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THE AVERAGE DISTANCE BETWEEN TWO POINTS
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Abstract

We provide bounds on the average distance between two points uniformly and independently chosen from
a compact convex subset of the s-dimensional Euclidean space.
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Let X be a compact convex subset of the s-dimensional Euclidean space R® and
assume that we choose uniformly and independently two points from X. How large
is the expected Euclidean distance || - || between these two points? In other words, we
require the quantity

1
a(X) :=E[lx - ylll= X2 /X /X X — yll di(x) dA(y),

where A denotes the s-dimensional Lebesgue measure. This problem was stated
in [1, 2, 4, 5]. Note that there is a close connection between this problem and that
of finding the moments of the length of random chords (see [8, Ch. 4, Section 2] or
[9, Ch. 2]).

Trivially a(X) <d(X), where d(X) = max{||x — y|| : x, y € X} is the diameter
of X. The following results are well known from the literature.
EXAMPLE 1.

(1) For all compact convex subsets of R (the intervals) we have a(X) = d(X)/3.
(2) If X C R’ is a ball with diameter d(X), then

N
a(X)=——B;d(X),
( 1 Bs d(
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where
2351 ((s/2)1)2s!
_ for even s,
B, = s+ D@s)\m
s 25+1(S!)3
for odd s.

(s + D(((s = D/2)H2(2s)!

For a proof see [4] or [8]. In particular, if X is a disc in R? with diameter d (X),
then
a(X)=64d(X)/(45m) =0.45271 ... d(X).

3) IfXCR2?isa rectangle of sides a > b, then (see [8])
(X) = 1 a3+b3+d 3 a>  b?
R TS PR 2 a2

5 (b? a+d a? b+d
+ - — log + — log ,
a a

b b

where d = d(X) = +/a? + b2. In particular, if X is a square, then

d(X)
X)=©2 2451 24+1)—==0.36869 ...d(X).
aX)=Q2+V2+ og(«f+))15\/E (X)

(4) If X is a cube in R®, then

(X)—L(l—l—i—l—u-)d(X)
=6\ T 205 86952

and

1 (1+2JT=3/Gs)\"?
a(X)Sﬁ( 3 ) d(X).

For a proof of the asymptotic formula see [5], and for a proof of the upper
bound see [2].
(5) If X CR?isan equilateral triangle of side a, then (see [8])

3a/1 log3
X)=—|[-+—).
a(X) 5<3+ , )

In the following we prove a general bound on a(X) for X € R* with fixed diameter
d(X) = 1. Furthermore, we present two results which may be useful to give upper and
lower bounds on a(X).

Denote by M (X) the space of all regular Borel probability measures on X. It is
well known that M (X) equipped with the w*-topology becomes a compact convex
space. For x € X, let §,, € M(X) be the point measure concentrated on x. It is easy to
show that the set {§, | x € X} is the set of all extreme points of M (X) and hence from
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the Krein—Milman theorem we find that M (X) is the w*-closure of the convex hull of
{8y |x € X}. Let F={(1/n) i, 8 | x1, ..., x4 € X, n € N}. Then one can show
that F is the set of all convex combinations with rational coefficients of extreme points
of M(X). Now, since Q is dense in R, we deduce from the above considerations that F
is dense in M(X).

For any u € M(X), we define

I () :=/ / lx — yll du(x) du(y).
X JX

It is known that the mapping I : M(X) — R is continuous with respect to the
w*-topology on M(X) (see [10, Lemma 1]). Note that a(X) = I (1") where 1’ is the
normalized Lebesgue measure on X.

REMARK 2. Let X be a compact subset of R* and let (x,),>0 be a sequence which is
uniformly distributed in X with respect to the normalized Lebesgue measure A’ on X,
that is, uy := N~ ZN ! 8y, — A’ with respect to w*-topology on M(X). Then by
continuity of I we obtam

N-1

1
sznxl xjl=1I(uy) = I(\)=a(X) asN — oo.
i,j=0

THEOREM 3. Let X be a compact subset of R® with diameter d(X) = 1. Then

25 2572 (s/2)?
e S CES VW

where I denotes the gamma function. For s = 2 this bound can be improved to

229 44 19
X)<— 4+ —=\2—+3+—+5=0.678442 . . ..
aX) = o5+ 75V VS
PROOF. We have
aX)=I1I()< sup I(w).
HEM(X)

Since I : M(X) — R is continuous with respect to the w*-topology on M (X) and F
is dense in M (X) we obtain

sup I(u)=  sup Z llx; — x;.
HEM(X) neN,xq,...x,eX 1 i,j=1
It was shown by Nickolas and Yost [6] that, for all xi,...,x, € X CR*® with
d(X) =
Z 1 — 1] < / 25721 (s/2)?
=R r(s—1/2>f
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For s =2 it was shown by Pillichshammer [7] that, for all xq, ..., x,; € R? with
lxi —x;ll <1,

& 229 44 19
x4+ 2=V —/5=0.678442 . ...
n? I.ijl i =i = 500 + 75 T 180

The result follows from these bounds. O
REMARK 4. Note that it is not true in general that X C Y implies a(X) < a(Y).

For example, for h >0, let A, denote the right triangle with vertices
{(0, 0), (1, 0), (1, h)}. Then

4 1 hxi 1 hxy
a(An) = V1 =322 4+ (01 — y2)? dya dxz dys dix
2 Jo Jo Jo Jo

1L oelg hxy  phxy
> 4f / — / f |x1 — x2| dy2 dy1 dxy dxy
o Jo h*Jo Jo

1 1 4
=4 / [ |x1 — x2|x1x2 dxp dx1 = —.

On the other hand,

s
a(Ap) §4f / x1x2v/ (x1 — x2)2 4+ h? dx; dx;
o Jo

and hence limy,_, o+ a(Ap) =4/15. Thus for any ¢ > O there is a hp > 0 such that,
forall0 < h < ho, |la(Ap) —4/15] < e.

For [ > 0, let B; be the rectangle with vertices {(0, 0), (1, 0), (1, =I), (0, —=D)}.
Then from Example 1 we obtain lim;_, ¢+ a(B;) = 1/3. Thus for any ¢ > 0 there is
algp > Osuch that, forall 0 <[ < [y, |a(B;) — 1/3| < &.

Now let e, § > 0. Choose 0 < h < min{1, hg}, and 0 </ < min{1, /p} small enough
such that A(B;) < 8A(Ap) and let Cp; := A, U B;. Then

A(Ap)? a(A) + A(Bp)? .
(AR + ABD2 T (AR + A(B))?

2
/ lx — yll dA(x) dA(y)
Ap J B

a(Cpyp) = (Bp)

+
(A(Ap) + A(By))?

T 2(B)+ SLINL ISR Y (L B
—_— —_— < - .
AT\ ) PO T T s S s e 3¢

Hence if we choose 1/60>¢& >0 and § >0 small enough we can obtain
a(Cp1) < 3/10. Of course B; € Cp, 7, but

I 19
a(B)) =3 —e>= g5 > 75 > a(Cn1).
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LEMMA 5.
(1) Let X and Y be compact sets in RS with \(X N'Y) =0. Then

AMXUY)a(XUY)>A(X)a(X) 4+ r(Y)a(Y).
(2) Let X C Y be compact sets in R*. Then
AX)a(X) <r(Y)a(Y).
PROOF. (1) We have

2 2
a(XUY) = Lza(X) + ME)

(X)) + A(Y)) 7()

(X) + A(V))2
A(X)A(Y) 1
2(X(X) T A2 AOA(Y) /X /Y lx — yll dA(x) dA(y).

For any regular Borel probability measures © and v on a subset A of the Euclidean
space R® we have (see [10, Equation (xx)])

2[4/;||x—Y||dﬂ(x)dv()’)ZI(M)-FI(U)-

Now let A= X UY, let u be the probability measure on A which is the normalized
Lebesgue measure on X and which is zero on Y and let v be the probability measure
on A which is the normalized Lebesgue measure on Y and which is zero on X. Then

2
oo J st ao =2 [ [ [ = yiauw ave)

> / / I — yll dpu() dpy) + / f Ix — yll dv(x) dv(y)
XUY JXUY XUY JXUY
—a(X) +a(y).

Hence
LX) +2(V))2a(X UY) = M(X)2a(X) + A(Y)2a(Y) + A(X)AY)(a(X) + a(Y))
= (M(X)a(X) + A(Y)a(¥)(M(X) + A(Y)).

(2) This assertion follows from the first one. O

COROLLARY 6. Let X C R® be compact and convex and let r = r(X) be the in-radius
and R = R(X) be the circumradius of X. Then
ws/? 2s | ws/? 2s
Bt < A(X)a(X) <
C(s/24+1)2s +1 Cs/24+1)2s +1
with equality if X is a ball. In particular, for s = 2 we have
128 128

LR <aXaX) < P2
a5 SMXaX) = R 72

,BY RS+1

with equality if X is a disc.
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PROOF. Let Kj, be the in-ball and let K. be the circumscribed ball of X. From
Lemma 5 we obtain A(Kjp)a(Kin) < A(X)a(X) < A(Kcire)a(Kcire) and the result
follows from Example 1 (note that the volume of an s-dimensional ball of radius ¢ > 0
is given by 7%/2¢5 /T (s /2 + 1)). O

REMARK 7. It follows from a result of Blaschke [3] that, for any plane compact

convex X C ]Rz,
128 /A (X
a(X) > / ( )
457

with equality if X is a disc. In many cases this bound yields better results than the
lower bound from Corollary 6 in the plane case (see Examples 8 and 10 below). For
more information see [8, Ch. 4, Section 2] or [9, Ch. 2, Equation (2.55)].

EXAMPLE 8. For n e N, n >3, let X,, CR? be the regular n-gon with vertices on
the unit circle. Then A(X,) = (n/2) sin(2wr/n), R =1 and r = cos(/n). Hence we

obtain
256 cos3(m /n) _ 256 1

— 1 <aX,) < - -
45 n s1n(27r/n) 45 n sin2m/n)’
From Remark 7 we even obtain the lower bound

128 . 2w
a(X,) > —,/ =— sin —
45 n

which is slightly better than the lower bound above. Note that

128 | n . 27 . 256 cos3(7r/n) . 256 1 128
lim —,/—sin—=lim ———— = lim — .
n—oo 457 ¥ 21 n n—oo 45 nsin(2w/n) n—>oo 45 n sin(2m /n) 4571

In some cases the following easy lemma gives better estimates than Corollary 6.

LEMMA 9. Let X be a compact subset of R® and let T : R® — R® be a linear mapping
with norm ||T ||2. Then we have a(T (X)) < a(X)||T ||2-

EXAMPLE 10. Let X be an ellipse x>+ y?/b> <1 in the Euclidean plane with
O<b<1. Then X =T(K) where K is the disc with diameter 2 and center in
the origin and where T = ((1)2) It is easy to see that || T ||, = max{l, |b|} =1 and

|7l = 1/b. Then from Lemma 9 we obtain

b (K) =a(X) =a(K) = 12
457 )= = 457
whereas from Corollary 6 we would just obtain
128 1128
b'— <a(X)<-—
45t — b45m’

From Remark 7 we obtain the lower bound a(X) > +/b(128 /457).
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