
JFP 13 (1): 219–222, January 2003. © 2003 Cambridge University Press

DOI: 10.1017/S0956796803002417 Printed in the United Kingdom

Chapter 22

Directory Functions

module Directory (
Permissions(Permissions, readable, writable, executable, searchable),
createDirectory, removeDirectory, removeFile,
renameDirectory, renameFile, getDirectoryContents,
getCurrentDirectory, setCurrentDirectory,
doesFileExist, doesDirectoryExist,
getPermissions, setPermissions,
getModificationTime) where

import Time (ClockTime)

data Permissions = Permissions {
readable, writable,
executable, searchable :: Bool

}

instance Eq Permissions where ...
instance Ord Permissions where ...
instance Read Permissions where ...
instance Show Permissions where ...

createDirectory :: FilePath -> IO ()
removeDirectory :: FilePath -> IO ()
removeFile :: FilePath -> IO ()
renameDirectory :: FilePath -> FilePath -> IO ()
renameFile :: FilePath -> FilePath -> IO ()

219

https://doi.org/10.1017/S0956796803002417 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002417

220 CHAPTER 22. DIRECTORY FUNCTIONS

getDirectoryContents :: FilePath -> IO [FilePath]
getCurrentDirectory :: IO FilePath
setCurrentDirectory :: FilePath -> IO ()

doesFileExist :: FilePath -> IO Bool
doesDirectoryExist :: FilePath -> IO Bool

getPermissions :: FilePath -> IO Permissions
setPermissions :: FilePath -> Permissions -> IO ()

getModificationTime :: FilePath -> IO ClockTime

These functions operate on directories in the file system.

Any Directory operation could raise an isIllegalOperation, as described in Section 21.1;
all other permissible errors are described below. Note that, in particular, if an implementation does
not support an operation it should raise an isIllegalOperation. A directory contains a series
of entries, each of which is a named reference to a file system object (file, directory etc.). Some
entries may be hidden, inaccessible, or have some administrative function (for instance, “.” or “..”
under POSIX), but all such entries are considered to form part of the directory contents. Entries in
sub-directories are not, however, considered to form part of the directory contents. Although there
may be file system objects other than files and directories, this library does not distinguish between
physical files and other non-directory objects. All such objects should therefore be treated as if they
are files.

Each file system object is referenced by a path. There is normally at least one absolute path to
each file system object. In some operating systems, it may also be possible to have paths which are
relative to the current directory.

Computation createDirectory ��� creates a new directory ��� which is initially empty, or as
near to empty as the operating system allows.

Error reporting. The createDirectory computation may fail with: isPermissionError
if the user is not permitted to create the directory; isAlreadyExistsError if the directory
already exists; or isDoesNotExistError if the new directory’s parent does not exist.

Computation removeDirectory ��� removes an existing directory ��� . The implementation
may specify additional constraints which must be satisfied before a directory can be removed (for
instance, the directory has to be empty, or may not be in use by other processes). It is not legal for an
implementation to partially remove a directory unless the entire directory is removed. A conformant
implementation need not support directory removal in all situations (for instance, removal of the root
directory).

Computation removeFile *
� removes the directory entry for an existing file *
�, where *
� is
not itself a directory. The implementation may specify additional constraints which must be satisfied
before a file can be removed (for instance, the file may not be in use by other processes).

https://doi.org/10.1017/S0956796803002417 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002417

221

Error reporting. The removeDirectory and removeFile computations may fail with is-
PermissionError if the user is not permitted to remove the file/directory; or isDoesNot-
ExistError if the file/directory does not exist.

Computation renameDirectory �
� ��
 changes the name of an existing directory from �
�

to ��
 . If the ��
 directory already exists, it is atomically replaced by the �
� directory. If the
��
 directory is neither the �
� directory nor an alias of the �
� directory, it is removed as if by
removeDirectory. A conformant implementation need not support renaming directories in all
situations (for instance, renaming to an existing directory, or across different physical devices), but
the constraints must be documented.

Computation renameFile �
� ��
 changes the name of an existing file system object from �
�

to ��
 . If the ��
 object already exists, it is atomically replaced by the �
� object. Neither path
may refer to an existing directory. A conformant implementation need not support renaming files in
all situations (for instance, renaming across different physical devices), but the constraints must be
documented.

Error reporting. The renameDirectory and renameFile computations may fail with: is-
PermissionError if the user is not permitted to rename the file/directory, or if either argument
to renameFile is a directory; or isDoesNotExistError if the file/directory does not exist.

Computation getDirectoryContents ��� returns a list of all entries in ��� . Each entry in the
returned list is named relative to the directory ��� , not as an absolute path.

If the operating system has a notion of current directories, getCurrentDirectory returns an
absolute path to the current directory of the calling process.

Error reporting. The getDirectoryContents and getCurrentDirectory computations
may fail with: isPermissionError if the user is not permitted to access the directory; or
isDoesNotExistError if the directory does not exist.

If the operating system has a notion of current directories, setCurrentDirectory ��� changes
the current directory of the calling process to ��� .

Error reporting. setCurrentDirectory may fail with: isPermissionError if the user is
not permitted to change directory to that specified; or isDoesNotExistError if the directory
does not exist.

The Permissions type is used to record whether certain operations are permissible on a file/ di-
rectory. getPermissions and setPermissions get and set these permissions, respectively.
Permissions apply both to files and directories. For directories, the executable field will be
False, and for files the searchable field will be False. Note that directories may be search-
able without being readable, if permission has been given to use them as part of a path, but not to
examine the directory contents.

Note that to change some, but not all permissions, a construct on the following lines must be used.

makeReadable f = do
p <- getPermissions f
setPermissions f (p {readable = True})

https://doi.org/10.1017/S0956796803002417 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002417

222 CHAPTER 22. DIRECTORY FUNCTIONS

The operation doesDirectoryExist returns True if the argument file exists and is a directory,
and False otherwise. The operation doesFileExist returns True if the argument file exists
and is not a directory, and False otherwise.

The getModificationTime operation returns the clock time at which the file/directory was
last modified.

Error reporting. get(set)Permissions, doesFile(Directory)Exist and getMod-
ificationTime may fail with: isPermissionError if the user is not permitted to access
the appropriate information; or isDoesNotExistError if the file/directory does not exist. The
setPermissions computation may also fail with: isPermissionError if the user is not
permitted to change the permission for the specified file or directory; or isDoesNotExistError
if the file/directory does not exist.

https://doi.org/10.1017/S0956796803002417 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002417

