppert’s conjecture for almost simple groups, we can
prove the following result for finite groups whose character degrees are the same as
those of almost simple groups with socle a sporadic simple group.

Theorem 1.2. Let G be a finite group and let H be an almost simple group whose socle
H0 is one of the sporadic simple groups. If cd(G) = cd(H), then G′ � H0 and G/Z(G)
is isomorphic to H.

In order to prove Theorem 1.2, we follow the steps introduced in [8]. In the notation
of the theorem, we show that

(1) if G′/M is a chief factor of G, then G′/M is isomorphic to H0;
(2) if θ ∈ Irr(M) with θ(1) = 1, then IG′(θ) = G′ and so M = M′;
(3) M = 1 and G′ � H0; and
(4) G/Z(G) is isomorphic to H.

In Propositions 3.3–3.6, we will verify steps (1)–(4) and the proof of Theorem 1.2
follows immediately from these statements.

Remark 1.3. Recall that Theorem 1.2, for the case where H = H0 is a sporadic simple
group, has already been settled (see [1, 3, 9, 12]). Moreover, if H is the automorphism
group of one of the Mathieu groups, then Theorem 1.2 is also proved by the authors [2].
Therefore, we only need to consider the remaining cases where H = Aut(H0) with H0

one of J2, HS , J3, McL, He, Suz, O′N, Fi22, HN and Fi′24.

2. Preliminaries

Throughout this paper, all groups are finite. A group H is said to be an almost
simple group with socle H0 if H0 6 H 6 Aut(H0), where H0 is a nonabelian simple
group. If N EG and θ ∈ Irr(N), then the inertia group IG(θ) of θ in G is defined by
IG(θ) = {g ∈ G | θg = θ}. If the character χ =

∑k
i=1 eiχi, where each χi is an irreducible

character of G and ei is a nonnegative integer, then those χi with ei > 0 are called
the irreducible constituents of χ. The set of all irreducible constituents of θG is
denoted by Irr(G | θ). All further notation and definitions are standard as in [7, 10].
For computation, we use GAP [6].
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Lemma 2.1 [7, Theorems 19.5 and 21.3]. Suppose that N EG and χ ∈ Irr(G).

(a) If χN = θ1 + θ2 + · · · + θk with θi ∈ Irr(N), then k divides |G/N|. In particular, if
χ(1) is prime to |G/N|, then χN ∈ Irr(N).

(b) (Gallagher’s Theorem) If χN ∈ Irr(N), then χψ ∈ Irr(G) for all ψ ∈ Irr(G/N).

Lemma 2.2 [7, Theorems 19.6 and 21.2]. Suppose that N E G and θ ∈ Irr(N). Let
I = IG(θ).

(a) If θI =
∑k

i=1 φi with φi ∈ Irr(I), then φG
i ∈ Irr(G) and φi(1)|G : I| ∈ cd(G).

(b) If θ extends to ψ ∈ Irr(I), then (ψτ)G ∈ Irr(G) for all τ ∈ Irr(I/N). In particular,
θ(1)τ(1)|G : I| ∈ cd(G).

(c) If ρ ∈ Irr(I) such that ρN = eθ, then ρ = θ0τ0, where θ0 is a character of an
irreducible projective representation of I of degree θ(1) and τ0 is a character
of an irreducible projective representation of I/N of degree e.

A character χ ∈ Irr(G) is said to be isolated in G if χ(1) is divisible by no proper
nontrivial character degree of G and if no proper multiple of χ(1) is a character degree
of G. In this situation, we also say that χ(1) is an isolated degree of G. We define a
proper power degree of G to be a character degree of G of the form f a for integers f
and a, with a > 1.

Lemma 2.3 [12, Lemma 3]. Let G/N be a solvable factor group of G minimal with
respect to being nonabelian. Then two cases can occur.

(a) G/N is an r-group for some prime r. In this case, G has a proper prime power
degree.

(b) G/N is a Frobenius group with an elementary abelian Frobenius kernel F/N.
Then f := |G : F| ∈ cd(G) and |F/N| = ra for some prime r, and a is the smallest
integer such that ra ≡ 1 mod f .

(1) If χ ∈ Irr(G) such that no proper multiple of χ(1) is in cd(G), then either f
divides χ(1), or ra divides χ(1)2.

(2) If χ ∈ Irr(G) is isolated, then f = χ(1) or ra divides χ(1)2.

Lemma 2.4 [4, Theorems 2–4]. If S is a nonabelian simple group, then there exists a
nontrivial irreducible character θ of S that extends to Aut(S ). Moreover:

(a) if S is an alternating group of degree at least seven, then S has two characters of
consecutive degrees n(n − 3)/2 and (n − 1)(n − 2)/2 that both extend to Aut(S );

(b) if S is a simple group of Lie type, then the Steinberg character of S of degree
|S |p extends to Aut(S ); and

(c) if S is a sporadic simple group or the Tits group, then S has two nontrivial
irreducible characters of coprime degrees which both extend to Aut(S ).

Lemma 2.5 [4, Lemma 5]. Let N be a minimal normal subgroup of G so that N � S k,
where S is a nonabelian simple group. If θ ∈ Irr(S ) extends to Aut(S ), then θk ∈ Irr(N)
extends to G.
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Lemma 2.6 [8, Lemma 6]. Suppose that M EG′ = G′′ and, for every λ ∈ Irr(M) with
λ(1) = 1, λg = λ for all g ∈ G′. Then M′ = [M,G′] and |M/M′| divides the order of the
Schur multiplier of G′/M.

Lemma 2.7 [11, Theorem D]. Let N be a normal subgroup of a finite group G and let
ϕ ∈ Irr(N) be G-invariant. Assume that χ(1)/ϕ(1) is odd, for all χ(1) ∈ Irr(G | ϕ). Then
G/N is solvable.

3. Proof of the main result

In this section, we prove Theorem 1.2 for an almost simple group H whose socle is
one of the sporadic simple groups H0 listed in Remark 1.3. For convenience, we first
mention some properties of H and H0 which can be drawn from ATLAS [5].

Lemma 3.1. Suppose that H0 is one of the sporadic simple groups shown in the first
column of Table 1 and H = Aut(H0). Then:

(a) the outer automorphism group Out(H0) of H0 is isomorphic to Z2, and the Schur
multiplier M(H0) of H0 is as shown in Table 1;

(b) H has neither consecutive, nor proper power degrees; and
(c) if K is a maximal subgroup of H0 whose index in H0 divides some degrees χ(1) of

H, then K is given in Table 1 and, for each K, χ(1)/|H0 : K| divides t(K), where
t(K) is as in Table 1.

Proof. Parts (a) and (b) follow from ATLAS [5], and (c) is a simple calculation. �

Proposition 3.2. Let S be a sporadic simple group or the Tits group 2F4(2)′ whose
character degrees divide some degrees of an almost simple group H with socle a
sporadic simple group H0. Then either S is isomorphic to H0 or (H, S ) is as in Table 2.

Proof. The proof follows from ATLAS [5]. �

Proposition 3.3. Let G be a finite group and let H be an almost simple group whose
socle is a sporadic simple group H0. If cd(G) = cd(H), then the chief factor G′/M of
G is isomorphic to H0.

Proof. We first apply Remark 1.3, so that we may assume that H = Aut(H0), where H0
is one of the sporadic groups J2, J3, McL, HS , He, HN, Fi22, Fi′24, O′N and Suz.

We now prove that G′ =G′′. Assume the contrary. Then there is a normal subgroup
N of G, where N is a maximal such that G/N is a nonabelian solvable group. Since
G has no prime power degree, by Lemma 2.3, G/N is a Frobenius group with kernel
F/N of order ra. In this case, 1 < f = |G : F| ∈ cd(G).

Suppose that H0 is not J2 and Suz. Then G has three isolated coprime degrees, as in
Table 3. But Lemma 2.3(b)(2) implies that f must be equal to these degrees, which is
impossible.

Suppose H0 = Suz. Let r = 2. For 1 6 a 6 4, ra − 1 = 2a − 1 is less than the
smallest nontrivial degree, 143, of G. By Lemma 2.3(b)(2), f must divide both degrees
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Table 1. Properties of some sporadic simple groups H0 and their automorphism groups.

H0 Aut(H0) M(H0) K t(K)
J2 J2 : 2 Z2 U3(3) 3
HS HS : 2 Z2 M22 25

U3(5) : 2 6 or 8
J3 J3 : 2 Z3 - -
McL McL : 2 Z3 U4(3) 5 · 7 or 22 · 3 · 5
He He : 2 1 S 4(4) : 2 1
Suz Suz : 2 Z6 G2(4) 32 · 13 or 3 · 5 · 7

U5(2) 5
O′N O′N : 2 Z3 - -
Fi22 Fi22 : 2 Z6 2 · U6(2) 22 · 3 · 5 · 11, 24 · 5 · 7, 3 · 5 · 11 or 35

O+8 (2) : S3 6
210 : M22 6

HN HN : 2 1 - -
Fi′24 Fi′24 : 2 Z3 2 · Fi23 24 · 52 · 7 · 17 · 23, 2 · 33 · 7 · 11 · 13 · 17,

22 · 3 · 11 · 13 · 17 · 23, 23 · 3 · 7 · 11 · 13 · 23,
24 · 3 · 13 · 17 · 23, 22 · 7 · 11 · 17 · 23,
11 · 13 · 17 · 23

The symbol ‘-’ means that there is no subgroup K satisfying these conditions in Lemma 3.1(c).

75 075 = 3 · 52 · 7 · 11 · 13 and 5940 = 22 · 33 · 5 · 11, and so f divides 3 · 5 · 11. But no
divisor of 3 · 5 · 11 is a degree of G. Therefore r , 2. Now we apply Lemma 2.3(b)(2)
to the isolated degrees 66 560 = 210 · 5 · 13 and 133 056 = 26 · 33 · 7 · 11. Since r , 2,
it follows that f must be equal to both of these degrees, which is impossible.

Suppose, finally, that H0 = J2. We make the same argument as in the case of Suz.
If r = 5, then, by Lemma 2.3(b)(2), f must divide both 25 · 32 and 2 · 33 · 7, and so f
divides 2 · 32, but G has no degree which divides 2 · 32. Thus r , 5. Now we apply
Lemma 2.3(b)(2) to the isolated degrees 25 · 5 and 52 · 7. Again, f must be equal to
both of these degrees, which is impossible.

We conclude that G′ =G′′. Let G′/M be a chief factor of G. As G′ is perfect, G′/M
is nonabelian and so G′/M is isomorphic to S k for some nonabelian simple group S
and some integer k ≥ 1.

We first show that k = 1. Assume the contrary. Then, by Lemma 2.4, S possesses
a nontrivial irreducible character θ extendible to Aut(S ), and so Lemma 2.5 implies
that θk ∈ Irr(G′/M) extends to G/M, that is, G has a proper power degree contradicting
Lemma 3.1(b). Therefore k = 1 and G′/M � S .

Suppose S is an alternating group of degree n ≥ 7. By Lemma 2.4(a), S has
nontrivial irreducible characters θ1 and θ2 with θ1(1) = n(n − 3)/2 and θ2(1) = θ1(1) +
1 = (n − 1)(n − 2)/2 and both θ1 and θ2 extend to Aut(S ). Thus G possesses two
consecutive nontrivial character degrees, which contradicts Lemma 3.1(b).
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Table 2. Sporadic simple groups S (and the Tits group) and almost simple groups H for Proposition 3.2.

H S
M12, M12 : 2 M11, M12
M23 M11, M23
M24 M11, M24
J4 M11, M12, M22, J4
HS , HS : 2 M11, M22, HS
McL, McL : 2 M11, McL
Suz, Suz : 2 M11, M12, M22, J2, Suz, 2F4(2)′

Co3 M11, M12, M22, M23, M24, Co3
Co2 M11, M12, M22, M23, M24 J2, Co2
Co1 M11, M12, M22, M23, M24, McL, J2, HS , Co1, Co3, 2F4(2)′

Fi22, Fi22 : 2 M11, M12, M22, J2, Fi22
Fi23 M11, M12, M22, M23, M24, HS , J2, Fi23, 2F4(2)′

Fi′24, Fi′24 : 2 M11, M12, M22, M23, M24, He, J2, Fi′24, 2F4(2)′

Th J2, Th, 2F4(2)′

Ru J2, Ru, 2F4(2)′

Ly M11, M12, J2, Ly
HN, HN : 2 M11, M12, M22, J1, J2, HS , HN
O′N, O′N : 2 M11, M12, M22, O′N
B M11, M12, M22, M23, M24, J1, J2 , J3, HS , McL, Suz, Fi22, Co3,

Co2, Th, B, 2F4(2)′

M M11, M12, M22, M23, M24, J1, J2, J3, HS , McL, Suz, Fi22, Co3,
Co2, He, O′N, Ru, M, 2F4(2)′

Table 3. Some isolated degrees of automorphism groups of sporadic simple groups.

H χ1(1) χ2(1) χ3(1)
HS : 2 825 = 3 · 52 · 11 1792 = 28 · 7 2520 = 23 · 32 · 5 · 7
J3 : 2 170 = 2 · 5 · 17 324 = 22 · 34 1215 = 35 · 5
McL : 2 1750 = 2 · 53 · 7 4500 = 22 · 32 · 53 5103 = 36 · 7
He : 2 1920 = 27 · 3 · 5 2058 = 2 · 3 · 73 20825 = 52 · 72 · 17
O′N : 2 10944 = 26 · 32 · 19 26752 = 27 · 11 · 19 116963 = 73 · 11 · 31
Fi22 : 2 360855 = 38 · 5 · 11 577368 = 23 · 38 · 11 1164800 = 29 · 52 · 7 · 13
HN : 2 1575936 = 210 · 34 · 19 2784375 = 34 · 55 · 11 3200000 = 210 · 55

Fi′24 : 2 159402880 = 27 · 5 5775278080 = 214 · 5 156321775827 = 314 · 72

· 72 · 13 · 17 · 23 · 11 · 13 · 17 · 29 · 23 · 29

If S , 2F4(2)′ is a simple group of Lie type in characteristic p, then the Steinberg
character of S of degree |S |p extends to Aut(S ) so that G possesses a nontrivial prime
power degree, which contradicts Lemma 3.1(b).
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Table 4. Particular degrees of some sporadic simple groups S and the Tits group.

S M11 M12 M22 M23 M24 J1 J2 HS He 2F4(2)′

Degree 10 54 21 22 23 76 36 22 1275 27

Finally, if S is a sporadic simple group or the Tits group 2F4(2)′, then the irreducible
character degrees of S divide some degrees of H, and so, by Proposition 3.2, S � H0
or (H, S ) is as in Table 2. In the later case, for a given H as in the first row of Table 2,
assume that S is not isomorphic to H0. Then we apply Lemma 2.4(c). For each
possible S , as shown in the first row of Table 4, G possesses an irreducible character
of the degree shown in the second row of Table 4. This leads us to a contradiction.
Therefore S � H0, and hence G′/M is isomorphic to H0. �

Proposition 3.4. Let G be a finite group with cd(G) = cd(H), where H is an almost
simple group whose socle is a sporadic simple group H0. Suppose that the chief factor
G′/M is isomorphic to H0. If θ ∈ Irr(M) with θ(1) = 1, then IG′(θ) = G′.

Proof. By Remark 1.3, we may assume that H = Aut(H0), where H0 is one of the
sporadic groups J2, J3, McL, HS , He, HN, Fi22, Fi′24, O′N and Suz.

Suppose that I = IG′(θ) < G′. Let θI =
∑k

i=1 φi, where φi ∈ Irr(I) for i = 1, 2, . . . , k.
Assume that U/M is a maximal subgroup of G′/M � H0 containing I/M and set t :=
|U : I|. It follows, from Lemma 2.2(a), that φi(1)|G′ : I| ∈ cd(G′), and so tφi(1)|G′ : U |
divides some degrees of G. Then |G′ : U | must divide some character degrees of G.
By Lemma 3.1(c), for each H0 in the first column of Table 1, U/M must be one of the
subgroups K listed in the fifth column of Table 1 and tφi(1)|G′ : U | must divide the
positive integers t(K) in the sixth column of Table 1.

If H0 is J3, O′N or HN, then, by Lemma 3.1(b), there is no such subgroup U/M,
and so IG′(θ) = G′ in these cases. We now discuss each remaining case separately.

Case 1. H0 = J2. By Lemma 3.1(b), U/M � U3(3) and tφi(1) divides three, for all i.
Since U3(3) has no subgroup of index three [5, page 14], it follows that t = 1, that is,
I/M = U/M � U3(3). Since U3(3) has trivial Schur multiplier, it follows, from [10,
Theorem 11.7], that θ extends to θ0 ∈ Irr(I) and so, by Lemma 2.2(b), (θ0τ)G′ ∈ Irr(G′),
for all τ ∈ Irr(I/M). For τ(1) = 27 ∈ cd(U3(3)), we find that 3 · 27 · θ0(1) divides some
degrees of G, which is a contradiction. Therefore θ is G′-invariant.

Case 2. H0 = HS . By Lemma 3.1(b), one of the following holds.

(i) U/M � M22 and tφi(1) divides 25, for all i.

As U/M � M22 does not have any subgroup of index 2m for m = 1, . . . , 5,
by [5, pages 80–81], t = 1 and I/M = U/M � M22 and φi(1) divides 25. Assume,
first, that e j = 1 for some j. Then θ extends to ϕ j ∈ Irr(I). By Lemma 2.1(b), τϕ j is an
irreducible constituent of θI for every τ ∈ Irr(I/M), so τ(1)ϕ j(1) = τ(1) divides 25. Now
we choose τ ∈ Irr(I/M) = Irr(M22) with τ(1) = 21 and find that this degree does not
divide 25, which is a contradiction. Therefore each ei > 1 and each ei is the degree of

https://doi.org/10.1017/S0004972716000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000253


[8] The character degrees of a group 261

a nontrivial proper irreducible projective representation of M22. As φi(1) = eiθ(1) = ei,
each ei divides 25. But, according to [5, pages 39–41], there is no such projective
degree.

(ii) U/M � U3(5) : 2 and tφi(1) divides six or eight, for all i.

Let M 6 W 6 U such that W/M � U3(5). Then W E U. Assume that W 
 I. Since t =
|U : I| = |U : WI| · |WI : I| and |WI : I| = |W : WI|, the index of some maximal subgroup
of W/M � U3(5) divides t and so divides six or eight, which is a contradiction,
by [5, pages 34–35]. Thus W 6 I 6 U. Let M 6 V 6 W such that V/M � M10. Since
θ is V-invariant and the Schur multiplier of V/M is trivial, θ extends to θ0 ∈ Irr(V). By
Lemma 2.1(b), τθ0 is an irreducible constituent of θV for every τ ∈ Irr(V/M). Choose
τ ∈ Irr(V/M) with τ(1) = 16 and let γ = τθ0 ∈ Irr(V | θ). If χ ∈ Irr(I) is an irreducible
constituent of γI , then χ(1) > γ(1), by Frobenius reciprocity [10, Lemma 5.2], and
also χ(1) divides six or eight, which implies that 16 = γ(1) 6 χ(1) 6 8, which is
contradiction.

Case 3. H0 = McL. By Lemma 3.1(b), U/M � U4(3) and tφi(1) divides 35 or 60, for
all i. By inspecting the list of maximal subgroups of U/M � U4(3) in [5, pages 52–
59], no index of a maximal subgroup of U4(3) divides 35 or 60, and so t = 1. Thus
I/M = U/M � U4(3) and φi(1) divides 35 or 60, for all i. First, assume that e j = 1,
for some j. Then θ extends to ϕ j ∈ Irr(I). It follows, from Lemma 2.1(b), that τϕ j

is an irreducible constituent of θI for every τ ∈ Irr(I/M), so τ(1)ϕ j(1) = τ(1) divides
35 or 60. Now let τ ∈ Irr(I/M) = Irr(U4(3)) with τ(1) = 21. This degree does not
divide 35 or 60, which is a contradiction. Therefore, for each i, ei > 1 and ei is
the degree of a nontrivial proper irreducible projective representation of U4(3). As
φi(1) = eiθ(1) = ei, each ei divides 35 or 60, and it follows, from [5, pages 53–59],
that ei ∈ {6, 15, 20, 35}. Let M 6 V 6 U such that V/M � U3(3). Since θ is V-invariant
and the Schur multiplier of V/M is trivial, θ extends to θ0 ∈ Irr(V). It follows, from
Lemma 2.1(b), that τθ0 is an irreducible constituent of θV for every τ ∈ Irr(V/M). Take
τ ∈ Irr(V/M) with τ(1) = 32 and let γ = τθ0 ∈ Irr(V | θ). If χ ∈ Irr(I) is an irreducible
constituent of γI , then χ(1) ≥ γ(1) = 32, by Frobenius reciprocity [10, Lemma 5.2].
This shows that ei = 35, for all i, that is, ϕi(1)/θ(1) divides 35, and so Lemma 2.7
implies that I/M � U4(3) is solvable, which is a contradiction.

Case 4. H0 = He. By Lemma 3.1(b), U/M � S4(4) : 2 and t = 1 or, equivalently,
I/M = U/M � S4(4) : 2. Moreover, φi(1) = 1, for all i. Then θ extends to φi ∈ Irr(I),
and so, by Lemma 2.2(b), 2058τ(1) divides some degrees of G. For τ(1) = 510, this
gives a contradiction. Therefore IG′(θ) = G′.

Case 5. H0 = Suz. By Lemma 3.1(b), one of the following holds.

(i) U/M � G2(4) and tφi(1) divides 32 · 13 or 3 · 5 · 7, for all i.

By inspecting the list of maximal subgroups of G2(4) in [5, pages 97–99], no index of
a maximal subgroup of G2(4) divides 32 · 13 or 3 · 5 · 7, so t = 1 and I/M = U/M �
G2(4). Note that φi(1)/θ(1) divides 32 · 13 or 3 · 5 · 7, for all i. If φi(1)/θ(1) > 1,
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for all i, then we apply Lemma 2.7 to conclude that I/M is solvable, which is a
contradiction. Therefore, ϕi(1) = θ(1) = 1, in which case, θ extends to ϕi, for some
i. It follows, from Lemma 2.1(b), that τϕi is an irreducible constituent of θI for
every τ ∈ Irr(I/M), so τ(1)ϕi(1) = τ(1) divides 32 · 13 or 3 · 5 · 7. We can choose
τ ∈ Irr(I/M) = Irr(G2(4)) with τ(1) = 65, and this degree does not divide 32 · 13 or
3 · 5 · 7, which is a contradiction.

(ii) U/M � U5(2) and tφi(1) divides 5, for all i.

As U/M � U5(2) does not have any subgroup of index five, by [5, pages 72–73], t = 1
and I/M = U/M � U5(2). Thus φi(1)/θ(1) divides five, for all i. Since U5(2) has
trivial Schur multiplier, it follows that θ extends to θ0 ∈ Irr(I) and, by Lemma 2.2(b),
(θ0τ)G′ ∈ Irr(G′), for all τ ∈ Irr(I/M). For τ(1) = 300 ∈ cd(U5(2)), we find that 5 · 300 ·
θ0(1) = 22 · 3 · 53 divides some degrees of G, which is a contradiction.

Case 6. H0 = Fi22. By Lemma 3.1(b), one of the following holds.

(i) U/M � 2 · U6(2) and tϕi(1) divides one of 3 · 5 · 11, 22 · 3 · 5 · 11, 24 · 5 · 7 or 35,
for all i.

As U/M is perfect, the centre of U/M lies in every maximal subgroup of U/M and
so the indices of maximal subgroups of U/M and those of U6(2) are the same. By
inspecting the list of maximal subgroups of U6(2) in [5, pages 115–121], the index of
a maximal subgroup of U6(2) does not divide 3 · 5 · 11, 22 · 3 · 5 · 11, 24 · 5 · 7 or 35.
Thus t = 1 and hence I = U. Let M 6 L 6 I such that L/M is isomorphic to the centre
of I/M and let λ ∈ Irr(L | θ). As L E I, for any ϕ ∈ Irr(I | λ), ϕ(1) divides 3 · 5 · 11,
22 · 3 · 5 · 11, 24 · 5 · 7 or 35. As above, we deduce that λ is I-invariant. Let L 6 T 6 I
such that T/L � U5(2). It follows that λ is T -invariant and, since the Schur multiplier of
T/L � U5(2) is trivial, λ extends to λ0 ∈ Irr(T ). By Lemma 2.1(b), τλ0 is an irreducible
constituent of λT for every τ ∈ Irr(T/L). Choose τ ∈ Irr(T/L) with τ(1) = 210 and let
γ = τλ0 ∈ Irr(T | λ). If χ ∈ Irr(I) is any irreducible constituent of γI , then χ(1) ≥ γ(1),
by Frobenius reciprocity [10, Lemma 5.2], and χ(1) divides 3 · 5 · 11, 22 · 3 · 5 · 11,
24 · 5 · 7 or 35, which implies that γ(1)210λ(1) 6 χ(1) 6 660, which is impossible.

(ii) U/M � O+8 (2) : S3 and tϕi(1) divides six, for all i.

Let M EW EU such that W/M � O+8 (2). Then M E IW E I and M E IW 6W. Assume
that W ≮ I. Then I � WI 6 U and t = |U : I| = |U : WI| · |WI : I|. Now |WI : I| = |W :
WI| > 1 and t is divisible by |W : W ∩ I|. As W/M � O+8 (2), t is divisible by the index
of some maximal subgroup of O+8 (2). Thus some index of a maximal subgroup of
O+8 (2) divides six, which is impossible, by [5, pages 85–88]. Thus W 6 I 6 U. Write
θW =

∑l
i=1 fiµi, where µi ∈ Irr(W |θ) for i = 1, 2, . . . , l. As W E I, µi(1) divides six for

every i. If f j = 1 for some j, then θ extends to θ0 ∈ Irr(W). By Lemma 2.1(b), τθ0 is an
irreducible constituent of θW for every τ ∈ Irr(W/M), and so τ(1)θ0(1) = τ(1) divides
six. However we can choose τ ∈ Irr(W/M) with τ(1) = 28 and this degree does not
divide six. Therefore fi > 1, for all i. We deduce that, for each i, fi is the degree of a
nontrivial proper irreducible projective representation of O+8 (2). As µi(1) = fiθ(1) = fi,
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each fi divides six. This is impossible as the smallest nontrivial proper projective
degree of O+8 (2) is eight.

(iii) U/M � 210 : M22 and tϕi(1) divides six, for all i.

Let M E L E U such that L/M � 210. We have that L E U and U/L � M22. The same
argument as in part (ii) shows that U = IL since the minimal index of a maximal
subgroup of M22 is 22, by [5, pages 39–41]. Hence U/L � I/L1 � M22, where
L1 = L ∩ I E I. Let λ ∈ Irr(L1 | θ). Then, for any ϕ ∈ Irr(I | λ), ϕ(1) divides six. We
conclude that λ is I-invariant as the index of a maximal subgroup of I/L1 � M22
is at least 22. Write λI =

∑l
i=1 fiµi, where µi ∈ Irr(I | λ) for i = 1, 2, . . . , l. Then

µi(1) divides six, for each i. If f j = 1 for some j, then λ extends to λ0 ∈ Irr(I). By
Lemma 2.1(b), τλ0 is an irreducible constituent of λI for every τ ∈ Irr(I/L1), and so
τ(1)λ0(1) = τ(1) divides six. However we can choose τ ∈ Irr(I/L1) with τ(1) = 21 and
this degree does not divide 6. Therefore fi > 1, for all i. We deduce that, for each
i, fi is the degree of a nontrivial proper irreducible projective representation of M22.
As µi(1) = fiλ(1) = fi, each fi divides 6. However this is impossible as the smallest
nontrivial proper projective degree of M22 is ten.

Case 7. H0 = Fi′24. By Lemma 3.1(b), U/M � 2.Fi23 and, for each i, tϕi(1) divides
one of the numbers in the setA, defined as

A := {24 · 52 · 7 · 17 · 23, 2 · 33 · 7 · 11 · 13 · 17, 22 · 3 · 11 · 13 · 17 · 23,

23 · 3 · 7 · 11 · 13 · 23, 24 · 3 · 13 · 17 · 23, 22 · 7 · 11 · 17 · 23, 11 · 13 · 17 · 23}.

By inspecting the list of maximal subgroups of Fi23 in [5, pages 177–180], the index
of a maximal subgroup of U/M divides no number in A. Thus t = 1 and I = U.
As the Schur multiplier of I/M � Fi23 is trivial and θ is I-invariant, we deduce,
from [10, Theorem 11.7], that θ extends to θ0 ∈ Irr(I). By Lemma 2.1(b), τθ0 is an
irreducible constituent of θI for every τ ∈ Irr(I/M), and so τ(1)θ0(1) = τ(1) divides one
of the numbers in A. Choose τ ∈ Irr(I/M) = Irr(Fi23) with τ(1) = 559 458 900. This
degree divides none of the numbers inA, which is a contradiction. �

Proposition 3.5. Let G be a finite group with cd(G) = cd(H), where H is an almost
simple group whose socle is a sporadic simple group H0. If G′/M is the chief factor of
G, then M = 1, and hence G′ � H0.

Proof. Here we deal with the groups mentioned in Remark 1.3, namely, H = Aut(H0),
where H0 is one of the sporadic groups J2, J3, McL, HS , He, HN, Fi22, Fi′24, O′N
and Suz. It follows, from Proposition 3.3, that G′/M is isomorphic to H0 and, by
Proposition 3.4, every linear character θ of M is G′-invariant. By applying Lemma 2.6,
|M/M′| divides the order of Schur Multiplier M(H0) (see Table 1). Therefore, G′/M′

is isomorphic to either H0 or one of the groups in the third column of Table 5. In
the latter case, we observe, by ATLAS [5], that G′/M′ has a degree shown in the fifth
column of Table 5 which must divide some degrees of H0, which is a contradiction.
Therefore, |M/M′| = 1 or, equivalently, M is perfect.
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Table 5. Degrees of some groups related to sporadic simple groups H0 in Proposition 3.5.

H0 Aut(H0) G′/M′ Degree of Degree of Largest degree of
Aut(H0) G′/M′ H0

J2 J2 : 2 2 · J2 28 64 336
HS HS : 2 2 · HS 308 616 3200
J3 J3 : 2 3 · J3 170 1530 3078
McL McL : 2 3 · McL 1540 1980 10395
He He : 2 - 102 - 23324
Suz Suz : 2 2 · Suz,

3 · Suz,
6 · Suz

10010 60060 248832

O′N O′N : 2 3 · O′N 51832 63612 234080
Fi22 Fi22 : 2 2 · Fi22,

3 · Fi22,
6 · Fi22

277200 235872 2729376

HN HN : 2 - 266 - 5878125
Fi′24 Fi′24 : 2 3 · Fi′24 149674800 216154575 336033532800
The symbol ‘-’ means that there is only one possibility for G′/M′, which is H0.

Suppose that M is nonabelian, and let N 6 M be a normal subgroup of G′ such
that M/N is a chief factor of G′. Then M/N � S k, for some nonabelian simple
group S . It follows, from Lemma 2.4, that S possesses a nontrivial irreducible
character ϕ such that ϕk ∈ Irr(M/N) extends to G′/N. By Lemma 2.1(b), we must have
ϕ(1)kτ(1) ∈ cd(G′/N) ⊆ cd(G′), for all τ ∈ Irr(G′/M). Now we can choose τ ∈ G′/M
such that τ(1) is the largest degree of H0, as in the last column of Table 5 and, since ϕ
is nontrivial, ϕ(1)kτ(1) divides no degrees of G, which is a contradiction. Therefore,
M is abelian. Since M = M′, we conclude that M = 1 and G′ is isomorphic to H0. �

Proposition 3.6. Let G be a finite group with cd(G) = cd(H), where H is an almost
simple group whose socle is a sporadic simple group H0. Then G/Z(G) � H.

Proof. By Remark 1.3, we only consider the case where H = Aut(H0) with H0 one of
the sporadic groups J2, J3, McL, HS , He, HN, Fi22, Fi′24, O′N and Suz. According
to Proposition 3.5, G′ is isomorphic to H0. Let A := CG(G′). Since G′ ∩ A = 1 and
G′A � G′ × A, it follows that G′ � G′A/A EG/A 6 Aut(G′). Thus G/A is isomorphic
to H0 or Aut(H0) = H0 : 2. In the case where G/A is isomorphic to H0, we must have
G � A × H0. This is impossible as G possesses a character with the degree shown in
the fourth column of Table 5, but H0 has no such degree. Therefore, G/A is isomorphic
to Aut(H0). Note, also, that G′ ∩ A = 1. Thus [G, A] = 1 and A = Z(G), as claimed. �
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