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M. Suzuki [3] has proved the following theorem. Let G be a finite group
which has an involution t such that C = CG(t) = 51.(2, q) and q odd. Then
G has an abelian odd order normal subgroup A such that G = CA and
C r\A = <1>.

We can prove the following similar result:

THEOREM. Let G be a finite group of even order with the following property:

(a) G has an involution t such that the centralizer C = Cdt) is the central
product of Cj and C2 where Ct s SL(2, qi) and qt odd, i = 1, 2. Then G has an
abelian odd order normal subgroup A such that G = CA and C n A = <1>.

At first we give two definitions.

DEFINITION. A group G is called the central product of two subgroups
Ht andH2iiG = H1H2 and [H^ H2] = 1, (i.e. Hl andH2commute element-
wise).

DEFINITION. Let a be an automorphism of a group G. Then a is called
fixed-point-free if and only if a fixes only the unit element of G.

In the proof of the theorem we shall use the following result.

FRATTINI LEMMA [1 ]. Let N be a normal subgroup of a finite group G, and
let K be a Sylow p-subgroup of N for some prime p. Then G = NNG(K).

THEOREM OF GLAUBERMAN [2]. Let t be an involution contained in a
Sylow 2-subgroup S of a finite group G. If t is not conjugate in G to any other
involution t' =£ t of S, then t e Z(G mod O2,(G)), where O2,(G) is the maximal
normal odd order subgroup of G.

THEOREM OF ZASSENHAUS [4]. / / a finite group G has a fixed-point-free
automorphism of order 2, then G is an abelian group of odd order.

We now prove some preliminary results. The first lemma is well known.

LEMMA 1. An S2-subgroup of 51.(2, q), q odd, is a generalized quaternion
group.
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LEMMA 2. Let Qt be an S2-subgroup of Cf, i = 1, 2. Then ftnft= <O
and Q = Q1Q2 is an $2 subgroup of C and hence of G.

PROOF. Q{ = (au b^af*'2 = b2 = t, b^a^i = aj1} is an S2-subgroup of
Citi= 1, 2. Since t e Qt, i = 1, 2, then <2> £ ^ n <?2. On the other hand,
Qt r\ Q2QC1 n C2 = <£>, so (t~) = Qx n @2. By consideration of the orders
of C\, <? = Q1Q2 is an S2-subgroup of C. Let T be an S2-subgroup of G
containing Q. Since Q is an S2-subgroup of C then T n C = Q. Now
Z(T) QC = CG(̂ ) and so Z(T) C Z((?) = <*>. Thus <<> = Z(7) giving TQC
and hence T = Q.

LEMMA 3. Every involution t ^ t of C is of the form I = x1x2 where
xt e Ci( i = 1, 2, zs «« element of order 4.

PROOF. Since C = QCg, every non-central involution J can be written
as t = x1x2 where xt e C, i = 1, 2. Because ?2 = 1, t2 = a;Ja;| = 1 and so
x\ = (xf)'1 e Ct n C2 = t. Thus either x\ = 1 or x\ = 2. But x2 ^ 1 since i
is the only involution of Ct. Hence xt is of order 4.

LEMMA 4. C has two conjugate classes of involutions with representa-
tives t and

PROOF. From the assumptions of our theorem <(t} = Z(C) and so t forms
a conjugate class of involutions of C. By Lemma 3, every non-central in-
volution of C has the forma;!x2 wherexi is an element of order 4 in Cit i= 1, 2.
However, all elements of order 4 in Ct- (fixed i) are conjugate in Ct since
CJ(ty ~ PSL(2,qi) which has only one class of involutions. Hence any
non-central involution in C is conjugate to

h — ai a2

LEMMA 5. The whole group G has at most two conjugate classes of involu-
tions.

PROOF. This follows from Lemma 2, Lemma 4 and the theorems of
Sylow.

LEMMA 6. We have Q = CG(^) = <a1( a2, t2) and (Q)' = (a\, «|> where
t2 = bxb2. Also Q is an S2-subgroup of Cc(^).

PROOF. By a straight forward computation Ce(^) = <a1( a2, t2} = Q,
which is a non-abelian group of order

We may write Q = <£2X
ai> a2> where <a1( a2> = H is abelian. Since

[<*!, 2̂] = af2 and [a2, t2] = a2
2, we get K = af, a2C (Q)'. Now <.i?, since
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H is abelian, and K remains invariant under the action of the involution t2.
Thus K <L Q. Consider QfK. Since t2, ax, a2 all commute modulo K, then
K2 (QY- Hence <«*, a2.) = K = (Q)'. Let T be an 52-subgroup of Cc{tx).
Suppose f D Q. Then T is conjugate to Q and so Z(T) is conjugate to Z(Q),
that is, tx is conjugate to £, a contradiction. Hence T = Q.

LEMMA 7. 7"Ae subgroup (t} is characteristic in (Q)' and hence (t~y is
characteristic in Cg(^).

PROOF. We note that K is abelian and consider the series

where Qf(K) is the subgroup of K = (Q)' generated by all the elements
xeK such that x = y2' for some yeK. Clearly, Ql{K) D Qi+1{K), i ^ 1.
Let a be an automorphism of K and x e Ql(K). Then

for some y e K and so Q{(K) is characteristic in If, i 2: 1.
Suppose % = n2 = n, then {a^ = \a2\ = 2n~1. We have K = <a^, a\),

&(K) = <af, af}, . . ., Q"-*(K) = « " 2 , oj""1) = </>.

So <7) is characteristic in (Q)' in this case.
Suppose «j =/: w2. Without loss of generality we may take nx > n2.

Again

= (of, «*'>, f f

Thus i3"2^2(if) is cyclic, so <t~) is characteristic in Qni~2(K) and hence <7> is
characteristic in K.

LEMMA 8. The group G has precisely two conjugate classes of involutions
with the representations t and tx.

PROOF. Suppose t is conjugate in G to tv Then in particular,

Ca{t) = C s CG(h).

We know that CQ(t1) = (a1} a2, t2} is an S2-subgroup of Cc(^), and that <7>
is characteristic in CG(^). Let T be an S2-subgroup of CG(<I) which contains
CQ{tx) = Q. Then | r : C Q ( ^ ) | = 2 and so C^) <T. Thus <0 ^ T, so
^ C CG(<) = C, a contradiction. Thus £ is not conjugate in G to any involu-
tion t-i^t oi Q.

PROOF OF THE THEOREM. We proceed by induction on the order of the
group G. Denote by 02,{G) the maximal normal odd order subgroup of G.
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Suppose O2,(G) T£ l. Put 0 = G[O2,(G). Denote by 8 the image in Q of any
subset S of G, i.e.

8 = S02,(G)/02,(G).

Let M = 02,(G). Clearly, Cs{t) = C*fM, for some subgroup C* of G con-
taining M and t. Write <7>M = N Q C*. Then N < C* since

= C*/M.

Clearly, <;> is an S2-subgroup of N. By the Frattini argument,
C* = Nc.((t))N. Since <7> is a group of order 2, Nc,«l}) = Cc,(t). Thus

C* = Cc.(*)iV = Cc.(t)(t}M = Cc{t)M.

Since C = CG(<) C C*, we get C* = CM. From the structure of C we know
that 0r{C) = < l > s o C n M = <1>. We conclude that

CG{1) = C*/M = CMjM ~ C.

Thus the group G satisfies the condition (a) of our Theorem, and \Q\ < \G\,
so by induction the theorem is true for G. But 02,(G) = <1> since
G = GIO2,[G), hence Q = CG{1) and so G = COr(G) and C n 02,(G) = <1>.
Now the involution t acts fixed-point-free on 0r(G), so by the result of
Zassenhaus [4], 0r(G) is abelian. Hence our theorem is true if 02,(G) ^ <1>.

We may assume now that 0r(G) = <1>. But then by the theorem of
Glauberman [2], t e Z(G) and so G = CG(<) = C. The theorem is proved.

REMARK. It was kindly pointed out by the referee that this paper in
fact proves the following slightly stronger result:

If CjOr(C) is isomorphic to the central product of Cx and C2, then
G = CO2,(G) and C n 0v{G) = 0r{C).
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