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EXISTENCE AND MULTIPLICITY RESULTS FOR
QUASILINEAR ELLIPTIC EQUATIONS

WEI DoNG

The goal of this paper is to study the multiplicity of positive solutions of a class
of quasilinear elliptic equations. Based on the mountain pass theorems and sub-
and supersolutions argument for p-Laplacian operators, under suitable conditions on
nonlinearity f(z,s), we show the follwing problem:

=Apu = Af(z,u) inQ, ulsgn =0,

where Q is a bounded open subset of R¥, N > 2, with smooth boundary, A is a
positive parameter and A, is the p-Laplacian operator with p > 1, possesses at least
two positive solutions for large .

1. INTRODUCTION

Let Q be a bounded open subset of RN, N > 2, with smooth boundary Q2. We are
interested in the existence and multiplicity of positive solutions for the problem

(1.1) —Apu = Af(z,u) inQ, ulga =0,
where ) is a positive parameter, A, is the p-Laplacian operator defined by
Apu = div(|DulP~2Du)

with p > 1, and f(z, s) is a real function defined on € x R*.
Problem (1.1) with p = 2 has been extensively studied. Rabinowitz [8] proved that
problem (1.1) has two distinct positive solutions for large A provided that f(z, s) satisfies

(f1) f is locally Lipschitz continuous on  x R* with f(z,0) = 0;

(f2) there exists a positive number k such that f(z,s) < 0if s > k;

(f3) therez exists (a,y) € 2 x[0,k) such that F(a,y) > 0, where F(z,2)
=/0 f(z, s) ds; and

(fs) f(z,s) = o(s) at s = 0 uniformly in z € Q.
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This result has been generalised by various authors in several directions. Recently, Rabi-
nowitz’s result was extended to the case of 1 < p < 2 in [6] and p > 2 in [10] and special
nonlinearity f(s).

In this paper, we show that the main results in [8] continue to hold for all p > 1
and for a more general nonlinearity. Some techniques are adapted from [2] and [1]. In
particular, we prove the existence of a local minimiser in W,*(Q), and use this fact to
prove the multiplicity result under conditions on f(z,s) similar to those in [8]. Our
results improve the previous results.

Throughout this paper, we assume that the function f(z, s) satisfies:

(H,) f € C(Qx R*) with f(z,0) =0 and li_rf(l)(f(z, s))/sP~! uniformly in z € Q;

(H3) there exists a positive number k such that f(z,s) < 0if s 2 k;

(H3) therez exists (a,y) € Qx[0,k) such that F(a,y) > 0, where F(z,z)
= /0 f(z,s)ds; and

(H4) there exists a nondecreasing locall)('l%i)pschitz continuous function L(s) such
1/ ps —(1/p
that L(0) = 0, / / L(t) dt ds = oo, and the map s — f(z,s)
+L(s)is nondecrga.sing in s € [0, k] for almost all z € €2, where the constant
k is the same as in (H,).

Clearly our case includes the cases considered in [6, 10]. We only consider the
positive solutions of (1.1). By a positive solution of (1.1), we mean that u € C'(Q)
satisfies (1.1) in the weak sense with v > 0 in Q. Standard regularity theory for p-
Laplacian operators (see [12, 13]) assures that any weak solution of (1.1) belongs to
C@).

Our main results are the following.

THEOREM 1.1. There exists a positive number A\* such that for A > A*, problem
(1.1) possesses at least one positive solution, and (1.1) has no positive solutions if A < A*.

THEOREM 1.2. For all A > )*, problem (1.1) possesses at least two distinct
positive solutions, where A\* is the same as in Theorem 1.1.

The rest of this paper is organised as follows. In Section 2, we use variational
techniques and standard sub- and supersolutions arguments to obtain the existence result
Theorem 1.1. In section 3, we use the idea in [1] and the Mountain Pass Theorems in [9)
and (7] to obtain our multiplicity result, Theorem 1.2.

2. THE EXISTENCE RESULT

In this section, we use directly methods in the calculus of variations in [2] and
standard sub- and supersolutions arguments in [3, 4] to prove Theorem 1.1. We first
recall the comparison principle for p-Laplacian (see, for example, [11, Lemma 2.2]).
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LEMMA 2.1. (Comparison Principle). Let u and v be continuous functions in
the Sobolev space W;g; (Q) which satisfy the distributional inequality

Apu—Apw <0
in a domain Q of RN. Suppose that u > v on 89, in the sense that the set {u—v+¢ < 0}
has compact support in §) for every € > 0. Then u 2 v in Q.

We also need the following lemmas.

LEMMA 2.2. Suppose that u(z) € C*(Q) is a positive solution of (1.1). Then

maxu < k,
z€0N

where k is the positive number in condition (H,).
PRroOOF: Otherwise, by continuity there exists a connected domain Q; C §2 such that
u2kin Q, and uw=k on 99,. Hence u and v = k satisfy

(2.1) ~Au<0=—A in D, ulon, = vlon,

due to condition (H,). Thus, the comparison principle, Lemma 2.1, shows that u = k in
;. It contradicts (2.1). Therefore u < k in Q, and the proof is finished. 0

LEMMA 2.3. For any Ay > 0, there exists a p = p(Ag) such that for A € (0, Ay,
u = 0 is the unique nonnegative solution of (1.1) in B,(0) C C(Q), where B,(0) is a ball
with centre 0 and radius p.

PROOF: Suppose not; then (1.1) possesses solutions (A, ;) such that u,, > 0 and
um £0, and lim u, = 0in C(R); Am > 0 and A, € (0, Ag). Since v, = um/(llumllc(ﬁ))
is bounded in C(Q) and satisfies

f(z,um)

—ApUm = A — =0
’ i
and
v, =0 on 99,

the standard regularity theory implies that v,, = 0 in C(Q), which contradicts lvmllcm
=1 and v, — v in C(Q). This completes the proof. 6

Next a variational argument will be employed to show that problem (1.1) possesses a
positive solution for large A. For technical reason, the function f(z, s) has to be modified
to f(z,s), where f(z,s) := f(z,s) for s € [0,k}; f(z,8) := f(z,k) < 0 for s > k;
F(z,s) :== f(z,0) for s < 0. Obviously, the maximum principle implies that any solutions
of the problem

(2.2) ~Apu = f(z,u), T€Q, ulogn=0
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are positive and satisfy u < k. Then problem (2.1) is equivalent to problem (1.1) when
only nonnegative solutions are considered. From now on, we treat problem (2.2) instead
of (1.1). Now we are ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1: Define the functional J(u) on Wy*(R) for problem (2.2)
by

(2.3) J(u) = %/ﬂlDuI" dz — /\/Q-F—(:z:,u) dz,

where F(z,u) = /u F(z,s)ds.
0

It follows from (H;) and the boundedness of f(z,s) that J(u) is well defined on
W, P(£2). Standard arguments show that J is weakly lower semicontinuous. Clearly,

/{;7(2:, u)dz

Since p > 1, it is easily seen that

1/p
/ lu|dz < Cy (/ |ul? dx)
Q Q

for some constant C, by using the Holder inequality. It follows from Sobolev’s inequality
that

< M/ |u|dz.
Q

1 -
Iw) > (5 = ACllullys?”) lulf

. 1,p:
WOP WOP

Therefore, J(u) is coercive, that is
J(u) = oo as ||u||w3.p(n) — 0.

Therefore, we conclude that J possesses a minimiser in Wy*(Q). Since f(z,s) =0, s <0
and J(|u|) < J(u), J(u) posseses a nonnegative minimiser, which we denote by u,.
By (H3) there exists a § > 0 such that

F(z,s)2zy>01if |lz—a| <94, ly—s|<é.

Define ¢(z) = y if |z — a] € §/2 and let ¢ go to O linearly along rays in the shell
6/2 € |z — a| € (8/2) + n, where 7 is so small that

/ F(z,4(z)) dz < l/ F(z.4(z)) ds.
8/2<Iz~al<(6/2)+n 2 Jiz—aigs/2

Therefore,

/f(z,d)(x)) dz > 0.
n
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Thus, there exists a )\ sufficiently large such that J(¢) < 0 for all A > Ay. So uy 2 0,
uy Z 0 for all A > )Xo, and u, satisfies

—Apux + AL(ux) = A(f(z,ua) + L(ua)) 2 0 in Q, uslon =0,

where L(s) = B(s) + s” and S(s) is the same as in condition (H4). Clearly, L(s) satisfies
1 s -(1/p
/ ( / L(¢) dt) ds = 0o. The strong maximum principle in [14] implies that u, is
o \Jo
a positive solution of (2.2), and hence it is a positive solution of (1.1).

Let
A* =inf{A > 0, (1.1) has a positive solution}.

Then, 0 < A* € A\p and for all A > A* there exists A; such that A* < A\; < A. Moreover,
problem (1.1) with A = A; possesses at least one positive solution, denoted by u,, such
that u,, < k because of Lemma 2.2. Clearly u,, is a subsolution of (1.1) and it is easy
to check that the constant k in (H) is a supersolution of {1.1) such that u), < k. A
standard sub- and supersolution argument (see [3, 4]) implies that problem (1.1) has a
positive solution uy for all A > A* such that u,, < ux < k due to Lemma 2.2. Standard
regularity theory implies that u, € C(@).

Next we shall show that problem (1.1) possesses a positive solution when A = A*. In
fact, let {\,} be a sequence which decreases to A*. By the discussion above, there exists
a positive solution u, € C}(§2) of (1.1) with A = ), such that u, < k. The standard
regularity theorey implies that {u,} is bounded in C*#(Q), u € (0,1). Hence there exists
a subsequence {un;} C {ua} and u € C'(Q) such that u,; — u in C'(Q) and u is a
nonnegative solution of (1.1) with A = A*. By using the same kind of arguments as in
Lemma 2.3, we obtain u > 0 for z € 2. The strong maximum principle implies A* > 0.
This finishes the proof. 0

3. THE MULTIPLICITY RESULT

In this section, we first show that the existence of local minimisers of the functional
for (1.1) in Wy?(Q). Using this fact and the mountain pass theorem, we prove the
multiplicity result for positive solutions to problem (1.1)

LEMMA 3.1. For all A > )*, the functional J(u) defined by (2.3) has a local
minimiser in W;*(Q), where \* is the same as in Theorem 1.1.

PROOF: By (Hy), g(z,s) = f(z,s) + L(s) is nondecreasing in s € [0, k] for almost
all z € Q. For any fixed A > \*, there exists positive constant A; such that A* < A\; < A
We shall treat (1.1) in the form

(3.1) —Apu+ AL(u) = Ag(z,u) in Q, u=0 on I
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Let uy, be a positive solution of (1.1) with A = A;. [2, Theorem 1.1] shows that the
following problems:

(3.2) —Apu + AL(u) = Mg(z,uy,) in Q, u=0 on 0N
and
(3.3) —Apu+ AL(u) = Ag(z,k) in Q, u=0 on 9N

have positive solutions u,, uz, respectively. By the monotonicity of L(s), we can easily
show
—Apu; + M L(u1) < Mg(z,uy,) in Q.

[2, Theorem 1.1] shows that u; < uy, < k. By a similar argument to that used in Lemma
2.2, we obtain u; < k in Q. It follows from the monotonicity of g(z, s) in s € [0, k] that

(34) —AP’U-2 + AL(Uz) > /\g(z,u,\l) > —Apul + AL(ul), in
and u, = up = 0 on 892. By [2, Theorem 1.1], we obtain u; < us, u; # up in Q. Moreover,

. 1 s —(1/p)
by (Hy), / (/ L(t) dt) ds = oo, from [14, Theorem 5|, we obtain
0o \Jo

ou, dus
(3.5) B <0 and Bn <0 on 09,

where n is the outward normal vector on 9. ‘
Next we shall show that u; < up in € and (8(us — u1)/0n) < 0 on 9. Since u; < k
in Q and g(z, s) is strictly increasing in s € [0, k], there exists a constant v > 0 such that

Aglz, k) 2 Mg(z,u1) +v in Q.

0 0
Because — and == are continuous, it follows from (3.4) that

on on
a'Ufl aUQ —_—
(3.6) B < -4 and B < =6 on O,
where 6 is a positive constant and §, is an open connected neighbourhood of 3 in Q

and
(37) 0< —AP’UQ + )\L(’Ug) - {—Apul + AL(Ul)} < —E(’Uq - Ul) + C('U.g - ’U.l) in

due to (H,) and p > 1, where C is a positive constant and
0
£=3 @ ().,

. 1
aij = [) [ai(tDuQ + (1 - t))DUl]y' dt,

3

a’i(y) = lylp—2yi (7' = 1>2,' ,N) = (yl;y2)-")yN) € RN.
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It is clear that £ is a uniformly elliptic operator in §2; because of (3.6). Suppose that
there exists an zg € 2 such that u;(zg) = us(zo). Then there exists an z;, € Q; such that
u1(z1) = ua(z1). Indeed, choose a subdomain Q, of  with smooth boundary such that

ﬁz CQ,00, Cc and z¢ € Q.

Then we shall show there exists a point z; € 9§, such that u;(z;) = u2(z;). Suppose
not. By continuity, we obtain u; — u; 2> 7 on 92z, where the positive constant 7 < 1 will
be specified below. Obviously, by condition (H,) v = u; + T satisfies

—Apv + AL(v) = Aig(z,u1) + A(L(v) ~ L(w1)) € Mg(z,wm) + M7, z €
for some constant M > 0. Let 7 be small enough so that M+ < v. Then
—Apv + AL(v) € —Apup + AL(ug) in Q, uz 2 v on 99y,

and (2, Theorem 1.1] shows that u, > v in ;. This contradicts uz(zo) = ui(zo). Since
L is uniformly elliptic in €, and uy(z;) = wi(zy), 21 € Oy, it follows from identity (3.7)
and [14, Theorem 5] that u; = u, in ©,. This contradicts (3.7). Thus, we obtain u; > 1
in 2. On the other hand, from (3.7) we have

—L(ug—u)) +C(uz —uy) >0 in Q; with up =u; =0 on 99.

By [14, Theorem 5], we obtain (8(uz — u;)/0n) < 0 on 9.
Now we define

g(z,w), s < uyp;
gl(x, S) = g(a:, S), s € (Ul,uz);
g(z, uz), s 2 uy,

G(z,u) = /Ougl(z, s)ds,

and
Jy = l/ |DulP dz + ,\f L(u)dz - A/ G(z,u)dz.
PJa a 1

Using a similar argument to the proof Theorem 1.1, we can prove that the functional
Ji(u) achieves a minimiser uy € W,”(f2). Standard regularity theory implies uy € C*(Q)
and satisfies
—Apuy + AL(uy) = Agi(z,ux) in ©, uy =0 on .
It is obvious that
g(z,u;) € gi1(z,ux) € g9(z,up) in Q.

The same arguments used above, show

(3.8) u; < up < up in Q,
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and

(39) é_(_’.‘%"_) < 0, a(u)‘_a;ul_) < 0.

Hence g(z, u)) = g(z, u») and u, is a positive solution of (1.1). It follows from (3.8)—(3.9)
that if

llv - ualler iy = 6
with @ small, then u; € v € up. Moreover J(v) — Jy(v) is constant for u; € v € up
and therefore u, is also a local minimiser of J in C'(Q) such that u, > 0 in Q. By
[1, Theorem 1.1}, we conclude that u, is a local minimiser of J in Wy*(f2). The proof is
complete.

Now we are ready to prove the multiplicity result, Theorem 1.2.
PROOF OF THEOREM 1.2: We still treat problem (1.1) in the form (2.2), with the
functional J(u) on W;P(Q) for (2.2) defined by (2.3):

J(u) = —1-/ |Du|”dx—)\/f(a:,u) dz,
pJa ]

where F(z,u) = / f(z,u(s)) ds. Now for any fixed A > A*, we shall use the Mountain
Pass Theorem in [80, 9] to find another solution %y # u,, where u, is a local minimiser for
J obtained in Lemma 3.1. We now check the conditions of the Mountain Pass Theorem.
Take any fixed ¢ € (p,p*), where p* := Np/(N —p)if p < N; p* := +c0if p > N, and fix
it. By the construction of f and condition (H,) — (Ha), for any § > 0 there exists C5 > 0
such that |T(a:, s)| < 8sP7Y 4 Cys?7L. Thus, J is of class C. Next, it is easy to see that
the functional J satisfies the Palais-Smale condition. Indeed, let {u,} be any sequence
in Wy*(Q) such that {J(ua)} is bounded and J'(un) — 0 as n — oco. Then, it follows
from the boundedness of F that {l| Dun|| LP(Q)} is bounded; that is {u,} is bounded in
WyP(Q). Thus, [5, Lemma 2.1] yields the assertion. In addition, the Sobolev inequality
assures there exist positive constants y and p such that p < |[uallyrgq, and J(u) 2 v if
| Dull o) = p. because

J(u) > l/ |Du|vdx-5/ |u|"dx-’\—C‘/ luf? dz
bJa P Ja a

q
N (1 —XCi6 MGy
~ P q

[ A 1 A

where C, and C, are positive constants, provided that § € (0, (1/()\01))) and p is
sufficiently small. If J(u)) < 0, then since J(0) = 0, the Mountain Pass Theorem in
[9], shows problem (2.2) possesses a nontrivial solution %, such that J(z,) > 0, and
which is distinct from uy. If J(u,) > 0, there exists § > 0 such that if v € Bs(u,), then
J{v) = J(u,), where

Bs(wy) := {v € W?(Q) | llv = uallwpo(qy < 6}
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Hence
JlaB;(uA) 2 max {J(O), J(u,\)}

Then by the extensions of the Mountain Pass Lemma in (7], problem (2.2) has a nontrivial
solution which is distinct from u,. Therefore, for any fixed A > A*, problem (2.2) possesses
at least two nontrivial nonnegative distinct solutions. The standard regularity theory and
the maximum principle imply that these two nontrivial nonnegative solutions are positive
and belong to C*(£2). Hence for all A > X*, problem (1.1) possesses two distinct positive
solutions. This finishes the proof. 0
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