SYMMETRIC FORMS

BY K. V. MENON

1. Let R_m denote a m dimensional Euclidean space. When $\mathbf{x} \in R_m$ we will write $\mathbf{x} = (x_1, x_2, \ldots, x_m)$. Let $R_m^+ = \{\mathbf{x} : \mathbf{x} \in R_m, x_i > 0 \text{ for all } i\}$ and $R_m^- = \{\mathbf{x} : \mathbf{x} \in R_m, x_i < 0 \text{ for all } i\}$. In this paper we consider a class of functions which consists of mappings, $E_r(\mathbf{K})$ and $H_r(\mathbf{K})$ of R_m into R which are indexed by $\mathbf{K} \in R_m^+$ and $\mathbf{K} \in R_m^-$ respectively, and defined at any point $\alpha \in R_m$ by

(1.1)
$$E_r(\mathbf{K}) = \sum_{\substack{i_1 + i_2 + \ldots + i_m = r}} \lambda_{i_1} \lambda_{i_2} \ldots \lambda_{i_m} \alpha_1^{i_1} \alpha_2^{i_2} \ldots \alpha_m^{i_m}$$

where $\lambda_{i_t} = \begin{pmatrix} K_t \\ i_t \end{pmatrix} (\mathbf{K} \in R_m^+)$ and

(1.2)
$$H_{\mathbf{r}}(\mathbf{K}) = \sum_{i_1+i_2+\ldots+i_m=\mathbf{r}} \delta_{i_1} \delta_{i_2} \ldots \delta_{i_m} \alpha_{1}^{i_1} \alpha_{2}^{i_2} \ldots \alpha_{m}^{i_m}$$

where
$$\delta_{i_t} = (-1)^{i_t} {K_t \choose i_t} (\mathbf{K} \in R_m^-).$$

Let $\mathbf{1} \in R_m$ denote the vector each of whose coordinates is 1. Then $E_r(\mathbf{1})$ and $H_r(-1)$ are, respectively, the elementary and complete symmetric functions of the rth order. On setting $\mathbf{K} = K(\mathbf{1})(K>0)$ in (1.1) and $\mathbf{K} = K\mathbf{1}(K<0)$ in (1.2) we obtain the class of symmetric functions introduced by Whiteley [4]. Clearly $E_r(\mathbf{K})$ and $H_r(\mathbf{K})$ are generalisations of the symmetric functions given by Whiteley [4].

It is shown in [1] that

$$E_{a-\lambda}(1)E_{b+\lambda}(1) \geq E_{a-\lambda-1}(1)E_{b+\lambda+1}(1),$$

provided $0 \le \lambda < a$, and $b \ge A$. In [2] the same inequality with E replaced by H was obtained for the same range of a, b, λ . In this paper we prove that this inequality continues to hold for E(H) on its domain of definition and for the same range of a, b, and λ when 1 (-1) is replaced by K. The proofs of these results rely on the classical method of maxima and minima as in [3] and [4] and use the generating series for E and H which are, respectively

(1.3)
$$1 + \sum_{i=1}^{\infty} E_{r}(\mathbf{K}) x^{r} = \prod_{i=1}^{m} (1 + \alpha_{i} x)^{K_{i}}.$$

and

(1.4)
$$1 + \sum H_{r}(\mathbf{K})x^{r} = \prod_{i=1}^{m} (1 - \alpha_{i}x)^{K_{i}}.$$

2. Lemma 1. If r=1, then for all m,

Received by the editors December 12, 1968.

$$(2.1) [H_r(\mathbf{K})]^2 \ge H_{r-1}(\mathbf{K})H_{r+1}(\mathbf{K}) (K_i \le -1, \text{ for all } i)$$

and

$$[E_r(\mathbf{K})]^2 \ge E_{r-1}(\mathbf{K})E_{r+1}(\mathbf{K}) \quad (K_i > 0 \text{ for all } i).$$

For (2.2) r < K when $K = \min_i K_i$ is not an integer.

Proof. We prove (2.1) by induction. If m = 1, then $H_1(\mathbf{K}) = {|K_1| \choose 1} \alpha_1$ and $H_2(\mathbf{K}) = {|K_1|+1 \choose 2} \alpha_1^2$. Hence $[H_1(\mathbf{K})]^2 \ge H_2(\mathbf{K}) H_0(\mathbf{K})$ where $H_0(\mathbf{K}) = 1$. Assume the induction hypothesis holds and consider the (m+1)-dimensional case. Observe that

$$1 + \sum H_r(\mathbf{K}) x^r = (1 - \alpha_{m+1} x)^{K_{m+1}} (1 + \sum H_r(\mathbf{K}^*) x^r)$$

where K^* is obtained from K by deleting K_{m+1} . Thus

$$H_r(\mathbf{K}) = \sum_{j=0}^r {|K_{m+1}| + j - 1 \choose j} H_{r-j}(\mathbf{K}^*) \alpha_{m+1}^j$$

and consequently, using the induction hypothesis, we have $[H_1(K)]^2 \ge H_2(K)H_0(K)$. Inequality (2.1) is thereby proved and (2.2) is obtained in a similar fashion.

3. Lemma 2. If m=1, then for all r,

$$[H_r(\mathbf{K})]^2 \ge H_{r-1}(\mathbf{K})H_{r+1}(\mathbf{K}) \quad (K_i \le -1)$$

and

$$[E_r(\mathbf{K})]^2 \ge E_{r-1}(\mathbf{K})E_{r+1}(\mathbf{K}) \quad (K_i > 0).$$

For (3.2) r < K, when $K = \min_i K_i$ is not an integer.

Proof.
$$H_r = {|K_1| + r - 1 \choose r} \alpha_1^r$$
. Hence
$$[H_r(\mathbf{K})]^2 - H_{r-1}(\mathbf{K})H_{r+1}(\mathbf{K}) = \frac{{|K_1| + r - 1 \choose r} \alpha_1^{2r}(|K_1| - 1)}{(r+1)(|K_1| + r - 1)}.$$

Therefor we have (3.1). For the proof of (3.2), observe that the restriction on r makes all the terms positive and hence (3.2) can be proved in a similar fashion.

4. LEMMA 3.

(4.1)
$$\sum_{i=1}^{m} \frac{\partial}{\partial \alpha_i} H_r(\mathbf{K}) = (-\mathbf{K}\mathbf{1}' + r - 1) H_{r-1}(\mathbf{K}) \quad (K_i < 0 \text{ for all } i)$$

and

(4.2)
$$\sum_{i=1}^{m} \frac{\partial}{\partial \alpha_i} E_r(\mathbf{K}) = (\mathbf{K}\mathbf{1}' - r + 1) E_{r-1}(\mathbf{K}) \quad (K_i > 0 \text{ for all } i)$$

where 1' denotes the transpose of 1.

Proof. From (1.4) we have

$$\sum_{i=1}^m \frac{\partial}{\partial \alpha_i} H_r(\mathbf{K}) x^r = \frac{-K_i x}{(1-\alpha_i x)} \sum_{i=1}^m (1-\alpha_i x)^{K_i}.$$

Hence

$$\frac{\partial}{\partial \alpha_i} H_r(\mathbf{K}) - \alpha_i \frac{\partial}{\partial \alpha_i} H_{r-1}(\mathbf{K}) = (-K_i) H_{r-1}(\mathbf{K})$$

or

(4.3)
$$\sum_{i=1}^{m} \frac{\partial}{\partial \alpha_i} H_r(\mathbf{K}) - \sum_{i=1}^{m} \alpha_i \frac{\partial}{\partial \alpha_i} H_{r-1}(\mathbf{K}) = (-\mathbf{K}\mathbf{1}') H_{r-1}(\mathbf{K}).$$

But by Euler's theorem on homogeneous functions

(4.4)
$$\sum_{i=m}^{m} \frac{\partial}{\partial \alpha_{i}} H_{r-1}(\mathbf{K}) = (r-1)H_{r-1}(\mathbf{K}).$$

From (4.4) and (4.3) we get (4.1). Similarly (4.2) can be proved by using (1.3).

5. THEOREM 1. If $\alpha_i \ge 0$ and $K_i \le -1$, for every i, then

$$(5.1) H_{a-\lambda}(\mathbf{K})H_{b+\lambda}(\mathbf{K}) \ge H_{a-\lambda-1}(\mathbf{K})H_{b+\lambda+1}(\mathbf{K}),$$

where $(0 \le \lambda < a)$, $(b \ge a)$. The inequality is strict unless all but one of the variables are zeros and $K_1 = K_2 = \cdots = K_m = -1$. Also strict inequality fails to hold if all the α_i are zero, whatever be K_i , $i = 1, 2, \ldots, m$.

Proof. The proof is by induction on m and r. We shall prove that the theorem is true for all pairs m, r (m > 2, r > 2) provided it is true for all pairs m, r with $m_1 < m$, and all pairs n, r, with $r_1 < r$. Also Lemma 1 shows that the theorem is true for all m, if r = 1, and Lemma 2 shows that the theorem is true for all r if m = 1. Let

(5.2)
$$C = \{ \alpha : \alpha \in R_m, H_{r-1}(\mathbf{K})H_{r+1}(\mathbf{K}) = 1, \alpha_i \ge 0 \text{ for all } i \}.$$

Then clearly C is a compact subset of R_m . Let us denote by M, the minimum value of $[H_r(\mathbf{K})]^2$ subject to the conditions given in (5.2). If we can prove that $M \ge 1$, then we have

$$[H_r(\mathbf{K})]^2 \ge H_{r-1}(\mathbf{K})H_{r+1}(\mathbf{K}).$$

From (5.3) we have

$$\frac{H_r(\mathbf{K})}{H_{r+1}(\mathbf{K})} \geq \frac{H_{r-1}(\mathbf{K})}{H_r(\mathbf{K})} \geq \cdots \geq \frac{H_0(\mathbf{K})}{H_1(\mathbf{K})}.$$

Hence our theorem is proved if we can prove (5.3).

Suppose that the minimum value M is attained at a point $\alpha \in R_m$ such that

 $\alpha_i > 0$ (for all i). This point cannot be a singular point since by Euler's theorem on homogeneous functions

$$\sum_{i=1}^{m} \alpha_i \frac{\partial}{\partial \alpha_i} H_{r-1}(\mathbf{K}) H_{r+1}(\mathbf{K}) = 2r H_{r-1}(\mathbf{K}) H_{r+1}(\mathbf{K}) = 2r.$$

Hence the first partial derivatives cannot vanish simultaneously. Applying Lagrange's conditions we have

(5.4)
$$\frac{\partial}{\partial \alpha_i} [H_r(\mathbf{K})]^2 - \lambda^* \frac{\partial}{\partial \alpha_i} H_{r-1}(\mathbf{K}) H_{r+1}(\mathbf{K}) = 0 \quad \text{for all } i$$

or

(5.5)
$$2H_{r}(\mathbf{K})\frac{\partial}{\partial \alpha_{i}}H_{r}(\mathbf{K}) - \lambda^{*}\{H_{r+1}(\mathbf{K})\frac{\partial}{\partial \alpha_{i}}H_{r-1}(\mathbf{K}) + H_{r-1}(\mathbf{K})\frac{\partial}{\partial \alpha_{i}}H_{r+1}(\mathbf{K})\} = 0.$$

Multiplying (5.5) successively by $\alpha_1, \alpha_2, \ldots, \alpha_m$ and adding the results we have

$$(5.6) 2 \sum_{i=m}^{m} \alpha_{i} H_{r}(\mathbf{K}) \frac{\partial}{\partial \alpha_{i}} H_{r}(\mathbf{K}) - \lambda^{*} \left\{ \sum_{i=1}^{m} \alpha_{i} H_{r+1}(\mathbf{K}) \frac{\partial}{\partial \alpha_{i}} H_{r-1}(\mathbf{K}) + \sum_{i=1}^{m} \alpha_{i} H_{r-1}(\mathbf{K}) \frac{\partial}{\partial \alpha_{i}} H_{r+1}(\mathbf{K}) \right\} = 0.$$

Using Euler's theorem on homogeneous functions we have from (5.4)

(5.7)
$$2r[H_r(\mathbf{K})]^2 = \lambda^* 2r H_{r-1}(\mathbf{K}) H_{r+1}(\mathbf{K}).$$

From (5.7) and (5.2) we have $\lambda^* = M$. Hence our theorem is proved if we can show that $\lambda^* \ge 1$. From (5.6) and (4.1) we have

$$2(-\mathbf{K}\mathbf{1}'+r-1)H_r(\mathbf{K})H_{r-1}(\mathbf{K})$$

$$= \lambda^*\{(-\mathbf{K}\mathbf{1}'+r-2)H_{r+1}(\mathbf{K})H_{r-2}(\mathbf{K})+(-\mathbf{K}\mathbf{1}'+r)H_{r-1}(\mathbf{K})H_r(\mathbf{K})\}$$

or

(5.8)
$$2(-\mathbf{K}\mathbf{1}'+r-1)-\lambda^*(-\mathbf{K}\mathbf{1}'+r)=\frac{\lambda^*(-\mathbf{K}\mathbf{1}'+r-2)H_{r+1}(\mathbf{K})H_{r-2}(\mathbf{K})}{H_r(\mathbf{K})H_{r-1}(\mathbf{K})}.$$

Now from (5.7) and (5.8) we get

(5.9)
$$2(-\mathbf{K}\mathbf{1}'+r-1)-\lambda^*(-\mathbf{K}\mathbf{1}'+r)=\frac{(-\mathbf{K}\mathbf{1}'+r-2)H_{r-2}(\mathbf{K})H_r(\mathbf{K})}{[H_{r-1}(\mathbf{K})]^2}.$$

But by induction hypothesis

$$[H_{r-1}(\mathbf{K})]^2 \ge H_r(\mathbf{K})H_{r-2}(\mathbf{K}).$$

Hence from (5.9) and (5.10)

(5.11)
$$2(-K1'+r-1)-\lambda^*(-K1'+r) \le (-K1'+r-2).$$

Hence $\lambda^* \ge 1$.

In the next place we suppose that the minimum is attained at a point at which one or more of $\alpha_1, \alpha_2, \ldots, \alpha_m$ are zeros. Suppose that $\alpha_1 \neq 0, \alpha_2 \neq 0, \ldots, \alpha_s \neq 0$ (S < m), and from induction on m we have from (5.7)

$$\lambda^* = \frac{[H_r(\mathbf{K})]^2}{H_{r-1}(\mathbf{K})H_{r+1}(\mathbf{K})}$$

and $\lambda^* \ge 1$. Hence the theorem follows from (5.11).

6. THEOREM 2. If $\alpha_i \ge 0$ and $K_i > 0$ for all i, then

$$E_{a-\lambda}(\mathbf{K})E_{b+\lambda}(\mathbf{K}) \geq E_{a-\lambda-1}(\mathbf{K})E_{b+\lambda+1}(\mathbf{K})$$

provided $(0 \le \lambda < a)$, $(b \ge a)$ and $b + \lambda < K$ when $K = \min_i K_i$ is not an integer.

The inequality is strict unless all but one of the variables are zeros and $K_1 = K_2 = \cdots$ = $K_m = 1$. Also the strict inequality fails to hold if all the α_i are zero whatever be K_i , i = 1, 2, ..., m.

Proof. The restriction on $b + \lambda$ makes all the terms positive in our considerations. Hence we can apply the method of Theorem 1.

7. Theorem 3.

$$(7.1) [H_r(\mathbf{K})]^{1/r} \ge [H_{r+1}(\mathbf{K})]^{1/(r+1)}$$

(7.2)
$$[E_r(\mathbf{K})]^{1/r} \ge [E_{r+1}(\mathbf{K})]^{1/(r+1)}$$

The inequality is strict unless all but one of the variables are zeros and

and

$$K_1 = K_2 = \cdots = K_m = -1$$
 for (7.1)
 $K_1 = K_2 = \cdots = K_m = 1$ for (7.2)

Also the strict inequality fails to hold if all the α_i are zero whatever be K_i , $i=1, 2, \ldots, m$. For (7.2), r < K when $K = \min_i K_i$ is not an integer.

Proof. Same as in [1].

ACKNOWLEDGEMENT. I wish to record my sincere thanks to the referee for suggestions which led to a better presentation.

REFERENCES

- 1. G. H. Hardy, J. E. Littlewood, G. Polya, *Inequalities*, Cambridge Univ. Press (1952), p. 52.
 - 2. K. V. Menon, Inequalities for symmetric functions, Duke Math. J. 35 (1968), 37-46.
- 3. J. N. Whiteley, A generalisation of a theorem of Newton, Proc. Amer. Math. Soc. 13 (1962), 144-151.
- 4. J. N. Whiteley, Some inequalities concerning symmetric forms, Mathematica 5 (1958), 49-56.

DALHOUSIE UNIVERSITY,

HALIFAX, NOVA SCOTIA