
BULL. AUSTRAL. MATH. SOC. 3 5 J 1 5 , 3 5 J 2 5 , 3 5 J 6 0

VOL. 71 (2005) [377-386]

EXISTENCE AND MULTIPLICITY RESULTS FOR
QUASILINEAR ELLIPTIC EQUATIONS

W E I DONG

The goal of this paper is to study the multiplicity of positive solutions of a class
of quasilinear elliptic equations. Based on the mountain pass theorems and sub-
and supersolutions argument for p-Laplacian operators, under suitable conditions on
nonlinearity f(x,s), we show the follwing problem:

-Apu = Xf(x,u) in ft, u|an=0,

where Q is a bounded open subset of RN, N ^ 2, with smooth boundary, A is a
positive parameter and Ap is the p-Laplacian operator with p > 1, possesses at least
two positive solutions for large A.

1. INTRODUCTION

Let fi be a bounded open subset of RN, N ^ 2, with smooth boundary dQ. We are
interested in the existence and multiplicity of positive solutions for the problem

(1.1) -Apu = A/(x,u) in ft, u\an = 0,

where A is a positive parameter, Ap is the p-Laplacian operator defined by

Apu = div(|Z)u|p-2£)u)

with p > 1, and f(x, s) is a real function denned on Q x R+.

Problem (1.1) with p = 2 has been extensively studied. Rabinowitz [8] proved that
problem (1.1) has two distinct positive solutions for large A provided that f(x, s) satisfies

(/i) / is locally Lipschitz continuous on $7 x R+ with f(x, 0) = 0;

(/2) there exists a positive number k such that f(x, s) < 0 if s ^ k;

(/3) there exists (a, y) e ft x [0, k) such that F(a, y) > 0, where F(x, z)

= / f(x,s)ds; and
Jo _

(A) f{x, s) = o(s) at s = 0 uniformly in x € fi.
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This result has been generalised by various authors in several directions. Recently, Rabi-
nowitz's result was extended to the case of 1 < p < 2 in [6] and p > 2 in [10] and special
nonlinearity f(s).

In this paper, we show that the main results in [8] continue to hold for all p > 1
and for a more general nonlinearity. Some techniques are adapted from [2] and [1]. In
particular, we prove the existence of a local minimiser in W0

IlP(fi), and use this fact to
prove the multiplicity result under conditions on f{x,s) similar to those in [8]. Our
results improve the previous results.

Throughout this paper, we assume that the function f(x, s) satisfies:

{Hi) f € C(Jl x R+) with f(x, 0) = 0 and lim(/(x, s))/sp~l uniformly in x € Q;

(i/2) there exists a positive number k such that f(x, s) < 0 if s ^ A;;

(H3) there exists (a, y) G ft x [0, k) such that F(a, y) > 0, where F(x, z)

= I f(x, s) ds; and
Jo

(H4) there exists a nondecreasing locally Lipschitz continuous function L(s) such

/

I / pa \ -(1/P)

I / L(t) dt) ds = oo, and the map s —> f(x, s)
+L(s) is nondecreasing in s € [0, k] for almost all x G fi, where the constant
k is the same as in (H2).

Clearly our case includes the cases considered in [6, 10]. We only consider the

positive solutions of (1.1). By a positive solution of (1.1), we mean that u € Cl(Q)

satisfies (1.1) in the weak sense with u > 0 in f2. Standard regularity theory for p-

Laplacian operators (see [12, 13]) assures that any weak solution of (1.1) belongs to

C'iU).
Our main results are the following.

THEOREM 1 . 1 . There exists a positive number A* such that for A ^ A*, problem

(1.1) possesses at least one positive solution, and (1.1) has no positive solutions if A < A*.
THEOREM 1 . 2 . For all A > A*, problem (1.1) possesses at least two distinct

positive solutions, where A* is the same as in Theorem 1.1.

The rest of this paper is organised as follows. In Section 2, we use variational
techniques and standard sub- and supersolutions arguments to obtain the existence result
Theorem 1.1. In section 3, we use the idea in [1] and the Mountain Pass Theorems in [9]
and [7] to obtain our multiplicity result, Theorem 1.2.

2. THE EXISTENCE RESULT

In this section, we use directly methods in the calculus of variations in [2] and

standard sub- and supersolutions arguments in [3, 4] to prove Theorem 1.1. We first

recall the comparison principle for p-Laplacian (see, for example, [11, Lemma 2.2]).
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LEMMA 2 . 1 . (Comparison Principle) . Let u and v be continuous functions in

the Sobolev space Wl'p (fi) which satisfy the distributional inequality

Apu - Apt; ^ 0

in a domain fi ofRN. Suppose that u ^ v on 9fi, in the sense that the set {u-v+e ^ 0}
has compact support in fi for every e > 0. Then u~^ v in fi.

We also need the following lemmas.

LEMMA 2 . 2 . Suppose that u(x) € C^fi) is a positive solution of (1.1). Then

maxu < k,
ien

where k is the positive number in condition (#2)-

PROOF: Otherwise, by continuity there exists a connected domain fii C fi such that
u > k in fii and u = k on dQ\. Hence u and v — k satisfy

(2.1) - A p u < 0 = -Apv in fii, u\d(ll = v\ani

due to condition (#2)- Thus, the comparison principle, Lemma 2.1, shows that u = k in
fii. It contradicts (2.1). Therefore u < k in fi, and the proof is finished. D

LEMMA 2 . 3 . For any Ao > 0, there exists a p — p(A0) such that for A 6 (0, Ao],
u = 0 is the unique nonnegative solution of (1.1) in Bp(0) C C(fi), where Bp(0) is a ball
with centre 0 and radius p.

PROOF: Suppose not; then (1.1) possesses solutions (Am, um) such that um > 0 and
um pr 0, and lim um = 0 in C(fi); Am > 0 and Am G (0, Ao]. Since vm = un

m—*oo

is bounded in C(fi) and satisfies

and
vm = 0 on 3fi,

the standard regularity theory implies that vm —> 0 in C(f2), which contradicts ||fm||C(n)
= 1 and vm —̂  i; in C(Q). This completes the proof. 0

Next a variational argument will be employed to show that problem (1.1) possesses a
positive solution for large A. For technical reason, the function f(x, s) has to be modified
to J(x,s), where J{x,s) := f{x,s) for s e [0,k); J(x,s) := f{x,k) < 0 for s ^ k;
f(x, s) := f(x, 0) for s ^ 0. Obviously, the maximum principle implies that any solutions
of the problem

(2.2) -Apu = J(x,u), x&Q, u\an = 0
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are positive and satisfy u ^ k. Then problem (2.1) is equivalent to problem (1.1) when
only nonnegative solutions are considered. From now on, we treat problem (2.2) instead
of (1.1). Now we are ready to prove Theorem 1.1.

P R O O F OF T H E O R E M 1.1: Define the functional J(u) on Wo
llP(f2) for problem (2.2)

by

(2.3) J(u) = - f \Du\p dx-X f F(x, u) dx,
PJn Jn

where F(x,u)= / f(x,s)ds.
Jo _

It follows from (Hi) and the boundedness of f(x,s) that J(u) is well defined on
WQ'P(Q,). Standard arguments show that J is weakly lower semicontinuous. Clearly,

/ ~F(x,u)dx ^ M I \u\dx.
\Jn Jn

Since p > 1, it is easily seen that

i/pJ
for some constant C\ by using the Holder inequality. It follows from Sobolev's inequality

that

Therefore, J(u) is coercive, that is

J(u) ->• oo as ||u||ivoi.P{n) - • oo.

Therefore, we conclude that J possesses a minimiser in WQ'P(Q). Since f(x, s) = 0, s ^ 0

and J ( | u | ) ^ J(u), J(u) posseses a nonnegative minimiser, which we denote by u\.

By (H3) there exists a 8 > 0 such that

T(x, s) ^ 7 > 0 if | i - a\ ^ 5, \y - s\ ^ 5.

Define <j>(x) = y if \x — a\ ^ 5/2 and let (j> go to 0 linearly along rays in the shell
5/2 ^ \x — a\ ^ (8/2) + T), where rj is so small that

/ F(Xi <A(x)) dx<\( F{x.<t>(x)) ds.
y<S/2<|i-a|<((5/2)+T) * J\x-a\^S/2

Therefore,

I
Jn

F(x,<f>(x))dx>0.
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Thus, there exists a Ao sufficiently large such that J(<t>) < 0 for all A ^ Ao. So u\ ^ 0,

u\ ^ 0 for all A ̂  Ao, and ux satisfies

-Apux + AL(UA) = A ( / ( i , ux) + L{ux)) ^ 0 in ft, uA|an = 0,

where L(s) = (3(s) + sp and /?(s) is the same as in condition (i/4). Clearly, L(s) satisfies

/ ( / L(t)dt) ds = 00. The strong maximum principle in [14] implies that ux is

a positive solution of (2.2), and hence it is a positive solution of (1.1).

Let
A* = inf{A > 0, (1.1) has a positive solution}.

Then, 0 ^ A* ^ Ao and for all A > A* there exists Ax such that A* < At < A. Moreover,
problem (1.1) with A = Ax possesses at least one positive solution, denoted by uAj such
that uxi < k because of Lemma 2.2. Clearly uAi is a subsolution of (1.1) and it is easy
to check that the constant k in (H2) is a supersolution of (1.1) such that uAl < k. A

standard sub- and supersolution argument (see [3, 4]) implies that problem (1.1) has a
positive solution ux for all A > A* such that uxt ^ u \ < k due to Lemma 2.2. Standard
regularity theory implies that ux G Cl(ui).

Next we shall show that problem (1.1) possesses a positive solution when A = A*. In
fact, let {An} be a sequence which decreases to A*. By the discussion above, there exists
a positive solution un G C](Q.) of (1.1) with A = An such that un ^ k. The standard
regularity theorey implies that {un} is bounded in Cli /J(fl), fi G (0,1). Hence there exists
a subsequence {unj} C {un} and u G C^ft) such that unj —• u in Cl(Q) and u is a
nonnegative solution of (1.1) with A = A*. By using the same kind of arguments as in
Lemma 2.3, we obtain u > 0 for x G ft. The strong maximum principle implies A* > 0.
This finishes the proof. D

3. T H E MULTIPLICITY RESULT

In this section, we first show that the existence of local minimisers of the functional
for (1.1) in WQ'P(Q). Using this fact and the mountain pass theorem, we prove the
multiplicity result for positive solutions to problem (1.1)

LEMMA 3 . 1 . For all A > A*, t i e functionai J{u) defined by (2.3) has a local
minimiser in WQ'P(Q), where A* is the same as in Theorem 1.1.

PROOF: By (H4), 3(1,5) = f{x,s) + L(s) is nondecreasing in s G [0,*] for almost
all x e f i . For any fixed A > A*, there exists positive constant Ai such that A* < Ai < A.
We shall treat (1.1) in the form

(3.1) -Apu + XL{u) = Xg(x,u) in Q, u = 0 on dQ.
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Let UAI be a positive solution of (1.1) with A = Ai. [2, Theorem 1.1] shows that the
following problems:

(3.2) -Apu + XL(u) = Xig{x,uXl) in Q, u = 0 on dQ

and

(3.3) -Apu + XL(u) = Xg{x, k) in SI, u = 0 on dil

have positive solutions m, u2, respectively. By the monotonicity of L(s), we can easily
show

-ApUi + AxL(ui) < Aig(x,uAl) in fi.

[2, Theorem 1.1] shows that U\ ^ u\l < k. By a similar argument to that used in Lemma
2.2, we obtain u2 < k in Q. It follows from the monotonicity of g(x, s) in s € [0, k] that

(3.4) -Apu2 + \L{u2) > Xg{x,uXl) > -Apm + \L(ux), in fi

and u\ — u2 = 0 on dCt. By [2, Theorem 1.1], we obtain ux ^ u2, Ui ^ u2 in fi. Moreover,

by (i/4), / I / L(t) d< 1 ds = 00, from [14, Theorem 5], we obtain

(3.5) ^ < 0 and ^ < 0 o n an,
on on

where n is the outward normal vector on d£l.

Next we shall show that u\ < u2 in Q. and (d(u2 — ui)/dn) < 0 on dQ.. Since U\ < k

in Q, and g(x, s) is strictly increasing in s € [0, fc], there exists a constant v > 0 such that

Aff(x, k) ^ Xig(x, Ui) + v in Ct.

Because -̂ — and -̂ — are continuous, it follows from (3.4) that
on on

(3.6) ^ < - * and ^ < -«5 on ?^,
on on

where 6 is a positive constant and fii is an open connected neighbourhood of dCl in fi

and

(3.7) 0 < -A p u 2 + AZ,(u2) - {-Aptii + XL(ui)} ^ -C(u2 - u:) + C(u2 - u:) in

due to (if4) and p > 1, where C is a positive constant and

a0 = / \ai(tDu2
Jo L
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It is clear that £ is a uniformly elliptic operator in fij because of (3.6). Suppose that
there exists an x0 € fi such that ui(x0) = u2{xo). Then there exists an i i € fii such that
ui(xi) = ui{xi). Indeed, choose a subdomain f22 of Q with smooth boundary such that

Sl2 C Q,dQ2 C fii and i 0 € Q2.

Then we shall show there exists a point xi € 9^2 such that u i ( i i ) = U2(ii). Suppose
not. By continuity, we obtain u2 — Ui ^ T on dQ2, where the positive constant r ^ 1 will
be specified below. Obviously, by condition (if4) v = ui + r satisfies

(t;) - L{ux)) ^ Aiff(x, ux) + Mr, x €

for some constant M > 0. Let r be small enough so that Mr < v. Then

-Apt; + AL(v) ^ —Apu2 + AL(u2) in ^ u2^ v on

and [2, Theorem 1.1] shows that u2 > v in Q2- This contradicts U2(zo) = Ui(^o)- Since
£ is uniformly elliptic in fii and u2(ii) = ui(xi), xi € fix, it follows from identity (3.7)
and [14, Theorem 5] that u\ = u2 in Qx. This contradicts (3.7). Thus, we obtain u2 > u\
in Q. On the other hand, from (3.7) we have

—C(u2 — u\) + C{u2 — u\) > 0 in fii with u2 = u\ = 0 on 9fi.

By [14, Theorem 5], we obtain (d(u2 — u\)/dn) < 0 on dQ.

Now we define

{
g(x,s), se(uuu2);

g{x,u2), s^u2,
Ml

G{x,u) = / gi(x,s)ds,
Jo

Ji = - f \Du\p dx + X f L{u) dx-X f G(x, u) dx.
PJn Jn Jn

Using a similar argument to the proof Theorem 1.1, we can prove that the functional
Ji(u) achieves a minimiser u\ € Wo

lj>(J2). Standard regularity theory implies uA 6
and satisfies

-Apu\ + XL(u\) = Xgx(x,u\) in fi, uA = 0 on dQ.
It is obvious that

g(x,ui) ^gi(x,ux) ^ g{x,u2) in Q.

The same arguments used above, show

(3.8) ui < u\ < u2 in fi,
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and

(3.9) *fo' - tt»> < 0, d^~ "*> < 0.
on on

Hence gi(x, u\) = g(x, u\) and u\ is a positive solution of (1.1). It follows from (3.8)-(3.9)

that if

with 9 small, then u\ ^ v ^ v,2- Moreover J(v) — Ji(v) is constant for u\ ^ i; ^ ui

and therefore U\ is also a local minimiser of J in Cl(Q) such that uA > 0 in Q. By
[1, Theorem 1.1), we conclude that u\ is a local minimiser of J in Wo

llP(fi). The proof is
complete. D

Now we are ready to prove the multiplicity result, Theorem 1.2.

P R O O F OF T H E O R E M 1.2: We still treat problem (1.1) in the form (2.2), with the

functional J{u) on W0
1>p(fi) for (2.2) defined by (2.3):

J(u) = - [ \Du\pdx-X f F(x,u)dx,
PJn Jn

— fu —
where F(x, u) = / f(x, u(s)) ds. Now for any fixed A > A*, we shall use the Mountain

Jo _
Pass Theorem in [8, 9] to find another solution u\ ^ u\, where u\ is a local minimiser for
J obtained in Lemma 3.1. We now check the conditions of the Mountain Pass Theorem.
Take any fixed q e (p,p*), where p* := Np/(N -p) if p < N; p' := +oo if p ^ N, and fix
it. By the construction of / and condition (Hi) — {H2), for any 5 > 0 there exists Cg > 0
such that |/(x, s)\ ^ foP"1 + C^ '" 1 . Thus, J is of class C1. Next, it is easy to see that
the functional J satisfies the Palais-Smale condition. Indeed, let {un} be any sequence
in WQ'P(Q) such that {J(un)} is bounded and J'(un) -* 0 as n -> oo. Then, it follows
from the boundedness of F that {||-Dun||£,p(n)} ' s bounded; that is {un} is bounded in
WQ'P(Q). Thus, [5, Lemma 2.1] yields the assertion. In addition, the Sobolev inequality
assures there exist positive constants 7 and p such that p < \\u\\\w^p/n\ and J(u) ^ 7 if
||Z?u||LP(n) = p, because

J{u) > - f \Du\pdx - - f \u\"dx -^± [ \u\"dx
PJn PJn 1 Jo.

\CiCs.

where Cx and C2 are positive constants, provided that 5 G fo, (l/(ACi)) j and p is

sufficiently small. If J(u\) ^ 0, then since J(0) = 0, the Mountain Pass Theorem in

[9], shows problem (2.2) possesses a nontrivial solution u\ such that J(u\) > 0, and

which is distinct from u\. If J(u\) > 0, there exists 5 > 0 such that if v G Bg(u\), then

J(v) ^ J(u\), where

Bs(ux) := {v G W**(Q) \ \\v - ux\\ >.P(n) ^ 6}.
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Hence

J\dBi(ui) > max{J(O), J{ux)}.

Then by the extensions of the Mountain Pass Lemma in [7], problem (2.2) has a nontrivial
solution which is distinct from uA- Therefore, for any fixed A > A*, problem (2.2) possesses
at least two nontrivial nonnegative distinct solutions. The standard regularity theory and
the maximum principle imply that these two nontrivial nonnegative solutions are positive
and belong to C^fi) . Hence for all A > A*, problem (1.1) possesses two distinct positive
solutions. This finishes the proof. D
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