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Approximation and the Topology of
Rationally Convex Sets

E. S. Zeron

Abstract. Considering a mapping g holomorphic on a neighbourhood of a rationally convex set K ⊂

C
n, and range into the complex projective space CP

m, the main objective of this paper is to show that

we can uniformly approximate g on K by rational mappings defined from C
n into CP

m. We only need

to ask that the second Čech cohomology group Ȟ2(K, Z) vanishes.

1 Introduction

Let CP
m be the m-complex projective space, composed of all the complex lines in

C
m+1 which pass through the origin. It is well known that CP

m is an m-complex

manifold, and that there exists a natural holomorphic projection ρm defined from

C
m+1 \ {0} onto CP

m, which sends any point (z0, . . . , zm) 6= 0 to the complex line

ρm(z0, . . . , zm) = [z0, . . . , zm] := {(z0t, . . . , zmt) : t ∈ C}.

In particular, we have that the one-dimensional complex projective space CP
1

is the Riemann sphere S2, and the natural holomorphic projection ρ1 is given by

ρ1(w, z) = [ w
z
, 1] or [1, z

w
]. Thus, any rational mapping p/q defined on C

n may be

seen as the composition ρ1(p, q), where (p, q) is a holomorphic polynomial mapping

from C
n into C

2. The critical set E of p/q is the inverse image (p, q)−1(0), and so p/q

is a holomorphic mapping defined from C
n \ E into S2. Previous interpretation al-

lows us to extend the notion of rational mapping to consider the natural projections

ρm for m ≥ 1.

Definition 1 A rational mapping based on C
n, and image in CP

m, is defined as the

composition ρm(P) for a given holomorphic polynomial mapping P : C
n → C

m+1.

The critical set E of ρm(P) is then defined as the inverse image P−1(0), and so ρm(P)

is a holomorphic mapping defined from C
n \ E into CP

m.

Recall the fundamentals of rational approximation theory. A compact set K in

C
n is rationally convex if for every point y ∈ C

n \ K there exists a holomorphic

polynomial p such that p(y) = 0 and p does not vanish on K. Besides, it is well

known that each function h : U → C holomorphic on a neighbourhood U of K can

be approximated on K by rational functions, whenever K is rationally convex; see for
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Rationally Convex Sets 629

example [2, 7]. That is, for each δ̂ > 0 there exists a holomorphic rational function

p/q such that K does not meet the zero locus of q and
∣∣ p(z)

q(z)
− h(z)

∣∣ is strictly less

than δ̂ on K. This result automatically drives us to consider whether the concept

of rationally convex sets is strong enough to imply approximation by the kind of

rational mappings that we have just introduced in Definition 1. Amazingly, we can

get a positive answer by adding a simple cohomological condition.

Theorem 2 (Main theorem) Let K be a rationally convex set in C
n, and Dist a metric

on CP
m which induces the topology, with m, n ≥ 1. If the second Čech cohomology group

Ȟ2(K,Z) vanishes, then for each δ̂ > 0 and any mapping g : U → CP
m holomorphic

on a neighbourhood U of K, there exists a rational mapping ρm(P) defined on C
n whose

critical set does not meet K, and such that Dist
[
ρm(P(z)), g(z)

]
is less than δ̂ on K.

This result was mainly inspired by the work of Grauert, Kerner and Oka [9, 10,

17]. In an early paper [8] we analysed the approximation by the rational mappings

described in Definition 1; we deduced a result similar to Theorem 2 by using the extra

topological condition of being null-homotopic. We give a complete reference to this

early result in Section 4.

We shall prove Theorem 2 in the third section of this paper. Moreover, we devote

the second section to introducing the results on cohomology theory which we need

for the proof of the Theorem 2. Finally, examples and corollaries are introduced in

Section 4.

2 Cohomology

We strongly recommend [1, 3, 11] for references on homotopy theory and [14, 18,

19], for references on cohomology theory.

We consider two main classes of cohomology groups: Čech and singular. These

cohomology groups are both isomorphic on smooth manifolds, and open subsets

of C
n, for these spaces are all locally contractible; see for example [18, p. 166] or

[19, pp. 334, 341]. However, there is a very nice example in [19, pp. 77, 317] of a

compact set K ⊂ C whose Čech cohomology group Ȟ1(K,Z) = Z, but its singular

cohomology group H1
s (K,Z) vanishes. Now, given a closed set E ⊂ C

n, we need

Čech cohomology groups, because Ȟ∗(E,Z) can be calculated as the direct limit of

the sequence {Ȟ∗(U ,Z)}, where U runs over a system (directed by inclusions) of

open neighbourhoods of E in C
n; see for example [2, Ch. 15], [3, p. 348], [18, p. 145]

or [19, p. 327]. So the Čech cohomology group Ȟ∗(E,Z) vanishes if and only if for

each element ξ ∈ Ȟ∗(U ,Z) defined on an open neighbourhood U of E, there exists

a second open set W such that E ⊂ W ⊂ U and the restriction ξ|W is equal to zero

in Ȟ∗(W,Z).

On the other hand, we need singular cohomology groups because of the following

universal result. Let U ⊂ C
n be an open subset which has the homotopy type of a

CW-complex. The singular cohomology group Hk
s (U ,Z) is then isomorphic to the

group of homotopy classes [U ,Y ], where k ≥ 1 and Y is an Eilenberg–MacLane space

of type (Z, k); see for example [1, p. 183], [3, pp. 488–492], [4, p. 274] or [19, p. 428].

Recall that Y is an Eilenberg–MacLane space of type (Z, k) if every homotopy group
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630 E. S. Zeron

π∗(Y ) vanishes, with the only exception of πk(Y ), which is equal to Z. Recall that

[U ,Y ] is the group composed by all the homotopy classes of continuous mappings

f : U → Y .

Combining the ideas presented in previous paragraphs, we may deduce the fol-

lowing result. Let E ⊂ C
n be a closed set whose Čech cohomology group Ȟk(E,Z)

vanishes, k ≥ 1. Suppose from now on that E has a system (directed by inclusions)

of open neighbourhoods {Uβ} in C
n, where each Uβ has the homotopy type of a

CW-complex and E =

⋂
β Uβ . Given an Eilenberg–MacLane space Y of type (Z, k),

and since Čech and singular cohomology groups are isomorphic on each Uβ , we have

that for every continuous mapping f : Uβ → Y there exists a second neighbourhood

Uθ such that E ⊂ Uθ ⊂ Uβ and the restriction f |Uθ
: Uθ → Y is null-homotopic.

The main idea behind this result is to see the homotopy class of the mapping f as an

element of Hk
s (Uβ ,Z) ∼= Ȟk(Uβ ,Z).

Let us illustrate the previous result with a known example. Recall that C \ {0}
has the homotopy type of the 1-dimensional sphere S1 and that S1 is an Eilenberg–

MacLane space of type (Z, 1) because π1(S1) = Z and πk(S1) = 0 for every k 6= 1.

We may deduce that for each non-vanishing continuous function f : Uβ → C \ {0}
and whenever Ȟ1(E,Z) = 0, there exists a second neighbourhood Uθ such that the

restriction f |Uθ
: Uθ → C \ {0} has a well defined continuous logarithm ( f |Uθ

is

null-homotopic) [2, Ch. 15], [7, §7, Ch. III].

Coming back to the main theorem of this paper, in the hypotheses we suppose

that the second Čech cohomology group Ȟ2(K,Z) vanishes, so we need an example

of an Eilenberg–MacLane space of type (Z, 2). This example is given by the infi-

nite dimensional complex projective space CP
∞; see [1, p. 360], [11, p. 157] or [19,

p. 425]. Repeating all the calculations done in previous paragraphs, we may prove

the following lemma.

Lemma 3 Let E be a closed subset of C
n whose second Čech cohomology group

Ȟ2(E,Z) vanishes. Suppose that E has a system (directed by inclusions) of open neigh-

bourhoods {Uβ} in C
n, where each Uβ has the homotopy type of a CW-complex and

E =

⋂
β Uβ . We have that for every continuous mapping f : Uβ → CP

∞ there exists

a second neighbourhood Uθ such that E ⊂ Uθ ⊂ Uβ and the restriction f |Uθ
: Uθ →

CP
∞ is null-homotopic.

3 Proof of the Main Theorem

We need to recall some properties about the infinite dimensional complex projective

space CP
∞. Consider the infinite dimensional space C

∞ composed of all the complex

sequences (z0, z1, . . . ), where only a finite number of entries zk are different from

zero. This space C
∞ is naturally endowed with the standard norm

√∑
k
|z2

k |. The

complex projective space CP
∞ is then composed of all the complex lines in C

∞ which

pass through the origin. Besides, there exists a natural projection ρ∞ defined from

C
∞ \ {0} onto CP

∞ which sends any point (z0, z1, . . . ) 6= 0 to the complex line

ρ∞(z0, z1, . . . ) = [z0, z1, . . . ] := {(z0t, z1t, . . . ) : t ∈ C}.
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Finally, it is easy to calculate that ρ∞ induces a locally trivial fibre bundle in

C
∞ \ {0}, with base on CP

∞ and fibre C \ {0}; see [1, p. 360]. We may cover CP
∞

with open sets Wk composed of all points in CP
∞ whose k-entry is equal to one. The

open set W0 is equal to {[1, y] : y ∈ C
∞}, for example. It is now easy to calculate

that ρ∞ induces a trivial fibre bundle on each ρ−1
∞ (Wk), with base on Wk and fibre

C \ {0}. Actually, for every m ≥ 1, we have that the projection ρm induces a locally

trivial fibre bundle in C
m+1 \ {0}, with base on CP

m and fibre C \ {0}, as well.

Proof of Theorem 2 Define the open rational polyhedra Vβ in C
n by the formula,

(1) Vβ := {z ∈ C
n : |p j(z)| < 1, ∀ j and |qk(z)| > 1, ∀k},

for some given finite collections of holomorphic polynomials {p j} and {qk} in C
n.

We have that each rational polyhedron Vβ is an open Stein subset of C
n, so Vβ has the

homotopy type of a CW-complex [15, p. 39]. Moreover, given a rationally convex set

K ⊂ C
n, it is easy to see that the family of all open rational polyhedra Vβ which con-

tain K form a system of neighbourhoods in C
n, and that K is equal to the intersection⋂

K⊂Vβ
Vβ .

On the other hand, let g : U → CP
m be any mapping holomorphic on a neigh-

bourhood U of K. We can obviously extend this mapping to a second one with

range on CP
∞, we only need to set the first m + 1 entries equal to the entries of

g = [g0, . . . , gm] and the rest of them equal to zero. That is, define ğ : U → CP
∞ by

(2) ğ(z) := [g0(z), . . . , gm(z), 0, . . . , 0, . . . ].

We may find an open rational polyhedron Vβ such that K ⊂ Vβ ⊂ U . Besides,

recalling that the Čech cohomology group Ȟ2(K,Z) vanishes because of the given

hypotheses, and considering Lemma 3, we may even find a rational polyhedron Vβ

such that the restriction ğ|Vβ
: Vβ → CP

∞ is null-homotopic. Let I = [0, 1] the unit

closed interval in the real line. There exists then a continuous mapping G from Vβ×I

into CP
∞ such that G(z, 1) = ğ(z) and G(z, 0) = [1, 0, . . .], for every z ∈ Vβ . We

have the following commutative diagram,

Vβ

c
//

j

��

C
∞ \ {0}

ρ∞

��

Vβ × I
G

// CP
∞,

where c(z) = (1, 0, . . . ) is a constant mapping and j(z) = (z, 0) is the natural in-

clusion. We know that the projection ρ∞ induces a locally trivial fibre bundle on

C
∞ \ {0}, with base CP

∞ and fibre C \ {0}. This fibre bundle has the homotopy

lifting property; see for example [4, pp. 62, 67], [11, p. 87] or [19, p. 96]. Hence,

there exists a continuous mapping F from Vβ × I into C
∞ \ {0} such that ρ∞(F) is
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identically equal to G on Vβ × I. Recalling equation (2) where ğ(z) = G(z, 1) was

defined, we can deduce that F(z, 1) has the form,

F(z, 1) := (F0(z, 1), . . . , Fm(z, 1), 0, . . . , 0, . . . ).

We may then introduce a new continuous mapping f defined from Vβ into

C
m+1 \ {0}, by removing the last entries of F(z, 1) equal to zero; that is,

f (z) := (F0(z, 1), . . . , Fm(z, 1)) for every z ∈ Vβ .

It is easy to see that ρm( f (z)) = g(z) for every z ∈ Vβ . The main objective of

previous calculations was the construction of the continuous mapping f described

above. Actually, we could have showed the existence of such a mapping f by using

the results on obstruction theory described in [3, p. 507] and [19, p. 447]. However,

we think that the procedure followed in previous paragraphs is simpler and more

illustrative.

Nevertheless, we look for a holomorphic (not only continuous) mapping h from

Vβ into C
m+1 \ {0} such that ρm(h(z)) = g(z) for every z ∈ Vβ . We shall construct

this holomorphic mapping h by using Oka’s results on the second Cousin problem.

Define the space,

M := {(z,w) ∈ Vβ × C
m+1 : g(z) = ρm(w), w 6= 0}.

It is easy to deduce that M is an analytic space because g and ρm are both holo-

morphic mappings. Moreover, we also have the following commutative diagram,

M
η2

//

η1

��

C
m+1 \ {0}

ρm

��

Vβ

g
// CP

m,

where η1(z,w) = z and η2(z,w) = w are the basic projections. It is easy to prove

that η1 induces a locally trivial fibre bundle in M, with Stein base on Vβ and Stein

fibre C \ {0}. This fibre bundle M
η1−→ Vβ is the pullback of the fibre bundle induced

by ρm on C
m+1 \ {0}. Now recalling the continuous mapping f defined above, we

automatically have that z 7→ (z, f (z)) is a continuous section of the fibre bundle

M
η1−→ Vβ , because g(z) = ρm( f (z)) for every z ∈ Vβ . Oka’s results on the second

Cousin problem imply that z 7→ (z, f (z)) is homotopic to a holomorphic section

z → (z, h(z)), because Vβ is Stein; see for example [5, 6, 10, 17]. Hence, there exists

a holomorphic mapping h : Vβ → C
m+1 \ {0} such that g(z) is equal to ρm(h(z)) for

every z ∈ Vβ .

On the other hand, let W be an open subset of C
m+1 which contains the compact

image h(K). Suppose that the closure W is compact and does not contains the origin.

Notice that the projection ρm from C
m+1 \ {0} into CP

m is continuous with respect
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to the metric Dist, which induces the topology, so ρm is also uniformly continuous

on W . Express h = (h0, . . . , hm) as a vector in C
m+1. There are m + 1 small enough

constants δk > 0 such that, given z ∈ K and w ∈ C
m+1,

(3) Dist
[
ρm(h(z)), ρm(w)

]
< δ̂ and w ∈ W , if |hk(z) − wk| < δk for 0 ≤ k ≤ m.

Recalling that K is rationally convex, we may find m+1 rational functions wk =

pk

qk

defined on C
n, such that K meets the zero locus of no qk, for every 0 ≤ k ≤ m, and the

absolute value
∣∣hk(z) − pk

qk
(z)

∣∣ is strictly less than δk on K. Consider the polynomial

mapping P : C
n → C

m+1 given by

P :=
( p0

q0

m∏

k=0

qk, . . . ,
pm

qm

m∏

k=0

qk

)
.

It is easy to deduce that neither
(

p0

q0

, . . . , pm

qm

)
nor the product

∏m
k=0 qk can van-

ishes on K, because of 0 /∈ W and equation (3). Thus, the compact set K does not

meet the critical set P−1(0) of the rational mapping ρm(P). We may also deduce that

ρm(P) is equal to ρm

(
p0

q0

, . . . , pm

qm

)
on K. Therefore, recalling equation (3), and that

ρm(h(z)) is equal to g(z) for every z ∈ K, we get the result that we are looking for:

the distance Dist
[

g(z), ρm(P(z))
]

is strictly less than δ̂ on K.

4 Examples and Applications

We shall conclude this paper with the observation that the cohomological condition

Ȟ2(K,Z) = 0 in the hypotheses of the main theorem is not a trivial condition. Con-

sider the standard two-sphere in R
3,

S
2 := {(a, b, c) ∈ R

3 : a2 + b2 + c2
= 1}.

We can obviously analyse S2 as a subset of C
3, embedding it into the real space;

it is easy to see that S2 is rationally convex in C
3. Besides, the groups Ȟ2(S2,Z) and

H2
s (S2,Z) are both isomorphic to Z. Finally, consider the following open neighbour-

hood U of S2,

U := {(x, y, z) ∈ C
3 : −π < arg(x2 + y2 + z2) < π},

and the holomorphic mapping g : U → CP
1, where

√
1 = 1,

g(x, y, z) =

[ x + i y√
(x2 + y2 + z2) + z

, 1
]

or
[

1,
x − i y√

(x2 + y2 + z2) − z

]
.

It is easy to see that the restriction g|S2 is the identity mapping from S
2 onto

CP
1, because g(a, b, c) =

[
a+ib
1+c
, 1

]
is the stereographic projection, so g|S2 is not

null-homotopic. Moreover, we assert that g cannot be approximated on S2 by ra-

tional mappings ρ1(P). That is, there exists a fixed constant βg > 0, such that
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for every rational mapping ρ1(P) holomorphic on S2 there is a point w̆ ∈ S2 with

Dist
[
ρ1(P(w̆)), g(w̆)

]
greater than βg .

Let P : C
3 → C

2 be any polynomial mapping whose fibre P−1(0) does not meet

S2. We can deduce that the restriction P|S2 defined from S2 into C
2 \ {0} is null-

homotopic, because C
2 \ {0} has the homotopy type of the three-sphere S3 and the

second homotopy group π2(S3) vanishes. Therefore, we also have that the restric-

tion ρ1(P)|S2 is null-homotopic for every rational mapping ρ1(P) defined on C
3, and

whose critical set P−1(0) does not meet S2. Finally, since g|S2 is not null-homotopic,

we can conclude that there exists a fixed constant βg > 0, such that for every rational

mapping ρ1(P) holomorphic on S2 there is a point w̆ ∈ S2 with Dist
[
ρ1(P(w̆)), g(w̆)

]

greater than βg . We only need to recall that CP
1 is an absolute neighbourhood retract

[13, pp. 332, 339], and to apply the following lemma, which was originally presented

in [8].

Lemma 4 Let X and (Y, d) be two metric spaces, such that X is compact and Y is an

absolute neighbourhood retract. Then, given a fixed continuous mapping g : X → Y ,

there exists a constant βg > 0 such that every continuous mapping f : X → Y is homo-

topic to g, whenever d[g(x), f (x)] is less than βg for every x ∈ X.

Proof Let Y X be the topological space composed of all the continuous mappings

f : X → Y , and endowed with the compact-open topology. Since X is compact and

(Y, d) is metric, the compact-open topology of Y X is induced by the metric

D[ f1, f2] := sup
{

d[ f1(x), f2(x)] : x ∈ X
}
,

for any two mappings f1 and f2 in Y X ; see for example [13, p. 89]. The space Y X

is locally arcwise connected and an absolute neighbourhood retract, because Y is an

absolute neighbourhood retract; see [13, pp. 339–340]. There exists a fixed constant

βg > 0 such that the open ball in Y X with centre in g and radius βg is contained in

an arcwise connected neighbourhood of g. That is, for every continuous mapping

f : X → Y with D[ f , g] < βg , there exists an arc in Y X whose end points are f and

g, and so the mappings g and f are homotopic.

Finally, the ideas introduced in the proof of the main theorem may be used to

show several versions of this theorem. Consider for example the following definition.

Definition 5 Given a closed set E in C
n, we say that the continuous function

f : E → C can be tangentially approximated by meromorphic mappings, if for every

strictly positive continuous function ǫ̂ : E → R, there exists a pair of holomorphic

functions φ and ψ defined from C
n into C, such that E does not meet the zero locus

of ψ and
∣∣ f (z) − φ(z)

ψ(z)

∣∣ is less than ǫ̂(z) for every z ∈ E.

We may now show the following result.

Theorem 6 Let E be a closed set in C
n whose second Čech cohomology group Ȟ2(E,Z)

vanishes, and such that every continuous function f : E → C can be tangentially approx-

imated by meromorphic mappings. Suppose that Dist is a metric on CP
m which induces

https://doi.org/10.4153/CMB-2006-058-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-058-2


Rationally Convex Sets 635

the topology, and that E has a system of open neighbourhoods {Vβ} in C
n, where each

Vβ has the homotopy type of a CW-complex and E =

⋂
β Vβ .

For every pair of continuous mappings ξ : E → CP
m and ǫ̂ : E → R, with ǫ̂(z) > 0,

there exists a holomorphic mapping H defined from C
n into C

m+1, such that E does not

meet the zero locus of H and Dist
[
ρm(H(z)), ξ(z)

]
is less than ǫ̂(z) for every z ∈ E.

Proof We only give a sketch of this proof, for it is essentially the same one presented

in Section 3. First, we have that CP
m is an absolute neighbourhood retract, for it is

homeomorphic to a compact polyhedron; see [13, pp. 332, 339]. Therefore, there

exists a continuous mapping g : U → CP
m defined on an open neighbourhood U

of E and such that g(z) = ξ(z) for every z ∈ E. Besides, following equation (2), we

can extend g to a continuous mapping ğ defined from U into CP
∞.

Considering Lemma 3, there exists an open neighbourhood Vβ such that E ⊂
Vβ ⊂ U and the restriction ğ|Vβ

: Vβ → CP
∞ is null-homotopic. Following the

ideas presented in Section 3 of this paper, we can build a second continuous (not

necessarily holomorphic) mapping h from Vβ into C
m+1 \ {0} such that ρm(h(z)) is

equal to g(z) = ξ(z) for every z ∈ E. Notice that ρm is continuous with respect to

the metric Dist, which induces the topology. Express h = (h0, . . . , hm) as a vector in

C
m+1 \ {0}. There are m + 1 strictly positive continuous functions δk : E → R such

that, given z ∈ E and w ∈ C
m+1,

(4) Dist
[
ρm(h(z)), ρm(w)

]
< ǫ̂(z), if |hk(z) − wk| < δk(z) for 0 ≤ k ≤ m.

Recalling that every continuous function can be tangentially approximated by

meromorphic mappings on E, we may find holomorphic functions φk and ψk de-

fined from C
n into C such that E meets the zero locus of no ψk, for 0 ≤ k ≤ m, and

the absolute value
∣∣hk(z) − φk

ψk
(z)

∣∣ is strictly less than δk(z) for every z ∈ E. More-

over, we can even choose the functions δk in such a way that each δk(z) is strictly less

than max j

{ |h j (z)|
2

}
for all z ∈ E. Hence, we have that neither

(
φ0

ψ0

, . . . , φm

ψm

)
nor the

product
∏m

k=0 ψk can vanish on E, and so the set E does not meet the zero locus of

the holomorphic mapping H : C
n → C

m+1 defined by

H :=
( φ0

ψ0

m∏

k=0

ψk, . . . ,
φm

ψm

m∏

k=0

ψk

)
.

It is easy to deduce that ρm(H) is equal to ρm

(
φ0

ψ0

, . . . , φm

ψm

)
on E. Whence, recalling

equation (4), and that ρm(h(z)) is equal to g(z) = ξ(z) for every z ∈ E, we get the

result that we look for: Dist[ξ(z), ρm(H(z))] is strictly less than ǫ̂(z) on E.

We have already proved a weaker version of this theorem in [8]. We used there the

stronger hypotheses that E is compact and ξ : E → CP
m is null-homotopic, instead

of requiring Ȟ2(E,Z) = 0.
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