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Abstract

In an earlier paper we showed that the set § .. (X, ) of super Tauberian transformations between two
Banach spaces X and Y forms an open subset of B( X, Y) which is closed under perturbation by super
weakly compact transformations. In this note we characterize a class dual to ¥, (X, Y) which we
denote by ¢_( X, Y). We show that

TEY,(X,Y) ifandonlyif T' €y (Y, X')
and that
T ey, (Y, X) ifandonlyif TE€ ¢ (X,Y)

and provide standard and nonstandard characterizations of elements of y_( X, Y). These two classes
thus play in some ways analogous roles to the sets of semi-Fredholm transforms ¢, (X,Y) and
o.(X,Y).

Moreover Y(X,Y) = ¢, (X, Y) Ny_(X,Y) then forms an open subset of B( X, Y) closed under
the taking of adjoints, under the taking of nonstandard hull extensions, and under perturbation by
super weakly compact transformations.

1980 Mathematics subject classification (Amer. Math. Soc.): 47 A 53.

1. Preliminaries

This paper is a continuation of the investigation begun in an earlier paper [8]. We
are concerned with transformations between (real infinite dimensional) Banach
spaces and with their extensions on the nonstandard hulls of these spaces. Our
notation is generally consistent with [8] except for a limited number of instances
which we comment on explicitly. As before we are assuming that our objects of
study are embedded in some set theoretical structure 91U of which *9 is an
R -saturated enlargement. For a Banach space X the nonstandard hull X (with
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respect to *IN) is constructed by factoring the infinitesimal elements of *X from
the finite elements of *X. The original space X is embedded in X and X is a
Banach space under the norm || f|| = standard part *|| p|| where j denotes the
equivalence class determined by the finite element p € *X. An element S € finite
*B(X,Y) defines an element S € B(X,Y) by the equation S(p)= (S(p))
where p € finite *X.

We remind the reader that the class of Tauberian transformations §(X, X)
consists of those transformations T between X and Y for which 7"x” € Y implies
x" € X. The class of super Tauberian transformations, which we now denote by
¥, (X, Y), consists of those transformations which have Tauberian extensions
between the nonstandard hulls, that is, T € ¢, (X, Y) if T € F(X, ¥). Theorem
3 in 8] provides alternate characterizations of ¢, (X, Y) the simplest of which is
the condition that ker T is reflexive or superreflexive. It seems to be an open
question whether or not T € 9( X, Y) implies 7" € §( X", Y”) (see Kalton and
Wilansky [7] and [8, Proposition]). The principal difficulty in establishing a result
like this arises since a Tauberian transformation T need not have closed range.
Thus one cannot assume that the range of the adjoint is the set of f € X” for
which Tx = 0 implies f(x) = 0, that is, we cannot assume R.(T") = (ker T)* (see
Dunford and Schwartz [2, page 487]).

Without the conclusion that 77 € (X", Y”) it is impossible to define a class
of transformations which is completely dual to 9( X, Y). Yang [10] counters this
problem by calling a transformation T co-Tauberian if T has closed range and
reflexive cokernel. Then, for transformations with closed range, Tauberian and
co-Tauberian transformations are completely dual. It is not true that a super
Tauberian transformation 7" need have closed range (see Section 4) but neverthe-
less if T is super Tauberian then T” is super Tauberian.

2. The existence of ¢_( X, Y)

We show in this section that there exists a class of transformations satisfying
the duality properties stated in the abstract.

LeMMA 1. Let X and Y be Banach spaces and suppose T: X - Y. Let § =
{fis frs--- 1y} be a finite subset of X’ and suppose ¢ € X" is such that ||T"$|| <e
where ¢ > 0. Then, given 8 > 0, there exists a point x € X such that

@ llxll < 3¢l + 6;
@) f(x)=¢(f) fori=1,2,...,n; and
(i) || Tx|| < e.
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Proor. By Helly’s theorem (Wilansky [9, page 103]) there exists a point x, € X
with |Ixg)l < |l¢fl + 6/2 such that (f)(xy) = ¢(f;) for i =1,2,...,n.
Let S, ={x€X: f(x)=0fori=1,2,...,n} and S* = {x" € X": x"(f)=0
for i = 1,2,...,n}. Then ¢ € x, + S* and so we can write ¢ = x, + x”" where
x” € S* and ||x”]| < 2|¢|| +8/2. Suppose 4 = {x € S, : ||x| < 2¢| + 8/2}
and B = T(x,) + T(A). Then there exists a net of points {x,} C A4 such that
x, = x" in the weak* topology. Consequently Tx, —» T”x" in the weak* topology
or equivalently Tx, + Tx, — T"¢ in the weak* topology. But ||T"¢|| < & so for alt
g € Y” with ||g|| =< 1 there exists a point b € B such that | g(b)|< e. Now let us
suppose that d(0, B) = ¢, so that Y, N B = @. Then B and Y, can be separated
by a non-zero continuous linear functional (Dunford and Schwartz [2, page 417]).
This means there exists an element g € Y’ with ||g]| = | and a real constant d
such that

g(B)=d and g(Y,)<d.

But sup g(Y,) = € and so d = ¢ forcing the inequality g(B) = &. This is a con-
tradiction and so d(0, B) < e. Thus there is a point x;, € 4 such that ||T(x, + x,)||
<eand x = x, + x, then satisfies the three conditions of the lemma.

THEOREM 1. Let X and Y be Banach spaces and suppose T € y (X, Y). Then
TII e 4,+(XII, YII).

PRrOOF. Suppose T” & ¢, (X", Y”). Then, by [8, Theorem 3], there exists a real
number r satisfying 0 < r < 1 such that for all positive integers n there exist finite
sequences of elements {¢,, ¢,,...,¢,} in X" and {F}, F,...,F,} in X” such that
okl 1 Fell < 1 fork = 1,2,...,n satisfying

F(¢,)>r forl<j<i<n and

F(x;)=0 forl<i<j<n.

with [|x. || < 3 and ||Tx,|| < 1/k for k = 1,2,...,n. It follows by [8, Theorem 3]
that T & ¢, (X, Y).

We now define ¥ _( X, Y) to consist of those transformations T € (X, Y) for
which T" € ¢ (Y’, X’). Since ¢, (Y’, X') is open it follows that ¢_(X, Y) is an
open subset of B( X, Y). Further, since the converse of Theorem 1 is also true, we
have

T€y,(X,Y) ifandonlyif T’ €y (Y, X).
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3. Characterizations of the sety (X, Y)

If T € B(X,Y) we let R(T) denote the closure of the range of 7, and we then
call the quotient space Y/A(T) the cokernel of T. We shall show that T €
y.(X, Y) if and only if T has reflexive cokernel, or equivalently, a superreflexive
cokernel. The proof of this result would be immediate except that, in general,
(T'Y # (T’); recall (XY = (X’) if and only if X is superreflexive (see Henson and
Moore [3, Theorem 8.5)).

LEMMA 2. Let X and Y be Banach spaces and suppose T: X — Y. If ker( Ty is
reflexive (respectively, superreflexive) then T has reflexive cokernel (respectively,
superreflexive cokernel).

PrROOF. Let W and Z denote ker(7”) and Y/R(T) respectively. We can
consider (X’) to be embedded in ( X) in which case (T’)A is the restriction of (T'Y
to (X’). Thus we can suppose W C ker(T'Y and thus that W is a subspace of Z’
(see, for example, Brown and Page [1, page 196]). Let #: Z - W’ be the canonical
map defined by (7(z))w = w(z). If 7 is an isometric embedding then it follows
that Z is reflexive (respectively, superreflexive) since it is then a closed subspace
of the reflexive space (respectively, superreflexive space) W’. To establish that =
is an isometry it suffices to show that if ||z|} = 1 then for each & > 0 there exists
an element w € W, such that |w(z)|> 1 — 2e. Suppose to the contrary that
z=§ + R(T) is an element of Z for which w(z) <1 — 2¢ forallw € W, where
£ > 0 is fixed. This implies g(g) < 1 — 2¢ for all norm 1 elements g € *(Y”’) such
that g=~0 on T(X,). Now d(4, R(T)) =1 and so d(q,T(X,))>1—¢ for
n=1,2,3,.... Consequently there is an w € *N\N such that d(q, T(X,)) > 1 —
e. We now argue in a similar way to the last part of the proof of Lemma 1.
Specifically there exists a norm 1 functional g € Y’ with the property that
g(T(X,)—q)=1—e I g(T(X,)) =0 then —g(gq) = 1 — 2¢ which contradicts
the above assumption on ¢. If g # 0 on T( X)) then g(7T(X,)) contains infinite
values and g(q) must take an infinite value which is impossible. Thus we can
conclude that there is no point z with the stated property and it follows that 7 is
an isometry.

THEOREM 2. Let X and Y be Banach spaces and suppose T: X — Y. Then
TEY(X,Y) if and only if T has reflexive cokernel (or, equivalently, super-
reflexive cokernel).

PROOF. Suppose T has reflexive cokernel. Then the conjugate space of Y/ ﬁ(f‘)

is reflexive, that is, (R (T))* = ker T, is reflexive. Consequently ker(T") is re-
flexive whence T’ € ¢, (Y’, X’) by the characterization of [8]. The converse
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implication now follows by this characterization and Lemma 2. The equivalent
result in term of superreflexivity follows by the same argument.

We comment that if M is a closed subspace of Y then Y/M is reflexive if and
only if Y” = Y + M** . This fact shows the connection between what we are
now doing and the class in [8] denoted by DI (X, Y) (see [8, Proposition]).

THEOREM 3. Let X and Y be Banach spaces and suppose T: X — Y. Then
TeY(X,Y) if and only if ket(T) = ker(T").

PROOF. We begin by supposing that kcr(T’)AC ker(T'Y = (R(T))*. Then there
exists a nonzero ¢ € (R(T)*Y = (Y/R(T))’ which vanishes on ker(T’) By
Theorem 2 Y/éR(T) is reflexive and thus we can suppose ¢ € Y/€R(T), say
¢p=4g+ @{(T) We then have g(gq + R(T)) =0 for all g€ ker(T’) Conse-
quently g(g) =~ 0 whenever g =~ 0 on T(X;). We then argue as in Lemma 2. Since
¢ is nontrivial § & %(T) and thus there exists a (standard) positive real § such
that d(q, T(X,)) > 6 for n=1,2,.... Thus there is an w € *N\N such that
d(g, T(X,)) > 6 and in turn a norm 1 element g € *Y” such that g(T(X,) — q)
= 4. If g = 0 on T(X,) then g(q) < —6/2 which contradicts our above assump-
tion on ¢g. On the other hand if g # 0 on T( X,) then inf g(7( X,)) is an infinite
negative nonstandard real. This then contradicts the inequality g(q) = -|q|.
Consequently ¢ does not exist and we have the conclusion ker( T’)A= ker(TY.

The converse argument is essentially that used by Henson and Moore in [3,
Theorem 8.5]. Suppose that ker(7") = ker(T'), and that T & v (X, Y). Following
the notation of Lemma 2 let W and Z denote ker(7”) and Y/R(T") respectively
so that W = Z’. Since Z is not reflexive by James’ characterization of reflexivity,
f6, Theorem 3], there exists a real number r satisfying 0 < r <1 such that there
exist bounded sequences {g, + R(T)} and {g,} in Z and W respectively such
that (g, + R(T)) >r for i <j, and such that g,(g; + R(T)) =0 for j <.
Since *9M is assumed to be ¥ ,-saturated we can suppose that the sequences {g,,:
n € N} and {g,: n € N} are restrictions of internal sequences {g,: n € *N} and
{g,: n € *N} respectively. Thus we can assume there is an element w € *N\N
such that g,(q;) > r for | <i<j < w, and such that g,(q;) <r/2forl <j<is<
w. Now the sequence {g,: n € N} has a o(W, Z)-limit point § € W. Hence
g(q;) = r for j € *N\N provided j < w, whilst g(q,) <r/2 for j € N. This
implies N is internal which is incorrect.

Before setting our final characterizations of Y( X, Y) we need to introduce two
definitions. We say T has property Q if for all reals r satisfying 0 < r <1 there do
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not exist sequences of norm 1 elements {y,, y,,...} in Y and {g,, g,,...} in YV’
such that

(1) 18, |< 1/k on T( X,) for all k;

(i) g(y;)>rforl <l<j, and g,(y;) =0 for 1 < <i.
We say T has property Q if for all reals r satisfying 0 < r <1 there exists a
positive integer n for which there do not exist finite sequences of norm 1 elements
{yi, ¥2»--->y,} in Y and {g,, &,,...,8,} in Y’ satisfying conditions (i) and (ii)
above.

THEOREM 4. Let X and Y be Banach spaces and suppose T: X — Y. Then the
following conditions are equivalent:

() T has property Q;

MTEY(XTY)

(iit) T has property O;

(@iv) T has property Q.

PROOE. We show (i) = (ii) = (iii) = (iv) = (i).

(i) implies (ii). Suppose T & Y. (X, Y) so that T" & ¢, (Y’, X’). Then, see [8],
there exists a real number r satisfying 0 < r < 1 such that for all positive integers
n there exist finite sequences {g;,...,8,} C Y’ and {¢,,...,¢,} C Y” such that
IT'gull < 1/k for k = 1,2,...,n; ¢,(g;) >rfor 1 <i<j<nand ¢(g;) =0 for
1 <j<i<n. Then by Helly’s theorem we can assume that ¢, € Y for k& =
1,2,...,n; and it follows that T doesn’t possess property Q.

(ii) implies (ii). Let E=X, F=Y, S=T and suppose these objects are
embedded with X, Y, T etc. in a structure 90 of which *9U is an N ,-saturated
enlargement. If § doesn’t possess property Q then for some (standard) r satisfying
0 <r<1 there exist, for w € *N\N, finite sequences of norm one elements
{91» 925---,45,} In *F and {g,, g5,...,8,} in F’ for which |g,|<1/k on S(E,)
for k=1,2,...,2w; gj(q,)>r for1<i<j<2w, and gi(¢q;)=0for 1 <j<i
<2w. For k =1,2,3,... let p, = 4., and f, = £, These are elements in the
hulls F and (F’y constructed with respect to *9U. Then § fk =0fork=1,2,3,...
]i( p)y>rfor i<jand ji( 15;) = 0 for j > i. Consequently by the James’ char-
acterization of reflexivity ker 8’ is not reflexive. C. Ward Henson has shown that
a Banach space and its hull have isometric hulls when constructed from an
N -saturated enlargement which has the ¥ j-isomorphism property (see {4, Prop-
ositions 1 and 2] and [5]). Moreover he has an “isometric nonstandard hulls”
theorem for operators in which it is established that the isometries respect the
induced action of T (private communication).

Consequently ker T is not reflexive (when constructed with respect to such a
*O), and therefore T & ¢ (X, Y). Since (iii) trivially implies (iv) we are finished
once we show (iv) implies (i).
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(iv) implies (i). Suppose T doesn’t possess property Q. Then for some (standard)
real r satisfying 0 <r <1 and w € *N there exist finite sequences of norm 1
elements {q,, 45,..-,4,} in *Y and {g,, g,,...,8,} In *Y" satisfying conditions (1)
and (ii) above. But then the sequences {§,: kK € N} and {g,: k € N} satisfy
|g|< 1/k on T(X,) for all k, §(4,) > r for i <j, and §,(4,) = 0 for j < i. Thus
T does not possess property Q.

One consequence of the above result is that T € Y (X, Y) if and only if
Tey (X, V). Nowlet y(X,Y) =y, (X,Y) NY(X,Y), thatis, T € Y X, Y) if
and only if T has reflexive kernel and cokernel. It is a consequence of results
proven here and in [8] that:

(i) Y( X, Y) is an open subset of B( X, Y);
i) TEY(X,Y)if and only if 77 € Y(Y’, X');
(iii) T € Y( X, Y) if and only if T € (X, ¥); and
(iv) T is closed under perturbation by super weakly compact transformations.

4. Transformations with closed range

If T is a transformation with closed range the conditions for membership of
Y. (X,Y)ory (X, Y) can be simplified.

LEMMA 3. Let X and Y be Banach spaces and suppose T: X —» Y. Then the
following properties are equivalent:
(i) R(T) is closed,
(if) (R(T))'= R(T;
(iii) R(T) is closed.

PROOF. Suppose R(T) is closed and let (T(p)) € (R(T)). By the open
mapping theorem we can assume p is finite so that (T( p)) = T( P). This shows
(R(T)) = A(T). Since the hull of a normed space constructed with respect to an
N ,-saturated model is complete it follows that (ii) implies (iii). Finally suppose
R(T) is closed. Let Z = R(T') and suppose y € Z,. Then y € R(T) = R(T)
and so, by the open mapping theorem, there exists a positive constant r indepen-
dent of y, such that y = T( p) for some point p € *X,. By transfer it follows that
Z, C(T(X,))” whence Z, C T(X,,) (see Brown and Page [1, Lemma 8.5.2]). This
proves that (iii) implies (i).
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We then have

THEOREM 5. Let X and Y be Banach spaces and suppose T: X —» Y has closed
range. Then

(W) T €y, (X,Y)if and only if ker T is superreflexive;

(i) T €Y(X,Y) if and only if Y/R(T) is superreflexive.

PROOF. We check (ii) first. We have T € y_(X, Y) if and only if ¥/R(T) is
reflexive, or equivalently if and only if ¥/(R(T)) is reflexive. But ¥/(R(T)) is
isomorphically isometric to (Y/R(T)) which is reflexive if and only if ¥Y/R(T)
is superreflexive.

Next T€ ¢, (X,Y) if and only if 77 € y_(Y’, X’), that is, if and only if
X' /R(T") is superreflexive since 7" has closed range. But for transformations
with closed range R.(7T”) = (ker T)* so that X’ /R (T") equals X’ /(ker T)* which
is isometrically isomorphic to (ker 7). Thus T € Y, (X, Y) if and only if (ker T')
is superreflexive, or equivalently if and only if ker T is superreflexive.

We finish by remarking that elements of {, ( X, Y') with closed range do not in
general form an open subset in B( X, Y). To see this let T be the zero operator on
[, and let S be any operator on /2 which doesn’t have closed range. Then T has
closed range and is a member of ¥, (X, Y') although 7= AS = AS does not have
closed range for any value of the scalar A.
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