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M. Suzuki [3] has proved the following theorem. Let G be a finite group
which has an involution ¢ such that C = C¢(t) > SL(2, ¢} and ¢ odd. Then
G has an abelian odd order normal subgroup A such that G = CA4 and
CnAd= <.

We can prove the following similar result:

THEOREM. Let G be a finite group of even order with the following property:

(@) G has an involution t such that the centralizer C = C¢(t) is the central
product of C; and C, where C, =~ SL(2, q,) and q,0dd, 1 = 1, 2. Then G has an
abelian odd order normal subgroup A such that G = CA and C n 4 = (1.

At first we give two definitions.
DEFINITION. A group G is called the central product of two subgroups

H,and H,ifG = H,H,and [H, H,] = 1, (i.e. H, and H, commute element-
wise).

DEFINITION. Let « be an automorphism of a group G. Then « is called
fixed-point-free if and only if o fixes only the unit element of G.
In the proof of the theorem we shall use the following result.

FRATTINI LEMMA [1]. Let N be a normal subgroup of a finite group G, and
let K be a Sylow p-subgroup of N for some prime p. Then G = NN¢(K).

THEOREM OF GLAUBERMAN [2]. Let ¢ be an involution contained in a
Sylow 2-subgroup S of a finite group G. If t is not conjugate in G to any other
involution t' #~ t of S, thent € Z(G mod 04(G)), where 0,.(G) is the maximal
normal odd order subgroup of G.

THEOREM OF ZASSENHAUS [4]. If a finite group G has a fixed-point-free
automorphism of order 2, then G is an abelian group of odd order.

We now prove some preliminary results. The first lemma is well known.

LEMMA 1. An S,-subgroup of SL(2, q), q odd, is a generalized quaternion
group.
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L1EMMA 2. Let Q; be an S,-subgroup of C,, 1 =1,2. Then Q; n Qy = {t>
and Q = Q10,15 an S, subgroup of C and hence of G.

Proor. Q, = {a,, b;|a?"" = b2 =¢, b7'a;b, = a;') is an S,-subgroup of
C,,2=1,2 Since teQ,, i =1, 2, then &> C Q; n Q,. On the other hand,
0:n 0, CCynCy= (t>, 50 &> = Q; n Q,. By consideration of the orders
of C,, Q =0,0, is an S,-subgroup of C. Let T be an S,-subgroup of G
containing Q. Since  is an S,-subgroup of C then T'n C = Q. Now
Z(T)CC=Cg(t)andso Z(T)C Z(Q) = {t>. Thus {¢> = Z(T) giving T C C
and hence T = Q.

LEMMA 3. Every imvolution § +t of C is of the form I = z,x, where
z;€C,, 1= 1,2, is an element of order 4.

Proor. Since C = C,C,, every non-central involution  can be written
as t = x,z, where z,€C, 7 =1, 2. Because 12 =1, 2 = 282} = 1 and so
3 = (#3)™ € C; n Cy = t. Thus either 27 = 1 or 2} = . But «? # 1 since ¢
is the only involution of C,. Hence ; is of order 4.

LeMMA 4. C has two conjugate classes of involutions with representa-
tives ¢ and
t, = a2 ad
Proor. From the assumptions of our theorem {¢) = Z(C) and so ¢ forms
a conjugate class of involutions of C. By Lemma 3, every non-central in-
volution of C has the form z,z, where z, is an element of order 4in C;, 7 =1, 2.
However, all elements of order 4 in C; (fixed ¢) are conjugate in C, since
C,/{t> = PSL(2, q;) which has only one class of involutions. Hence any
non-central involution in C is conjugate to
tl . a2n1—3 agna—:}
= a? )
LEMMA 5. The whole group G has at most two conjugate classes of tnvolu-
tions.

Proor. This follows from Lemma 2, Lemma 4 and the theorems of
Sylow.

LEMMA 6. We have Q = Cy(t;) = <ay, a5, t5> and (@)’ = (a3, al)y where
ty = byby. Also @ is an Sy-subgroup of Ce(ty).

Proor. By a straight forward computation Cy(t,) = <ay, 4y, t,> = @,
which is a non-abelian group of order

2n1+n2—2

We may write @ = {¢,>{a,, a,> where <{a;, a,> = H is abelian. Since
[y, t,] = a7? and [a,, ¢,] = a3, we get K = a?, a2C (¢)’. Now < H, since
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H is abelian, and K remains invariant under the action of the involution #,.
Thus K < Q. Consider Q/K Since f,, a,, a, all commute modulo K, then
K 2 (@)'. Hence {(a?, ay =K = (@)’. Let T be an S,-subgroup of Cq(t,).
Suppose T' D @. Then 7' is conj ugate to Q and so Z(T') is conjugate to Z(Q),
that is, ¢, is conjugate to ¢, a contradiction. Hence T =

Lemma 7. The subgroup {t> is characteristic in (Q)’ and hence {t> is
characteristic in Cy(t;).

Proor. We note that K is abelian and consider the series

QYK) 2 2(K) 2

where Q¢(K) is the subgroup of K = ({)’ generated by all the elements
@ € K such that x = ' for some y e K. Clearly, Q/(K) 2 Q+(K), ¢ = 1.
Let « be an automorphism of K and = € Q/(K). Then
2* = (y¥)* = (y*)* e Q(K)

for some y € K and so £(K) is characteristic in K, 7 = 1.

Suppose 7, = %, = n, then |a,| = |a,] = 2"~1. We have K = {a}, a2),

QUR) = <&y, a7, . 2 K) = i e = <.

So (t) is characteristic in (@)’ in this case.

Suppose 7, % n,. Without loss of generality we may take #n; > n,.
Again

OUK) = a4}, 4}y, K ) =<4l a5, ..
_an—z( ) = <a2"2—1’ g"a S =<a 2"2—1>,

Thus 2"~2(K) is cyclic, so {¢) is characteristic in 27~2(K) and hence (¢} is
characteristic in K.

LEMMA 8. The group G has precisely two conjugate classes of tnvolutions
with the vepresentations ¢ and ¢,.

ProoF. Suppose £ is conjugate in G to ¢;. Then in particular,
Cg(t) =C~ Cg(fl).

We know that Cy(r;) = {a,, a,, t,) is an S,-subgroup of C¢(t,), and that {¢)
is characteristic in Cy(t,). Let 7' be an S,-subgroup of Cg(t,) which contains
Co(ty) = @. Then |T: Cy(t;)| = 2 and so Cy(t,) < 7. Thus <¢) 2T, so
T C Ce(t) = C, a contradiction. Thus ¢ is not conjugate in G to any involu-
tion ¢, £ ¢ of Q.

Proor oF THE THEOREM. We proceed by induction on the order of the
group G. Denote by 0,.(G) the maximal normal odd order subgroup of G.

https://doi.org/10.1017/51446788700007606 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700007606

362 Nita Bryce [4]

Suppose 0,.(G) # 1. Put G = G/0,,(G). Denote by S the image in G of any
subset S of G, i.e.
8 = 50,(G)/05(G).

Let M = 0,.(G). Clearly, Cg(¢) = C*/M, for some subgroup C* of G con-
taining M and ¢ Write (¢>M = N C C*. Then N < C* since

NIM = &5 < Ce(f) = C*/M.

Clearly, (#) is an S,-subgroup of N. By the Frattini argument,
C* = N¢. (<t>)N. Since {¢) is a group of order 2, N, (<¢>) = Cc.(?). Thus

C* = Cou(t)N = Cou(t)tSM = Ceu(t) M.

Since C = Cg(t) C C*, we get C* = CM. From the structure of C we know
that 0,.(C) = (1> so C n M = {(1)>. We conclude that

Ce(f) = C*|M = CM|M =~ C.

Thus the group G satisfies the condition (a) of our Theorem, and |G| < |G,
so by induction the theorem is true for G. But 0,(@) = (1) since
G = G|0,(G), hence @ = C¢(f) and so G = CO4(G) and C N 0, (G) = (1.
Now the involution ¢ acts fixed-point-free on 0,.(G), so by the result of
Zassenhaus {4], 0,.(G) is abelian. Hence our theorem is true if 0,.(G) 7 (1.

We may assume now that 0,.(G) = {1>. But then by the theorem of
Glauberman [2], t € Z(G) and so G = Ce¢(t) = C. The theorem is proved.

REMARK. It was kindly pointed out by the referee that this paper in
fact proves the following slightly stronger result:

If C/0,.(C) is isomorphic to the central product of C; and C,, then
G = C0,(G) and C n 0,(G) = 0,(C).
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