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Flow of dense avalanches past obstructions
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ABSTRACT. One means of preventing areas from being hit by avalanches is to divert
the flow by straight or curved walls or tetrahedral or cylindrical-type structures. Thus,
there arises the question how a given avalanche flow is changed regarding the diverted-
flow depth and flow direction. In this paper a report is given on laboratory experiments
performed for gravity-driven dense granular flows down an inclined plane obstructed by
plane wall and tetrahedral wedge. It was observed that these flows are accompanied by
shocks induced by the presence of the obstacles. These give rise to a transition from super-
to subcritical flow of the granular avalanche, associated with depth and velocity changes.
It is demonstrated that with an appropriate shock-capturing integration technique for the
Savage—Hutter theory, the shock formation for a finite-mass granular flow sliding from an
inclined plane into a horizontal run-out zone is well described, as is the shock formation of
the granular flow on either side of a tetrahedral protection structure.

INTRODUCTION angle of friction ¢. Scaling analysis isolates the physically
significant terms in the governing equations and identifies

One means of preventing areas from being hit by avalanches those terms that can be neglected. These equations are

is to divert the flow by straight or curved walls or tetrahedral further simplified by integrating them over the avalanche

or cylindrical-type structures. However, shock formations are thickness. What emerges is a free boundary value problem

generated within these flows. They give rise to a transition from for the avalanche depth and the two velocity components

super- to subcritical flows of the granular avalanche, associated parallel to the bed. The leading-order, depth-integrated

with depth and velocity changes. The Savage—Hutter theory, mass balance takes the conservative form

a hyperbolic system of equations, has the potential to capture

the internal shock formation if the equations are integrated oh O P

with appropriate shock-capturing integration techniques. In ot + Oz (hu) + a—y (hv) =0, (1)

this paper the equations are first presented, then experiments
show how shocks are formed which can be simulated by the

shock-capturing technique. Finally, an application of ava- where h is the avalanche thickness and u and v are the

lanche protection in the laboratory as well as its simulation velocity components in the down- and cross-slope directions,

1s demonstrated.

GOVERNING EQUATIONS

!
Xy %y‘ p

In the extended Savage—Hutter theory (Lang, 1991; Wieland ¢

and others, 1999) the flow avalanches are mathematically
described as incompressible fluids which flow over complex
topography. An orthogonal curvilinear coordinate system,
Oxyz, 1s introduced by a reference surface that follows the
mean downslope chute topography (see Fig. 1) (Lang, 1991;
Wieland and others, 1999). The z axis is oriented in the down-
slope direction, the y axis lies in the cross-slope direction to
the reference surface and the z axis is normal to it. The down-

slope inclination angle of the reference surface ¢ changes as a Fig. 1. The curvilinear reference surface (dashed line) which
function of the downslope coordinate x, and there is no defines the curvilinear coordinate system, Oxyz, where the down-
lateral variation in the y direction. The complex shallow slope inclination angle of the reference surface, C, to the horizon-
basal topography is defined by its elevation z = 2*(z,y) tal, changes as a_function of the downslope coordinate x, and
above the reference surface, as illustrated in Figure L. there is no lateral variation in the y direction. T he complex shal-

During flow the rheological behaviour obeys a Mohr— low basal topography is defined by its elevation z = 2(x,y)
Coulomb-type plastic flow law with a constant internal above the reference surface, as illustrated in Figure 1.
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respectively. The leading-order, depth-integrated momentum-
balance components are

0 0 9 0
0 (K, h? (2)
:hsm—gcoscax< 5 ),

0 0 9,
5 (hv) + E (huv) + a_y (hv?)

9 (K,h? ®)
= hs, — gcos(a—y 5

in conservative form, where g is the gravitational accelera-
tion, {(x) is the local slope inclination angle, and K, and K,
are the down- and cross-slope earth pressure coefficients
defined by the Mohr—Coulomb criterion. The terms s, and
s, represent the net driving accelerations in the down- and
cross-slope directions, respectively:

(s; =gsin¢ — Y tan 6(gcos ¢ + ku?) — gcos Ca—Zb (4)
v 02

Sy = — ——tané(gcos¢ + ku?) — gcos(— , (5

Y ‘ v | (g C ) g Cay ( )

which are combinations of the gravity acceleration, basal
drag and basal topography gradients terms. |V |=
(u? + 1)2)1/2 is the modulus of the velocity components, § is
the basal Coulomb dry-friction angle and kK = —9(/dx is
the local curvature of the reference surface. Earlier versions
of these equations were also derived by Lang (1991). How-
ever, the equations by Lang (1991) are not equivalent to the
upper equations in conservative form, and these equations
in conservative form are applied for numerical simulation
here to describe the shock formation.

The earth pressure coefficients K, and K, link the
normal pressures in the down- and cross-slope directions with
the overburden pressure, K, = p,./p.. and K, = pyy/pzz.
For avalanches whose motion is predominantly in the down-
slope direction Hutter and others (1993) showed that

Kwncf/pass = 2(1 + \/1 - C082 d)/ COS? 5) 8602 ¢ - 17 (6)

1
Ky = 3 (Ka; +1+£ \/(K,, — 1) + 4 tan? 6). (7)

The subscripts “act” and “pass”, respectively, denote active
and passive stress states, which become effective when the
avalanche extends or contracts in either the down- or cross-
slope direction (Greve and others, 1994):

K, 0u/dx >0,
=1 k. (5)
K, Ou/dx <0,
Ky du/dx >0, dv/dy >0,
Lact >
K, — Ky Ou/dx >0, 0dv/dy <0, ©)
T K 0u/0w <0, dv/dy >0,
K Qu/ox <0, dv/dy < 0.

Active stress states are associated with a dilation of the
material, whilst passive stress states are associated with a
compression.

Since this Savage—Hutter theory is a hyperbolic system of
equations, it possesses potential to describe the shock waves,
which are observed in experiments. With appropriate shock-
capturing integration technique for the Savage—Hutter
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Fig. 2. Velocities inside the avalanche body, where the arrows
denote the direction of the velocity and their lengths indicate
the speed. Motion s from left to right. After opening the cap
the front part of the avalanche body accelerates downslope due
to gravity, whilst the rear part remains at rest because of the
back pressure from the depth gradient, Oh/0x (t = 5, 10).
The front part comes to rest in the run-out zone, but the tail
part accelerates further (t = 10). At t = 15 ajump of velocity
takes place at the transition zone, approximately at x = 21.5,
which is coupled with a jump in thickness. With the material
approaching from the tail part this velocity jump propagates
backwards (t =20, 25).

equations, such shock formations can therefore be described
well.

FORMATION OF SHOCKS

Shock waves are generated when there is a change in the
inclination angle during supercritical flow or when an
obstacle is placed in the flow. For example, for a granular
avalanche flow of a finite mass from an inclined plane to a
horizontal run-out zone, shocks are formed in the transition
region, where the velocity transfers from supercritical to
subcritical flow states immediately before and at settlement.
Such shocks have caused numerical instability in the
Lagrangian numerical technique (Hutter and Koch, 1991;
Greve and Hutter, 1993; Gray and others, 1999; Wieland
and others, 1999). Figure 2 shows this situation for the
velocities simulated by the two-dimensional non-oscillatory
central (NOC) scheme (Jiang and Tadmor, 1997) inside the
avalanche at dimensionless time ¢ = 5,10, 15, 20, 25. Here the
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Fig. 3. A uniform layer of rapidly flowing granular material
moving down an inclined plane with supercritical downstream
velocity is encountering a straight wall and inclined at angle c.
(a) Theinduced cross-flow generates a shock inclined at angle
B with layer thickness and subceritical velocity. (b) The photo
shows this sttuation in the laboratory experiment.

material is suddenly released from a hemispherical cap with
radius 79 = 1.85 dimensional length to slide on an inclined
flat plane at 45° into a horizontal run-out plane connected
by a smooth transition, 17.5 < = < 2L.5. The arrows denote
the direction of the velocity, and their lengths indicate the
speed. Since this shock-capturing scheme is implemented
on a fixed stationary mesh, one cannot exactly point out
the margin location. The region with depth h < 0.01 is
regarded as material-free and the velocities are not shown
here. The material is selected to possess the same internal
angle of friction and basal friction angle, ¢ = 6 =35°. After
opening the cap the front part of the avalanche body accel-
erates downslope due to gravity, whilst the rear part
remains at rest because of the back pressure from the depth
gradient, Oh/0x (t = 5, 10). The avalanche body extends in
the cross-slope direction, but the velocity in the downslope
direction is obviously dominant. The front part comes to rest
in the run-out zone, but the part of the tail accelerates
further (¢ = 10). At t =15 there is obviously a jump of
velocity taking place at the transition zone, approximately
at z = 21.5. This velocity jump corresponds to a thickness
jump, and with the material approaching from the tail this
jump propagates backwards (¢ =20, 25).

Shock formations also occur when a rapidly flowing gran-
ular mass is diverted and redistributed by structural devices
(fences or walls). For example, if a uniform layer of rapidly
flowing granular material down an inclined plane is encoun-
tering a vertical wall forming an angle o with the direction of
steepest descent (Fig. 3), then a straight shock will form at an

Fig. 4. Overview (left) of the sketch of the flow and the inclined
Slat plane with the protection structure (tetrahedral wedge ).
Side view (right) of the inclined flat plane and the wedge.
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Fig. 5. Photograph (left) of the steady flow past an avalanche
defence structure. The defence structure ( tetrahedral wedge, in
grey) protects the building (in black) where a material-free
region (in white) is formed. The computed flow thickness
(right) us tllustrated at the dimensionless time t = 10 with
contours of equal thickness, when the flow is nearly stationary.
All lengths are in dimensionless units.

angle 3 > a. Above the shock the undisturbed flow is super-
critical with a thinner height and faster velocity; behind the
shock it 1s subcritical with larger thickness and slower velocity.
The situation is analogous to the sub- and supercritical flows
in hydraulics of free-surface-channel flows. What is different is
that behind the obstruction (wall) there is a region without
material (granular vacuum). This could be applied for the
design of an obstruction to prevent a structure from being hit
by the avalanche.

AVALANCHE PROTECTION

The Savage and Hutter theory is applied in the design of
avalanche-protection constructions. Using the two-dimen-
sional NOG scheme (Jiang and Tadmor, 1997) for the
Savage—Hutter equations, the determination of endangered
zones of inhabited regions with a potential to be subjected to
avalanches becomes possible. A proposal of protection against
the avalanche for “Schneefernerhaus at Zugspitze” is the
construction of a tetrahedral wedge (pyramid), which diverts
the flow and guides the snow to pass the building on either
side of it. The building is an old hotel renovated to a research
laboratory for environmental and climatological research and
situated at 2700 ma.s.l on a rather flat (i.e. non-curved)
mountain slope inclined by approximately 45°.

In the laboratory the experiments were performed with
models of scale 1:100, where a metallic plane, I m wide and
1.2 m long, with inclination angle 45° to the horizontal is
used as slope. A tetrahedral wedge (pyramid) composed of
Styropor is set on this plane. If the z axis is aligned with the
direction of steepest descent of the plane and the y axis points
in the cross-slope direction, the upper peak of the base of the
pyramid then lies at the point (4.0, 0.0), and the rear edge of
its base lies along the line x =7.2 dm, (see Fig. 4). As “snow”
plastic beads of 2.5 mm are used, which are characterized by
an internal angle of friction ¢ = 37° 4 2° (Hutter and Koch,
1991), and a basal angle of friction 6, = 25° £ 3° for the
metal plane and 05 = 37° &£ 3° for the Styropor wedge.

Figure 5 (left) displays the photograph for a steady flow
passing the tetrahedral defence structure on either side of it.
An oblique shock is formed on either side of the defence
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structure, which can be clearly seen from the streamlines.
Behind the wedge the flow rapidly spreads in the cross-slope
direction and forms two expansion fans, between which a
material-free region is formed which can be seen as the
protected zone. Figure 5 (right) demonstrates a result
simulated by the two-dimensional NOC scheme (Jiang and
Tadmor 1997), in which the boundary condition is selected to
give a constant supercritical inflow, h = 0.3 and v = 0.6
(dimensionless) at the top (z = 0.0) and the outflow
condition is presumed for the other boundaries (at z = 12.0
and y = &£ 5.0). For the numerical instability from the jumps
of the earth pressure coefficients (Equations (8) and (9)), a
regularization is applied here (Tai and Gray, 1998). The
predicted flow thickness is given in contours of dimensionless
length units at the dimensionless time ¢ = 10, in which the
flow 1s nearly stationary and the tetrahedral wedge is symbol-
ically indicated by the dashed lines. The oblique shock on
either side of the defence structure can be observed in the con-
tour plot from the numerical simulation. Similarly, as in the
experiment, behind the pyramid the flow rapidly spreads in
the cross-slope direction, forming two expansion fans which
are well described in the contour plot. Between the expansion
fans the grain-free zone is viewed as the protected region.

CONCLUSIONS

One means of preventing areas from being hit by avalanches
is to divert the flow by straight or tetrahedron-type
structures, which normally cause the shock formations. The
Savage—Hutter theory as a hyperbolic system of equations
has the potential to capture the shocks. Using a shock-capturing
numerical scheme (e.g. the NOC scheme), the shocks can be
well described subject to the shock formations around the
obstacle as observed in the experiment. This technique can
also be applied for the design of protection structures against
avalanches.
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