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Abstract

We consider the Fourier restriction operators associated to certain degenerate curves in R¢ for which
the highest torsion vanishes. We prove estimates with respect to affine arclength and with respect to the
Euclidean arclength measure on the curve. The estimates have certain uniform features, and the affine
arclength results cover families of flat curves.
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1. Introduction

We suppose that y is a curve in R? and consider the problem of obtaining L? — L4
bounds for the restriction of the Fourier transform to y. This problem has a long
and interesting history, which is described at length in [2, 7]. Though we will not
repeat much of that description here, we recall one of the main results from [2],
concerning the moment curve yy(t) = (z, 2., td) in dimension d > 3. Write
pa = (d> 4+ d +2)/(d* + d). Then there is the restricted strong type inequality

b 1/pa
(/ | f Gy )17 dt) < COOINF N Lrat ey (LD

for all Schwartz functions f on R?. As described in [2], the estimate (I.1) is
the best possible and yields all other L” — L9 restriction results for the moment
curve o by interpolation with the trivial L' — L™ estimate. It is natural to
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wonder what happens to (1.1) when yp is replaced by more general curves. If
y :la, b] > RY is nondegenerate in the sense that for each ¢ € [a, b] the derivatives
Y @), vy @), ...,y @D () are linearly independent, then the analog of (1.1) is proved
in [2]. Butif one attempts to go further by dropping the hypothesis of nondegeneracy, it
is easy to see that the exact analogs of (1.1) and its interpolants may fail. There are then
two possibilities that have been considered in the literature. The first is to ‘dampen’
the measure dt by introducing a weight w(¢) that is small where y is degenerate, to
replace dt with w(t) dt, and then to attempt to obtain the exact analog of (1.1). The
second approach is to retain dt for the reference measure and to see what changes must
then be made in order to obtain sharp restriction results. In this paper we explore both
approaches, but only for y of the form

t2 l,d—]
)/(t):<f, E,..., m,(ﬁ(t)) (12)

These curves are termed simple in [8] and are distinguished by the fact that only the
highest torsion may vanish.

Concerning the first approach, it was observed in [8] that if y is as in (1.2), then the
correct weight w(¢) is given by

w(t) = [pD (1) @@+, (1.3)

Then the measure w(¢) dt is, up to a constant depending only on the dimension, the
affine arclength measure on y. Here we have the following result.

THEOREM 1.1. Fix d > 2. Suppose that 0 <a < b < oo and let y be of the form
(1.2), where ¢ is a cd function on (a, b) for which the derivatives ¢’, . . ., qb(d) are
nonnegative and nondecreasing on (a, b) and for which 9 satisfies the condition

d 1/d
(1—[ ¢(d)(sj)) §A¢(d>(sl + - +Sd) (1.4)
j=1

foralls =(s1,...,8q) witha <s1 <s3 <---<s4 <b. Also suppose that
1<P< (0l2 —|—d—|—2)/(d2 4+d) and 1—(1/P)=[2/(dd+ 1))](1/Q).

Then there is C(d, P) < oo so that, for all g € LP([RY),

b 1/0
(/ |§(y(r))|Qw(z>dr) <cWd, P) A" gl e gay- (1.5)

The proof of Theorem 1.1 is analogous to [2, proof of Theorem 1.3]. The range
of indices in Theorem 1.1 is the range given by interpolating the LPd-! — LPd
estimate (1.1) with the trivial L — L estimate, and it would be interesting to know
if the endpoint result (the exact analog of (1.1)) holds for the curves of Theorem 1.1.
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In the case d =2 it follows from [12] that the conclusion of Theorem 1.1 holds
with A =1 (and without any additional hypotheses like (1.4)). For many interesting
examples, a slightly stronger condition holds where the arithmetic mean in the
argument of ¢ on the right-hand side of (1.4) is replaced by a geometric mean,
that is

J=1

d 1/d
(1-[ ¢<d><s,.>) < Ap (YT 5. (1.6)

It is obvious that condition (1.6) holds for ¢ (1) = 1P, B > d, on the interval (0, c0); in
particular (1.6) is satisfied with A = 1. Moreover, if for ¢ > 0 we define ¢o(¢) = 1P for
some B > d, and forn > 1,

! d—1 1
On (1) :/0 (t —u) eXP<—¢(T(u)> du,

n—1

then the ¢, satisfy (1.6) with A = 1 on (0, co) (see Section 4.3). This yields a sequence
of functions that are progressively flatter at the origin for which the restriction
theorem holds uniformly (that is, with constant depending only on the Lebesgue space
indices). These two observations raise the interesting question of whether or not
the hypothesis (1.6) in Theorem 1.1 can be dropped to yield, subject to the ¢ being
sufficiently monotone, a uniform restriction theorem for the curves (1.2).

Regarding the second of the above-mentioned possibilities, keeping the measure dt,
Drury and Marshall [9] proved sharp results for classes of finite type curves. Here we
are aiming for a result for curves of the form (1.2) which is expressed in terms of a
natural geometric condition and also has a certain uniform feature.

We will say that a set E in R? is a parallelepiped if E is a translate of a set of the
form { 2?21 tjx; |0 <t; <1} where the x; € R? are linearly independent. Given y
we shall write A, for the measure on y given by

(dhy, f)=/f()/(t))dt-

We denote the Lebesgue measure in R? by m.

THEOREM 1.2. Suppose that —00 < a < b < oo and let y be of the form (1.2) where
¢ is a C? function on (a, b) for which the derivatives ¢', . . ., $'? are nonnegative
and nondecreasing on (a, b). Suppose that a € (0,2/(d(d + 1))] if d = 3 and that
a € (0, 1/3) if d = 2. Suppose also that the estimate

ry(E) < Bmg(E)* 1.7)

holds for some B > 0 and for all parallelepipeds E C RY. Then there is C(d, o) < 00
so that, for all g € L'T%1(RY),

b 1/(1+a)
</ |§<y<r>)|”“dr) <C(d,a)BY" Ygl| 1sargay.  (1.8)
a
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On the other hand, if the estimate

b 1/0
( f gy (1))¢ dz) <2 gl rga (1.9)

holds for some P and Q satisfying 1 — (1/P)=«a/Q, then (1.7) holds for all
parallelepipeds E with B replaced by C(d, p)c.

The proof of Theorem 1.2 is analogous to the proof of (1.1) given in [2].
Interpolation of (1.8) with the trivial L' estimate yields the estimate (1.9) whenever
I1<P<l+aand 1/P' =a/Q. It would be interesting to know whether in the
generality of Theorem 1.2 the exponent 1 + « is sharp when a <2/(d*> 4+ d) or
whether there is always P(«) > 1 + « such that (1.7) implies (1.9) whenever 1 < p <
P(a) and 1/P’ = o/ Q. For many concrete examples, such improvements can indeed
be obtained by rescaling arguments from the nondegenerate case—for this and related
observations see Section 7.

1.1. Guide through the paper In order to prove Theorem 1.1 we shall use the
method of offspring curves that originated in [6], and was further developed in [8], [9]
and [2]. The crucial technical point is to give lower bounds for a certain Jacobian of a
change of variable, estimate (2.4) below. The new features about Theorem 1.1 concern
the verification of this estimate, and the technical details are contained in Section 2.
The proof of Theorem 1.1 is then discussed in Section 3 (a reader not familiar with the
method should start reading here). In Section 4 we discuss some examples to which
Theorem 1.1 can be applied. Sections 5 and 6 contain the proof of Theorem 1.2. In
Section 7 we show how Theorem 1.2 can be extended for some classes of examples.

2. The main technical estimate

In this section we assume that ¢ is defined on [a, b], 0 <a < b, and assume that
the derivatives of ¢ up to order d are positive and nondecreasing on (a, b).

We establish some notation. For a vector x € R?, let V;(x) be the determinant of
the d x d Vandermonde matrix:

Va)= [ @« —x. 2.1)

1<i<j<d
For h = (hy, ..., hq_1) € (Ry)?! define « (h) € [0, o0)¢ by
ki(hy=0, «kj(h)y=hi+---+hj_1, 2<j<d,

and put
v(h) = va(h) = Va(k(h)).
Ify:(a,b) > Reandifa <t < b — kg(h), we write

d
Lt hy =Y y(t+x;h). (2.2)

j=1
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Following the terminology of Drury and Marshall [8] we call I'(-, h), for fixed A, an
offspring curve of y.
Denote by Jy(t, h) the Jacobi determinant of the transformation (¢, &) — I'(t, h);

that is
Sty = det (2L 20 oL 23)
A T TR Ty A '
As in [8] it will be crucial to verify the inequality
d 1/d
g2, 1) zw(h)(]‘[ ¢><">(r+xi(h>>) : (2.4)

i=1
Here we prove the following result.

PROPOSITION 2.1. Let 0<a <b<1. Suppose that ¢¥ is nonnegative and
nondecreasing on (a, b), and that, for any a < s1 <--- <s4 < b, the condition (1.4)
is satisfied. Then inequality (2.4) holds with

o =co(d)A™!
forall (t, h) suchthata <t <b, h € (0, b)*~', and t + k4(h) < b.
The proof of Proposition 2.1 uses the following technical lemma.

LEMMA 2.2. Fix x € (0, 1). Suppose that
aj<by<ay<by<---<ay <by.

Suppose that, form =1, ..., M, l,, is a function of t = (t1, . . ., ty) having one of
the three following forms:

ty —tj forsomel <j<k=<N, or
Im(t)y=ydj —t; forsomed;=>bj, or

tj —cj forsomec;<aj.

Suppose that Aj e (0,1) and Lj <A, for j=1,...,N. Let Rn(a,b, L) be
the region of all t = (11, . .., ty) € RN satisfying (1 —Ajaj+Ajbj <t; <b; for
j=1,..., N. Then

M by by M
/ l_[lm(t)dtN...dtlzC(M,k)N/ /
Ry (a,b,)) m=1 ay a

PROOF OF LEMMA 2.2. An easy induction argument shows that it is enough to prove
the lemma when N = 1. A translation and then a scaling reduce that case to the
inequality

Ln(t)dty .. .dt.
1

N m=

1/n M

1/n M
/ ]—[ L,(t)dt > C(M, ) / ]—[ 1, (t) dt, (2.5)
1 m=1 0 m=1
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where

L(6) = {dm —t forsomed, >1/A, or

t — ¢, forsomec, <O0.
It is clear that (2.5) is true when M = 0. So assume that (2.5) is true for M — 1.

Suppose first that at least one of the functions /,, is increasing, say [ (¢) =t — c.
Then, by the inductive assumption,

1/AM 1 C(M 1 M-1
/] ]_[1 (1) dt > —C(M—l A)/ ]:[lzm(t)dt.

Thus

1/» M—1 1/x M—1
/ Hl(t)(t—c)dt>(1—c)/ ]_[1 (1) dt
1 1

C(M—1,%) /IM“
> L () (t —c)dt,
e S 0}:[1 (@ =0

and this is equivalent to (2.5) with C(M — 1, A) instead of C(M, X). Therefore we
can assume that /,,,(t) = d,, — t for all m. There are now two cases to consider. First
suppose that one of the d,,,, say dys, exceeds 2/1. Let t = (1 + 1/1)/2. Then

1 M—1

1 M
f ]_[zm(r) drng/ ]_[ Ly (1) dt
0 m=1 0 m=1

1-CM—1,%) [V "ﬁ
L (1) dt.

< 2.6
=dv——cor—1n ) (2.6)
‘We further estimate
1/n M—1 r M—1
/ ]_[1 (t)dt<2/ Hlm(t)dt
1 1 _
Ln(t) dt
dM_T/ H (t)
2 1/n M
< L (1) dt, 2.7
<= TImo @7

where the first inequality follows because ]_[11” - I (t) dt is decreasing. Since dy; <
2/A, we have dy; /(dy — t) <?2. Combined with (2.6) and (2.7), this implies (2.5) if
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one of the d,,, exceeds 2/A. If, on the other hand, d,, <2/A for all m, then the crude

estimates
1/ M oM
/0 ”];[1 bn(t) dt < s
and
/W ﬁ L () dit > /W(% - t)M di = (1/’\]‘;&
1 g 1 +1
give (2.5) again and conclude the proof of Lemma 2.2. O

It will be useful to write the Jacobian Jy (-, i) as a convolution with a nonnegative
function, depending on the parameter 1 € (R ).
To this end we define for A; >0

W (t; ) = x10,n,1(F)- (2.8)
Ford >3 andt <h;+---+ hg_1 we set
Ra—1(t, h) = {o e R :0 <oy <min{h,, 1},
hi+---+hj1<o;<hi+---+hj, j=2,...,d-2,
max{hy + -+ hg,t}<oq-1 <hi+- -+ ha_1},

and define recursively

Wy(t; hy, ..oy ha—1) =/ WYy 1(t —01;02,...,04-1)doy...dog_1
Ra-1(t,h)

(2.9)
ift<hy+---+hg_1;wealsoset W;(t; h) =0ift >hy+---+hg_;.

LEMMA 2.3. Let Wy be as in (2.8) and (2.9) and, for s € R? with sy <sp <--- <
sa, let Ji(s1, ..., sq; @) denote the determinant of the d x d matrix with columns
(1, 8j, 5972 /(d =)\, ¢'(s)". Then

Sd

Ju(s: 9) =/ Wt — 1 52— 51 oo 50— 5a) $D @ du. (2.10)

51

PROOEF. If d = 2 then the asserted formula holds since
52
Ta(s1, 82 ) = @' (s2) — @' (51) =f ¢"(u) du
51

and Wo(u — S1; 82 — S1) = X[s1,s0] ().
We now argue by induction and assume that d > 3.
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We first note, by expanding 9; . . . 94— Jz with respect to the last column, that
. _ d+1 Y
asl o aﬁ‘d_ljd(s17 L] Sd, ¢) - (_1) jd—l(sl9 ce ey Sd—1, ¢ )

Next observe that Jy(s; ¢) =0 if s; =sp and that 9y ... 0rJuy(s; @) =0 if sp41
= sx4+2 and k < d — 2. Thus we repeatedly integrate and see that

Ja(s; ¢)
i [ Sd
=(=1 / / s, - .. 05, 1 Ja(o1, ..., 04-1,8q; §) dog—1 . ..doy
S1 Sd—1
Sd

5
=/ Ji1(o1, ...,00-1;¢)dog_y ...doy. (2.11)
S

1 Sd—1

Thus by the induction hypothesis

52 Sd 0d—1
Jd(s;¢>=/ / f D)
S1 Sd—1 Y01

XWy_1(u—o1;00—01,...,04-1—0g-2)dudog_1...doy (2.12)

and by Fubini’s theorem this can be written in the form

Sd
Tu(s; ¢) = / () Wy (U —T15 T — T+ .., Ta—1 — Ta—2) dT du,
K 1€Q(u)
where €2 (1) consists of those T € R4 for which i <1 <sSit1,i=1,...d —1and
T =U=Tg—1-
We change variables 71 =s1+0; for i=1,...,d —1 so that 7€ Q(u)
corresponds to o € Rgy—1(u — sy, h) with h; =si41 —s;. Thus from the

definition (2.9) we obtain

Sd
Ja(s; @) =/ WU — 51552 =81 -+ 5 54 — sa—1) ¢ D (w) du,

51

which yields the assertion. O

LEMMA 2.4. Let Wy be as in (2.8) and (2.9) and let
1 d
t,hy=t — i(h).
galt, )y =1+ ;u )
Then W satisfies

t+icq (h)
/ Wy(u—t; h)du>c(d)v(h), (2.13)
8d(t,h)

where c(d) > 0.
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PROOF. First, in order to prepare for the proof of (2.13), we observe that (2.11) for

the special case ¢ (s) = s¢/d! gives us the formula for the Vandermonde determinant
Va(s) = ]_[‘;;%(j!)jd(s, ¢) in all dimensions, namely

$2 Sn
Vn(sl,...,sd)z(n—l)!/ / Vooi(ot, ..., 0p_1)doy_1...doy. (2.14)
S1 Sp—1

We now use Lemma 2.2 to establish the following inequality for all n > 2. Suppose
that 0 <a; <---<a, and let

Up—1(a) = {X’ = (X1, ooy Xno1) € R

LY sty
— ) x>- ak}.
n—1:= =
Then

a a,
/ o / Va1 (X)) - xug, 1@ (XN dx’ = C(n) Vi(ar, ..., ay).  (2.15)
ap an—1

To check (2.15), note that, if A; = (n — j)/n, then the left-hand side of (2.15)
certainly exceeds

a an
/ .. / Vici(x)dx,—1...dx;.
har+(1=r)az An—1ap—1+(1=Ap—1)an

By Lemma 2.2 this expression is bounded below by a positive constant times the
integral of V,,_1 over the entire rectangle ]_[?:_]1 [ai, aj+1], and by (2.14) that integral
isequal to C(n) V,(ay, ..., ay).

We shall now prove (2.13). The case d =2 is immediate since W2 (- ; h) = x[0,1,]
and v(h1) = h1: we find that (2.13) holds with ¢(2) = 1/2. Now we argue by induction
and assume that (2.13) holds if d — 1 > 2. With s; =1 + «;(h) we use (2.12) for a ¢
with @ (u) = 1foru >5=(s; + - - - + s4)/d and ¢ P (u) = 0 for u < 5. We thereby

obtain
t+kqg(h)
/ W(u—1t; h)du
g

da(t,h)
=Ja(s; ¢)
52 54 [Od-1
=/ o / / X{u=5) @)
51 sa—1 J o
X Wy 1(u—o1;00—01,...,00-1—04-2)dudog_1...doj
2 Sd 0d—1
- | - [ xem
Ast+(1=A1)s2 rd—18d—1+(1=rg—1)sa J o1
X Wy_1(u—o1;00—01,...,04-1—0g-2)dudog_1...doy,

where A ; = (d — j)/d. Here the inequality follows because the conditions

oj>Ajsj+ (1 —=2A;)sj+1 and u>0=(0o1+---+o04-1)/(d—1)
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together imply that # > . It follows from the induction hypothesis that

0d—1
/ Xuzzy@W)We_1(u — 01500 — 01, ...,04-1 — 0g—2) du
(o5
>c(d—-1)Vi_1(o1,02,...,04-1).
Therefore
t+kq(h)
f Wy(u—t;h)ydu>c(d—-1)
ga(t,h)

52 Sd
X/ / Va_i1(o1,...,0q-1)doy...dog_1.
Arsi+(1=21)s2 rd—15d—1+t(1=Aq-1)sq

With Lemma 2.2 and (2.14), this yields (2.13). O
PROOF OF PROPOSITION 2.1, CONCLUSION. We first observe that
Jot, h) =Ta(t, t +k2(h), ..., t +xq(h); $). (2.16)

Recall that g;(t, h) := Zidzl (t +ki(h))/d so that t < gg(t, h) <t +xq(h). We
apply (2.10) and (2.13) to get

t+xq(h)
Jolts ) = / W — 1 ) 6D ) du
1(t,h)

t+xq(h)
> ¢ D(gat, b)) | Wy —1; h) du
t(t,h)
d 1/d
> cad' P (ga(t, ) v(h) = cyA™! (1‘[ D +; (h))) v(h),
j=1

where we have used that ¢(?) is nonnegative and nondecreasing, and in the last estimate
we have employed the hypothesized condition (1.4). O

3. Proof of Theorem 1.1

We first note that ¢ satisfies condition (1.6) on (0, b) if and only if the function
s — ¢ (bs) satisfies condition (1.6) on the interval (0, 1). The desired estimate is
invariant under the change of variable

X (b_]xl, b_zxz, cee, bl_dxd_l, Xq)
and thus we may replace ¢ by ¢ (b-). Thus we may and shall assume that

b<l1 (3.1)
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in what follows. We shall assume also that ¢@ (¢) is positive and nondecreasing in
[a, b] and it then suffices to prove the estimate (1.5) with the interval (0, b) replaced
with (a, b) and b < 1.

Given Proposition 2.1 the argument is very similar to the argument in the proof
of the result for monomial curves in [2], based substantially on previous ideas in
papers by Christ [5], Drury [6] and Drury and Marshall [8], and the exposition will
be somewhat sketchy. We aim for an estimation of an adjoint operator and thus will
setp=0'=0/(Q—1)andg = P' = P/(P — 1). Thus we fix

pP<qu=(>+d+2)/2 and q=(d+d)/2)p > qa.

We shall now assume that the condition (2.4) is satisfied with a positive constant
co, for all (¢, h) € [0, l]d such that t 4+ k4(h) < 1. Note that by Proposition 2.1 this
assumption is implied by (1.6).

DEFINITION. Let0<a <b<1,0<M < 00,0 > 0, and let I, , s (0') be the class

of all real-valued functions ¢ defined on [a, b] for which:

(i) ¢ eCi(a, b)), p D) <M foralltela,bl,d, ¢, ..., »“ are nonnegative
on [a, b]; and

(ii) forall h € [0, 11971 with k4(h) < b — a the inequality

d
Jo(t, 1) = ov(h) [ [ 6 + i (h)

i=1
holds for all r such thata <t <b — k4(h).
Let R > 1, Bg = {x € RY : |x| < R}, and define

A= AR, M, )
= sup g sup sup
o= € $ekapm (@) I8l g a) <1
0=a<b=1" supp(g)cBr
b| =1 P y P d 1/p'
x (f g(t,...,m,qb(t))‘ 16D ()| @/ HD) dr) N ER))
g !

Clearly A(R, M, c¢) is finite for each R and M. Indeed, in view of b < 1 we have
AR, M, ¢) < Cy4M'/P"R?/4" The theorem is proved if we can show that A only
depends on ¢, p, d; in fact we will prove that

AR, M,c)<C(p,d)c /4. (3.3)

The restriction inequality

b » I
(/ gy ) w(t)dt) =~ AllgllLe gy
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with w = |¢(@|?/(@(@+D) j5 equivalent to the inequality

¢
1T lle By = — AN f e awan, (3.4)

where
b .
Tf(X)=/ FOw)e O gy,

For fixed h € (]RJF)‘I_1 let

d

H(t, h) = ]_[ w(t + ki (h)). (3.5)

i=1

With I, = (a, b — k4(h)) and with the convention that [ ...dr will mean flh ... dt,
we write

SplF1(x) = / e T B RYH (1, h) dt.

We form d-fold products and, with the additional convention that / integrals are
extended over the region where «4(h) < b, write

d
[[7fi=) /Sh[F”]dh,
i=1

7T€6d

where
d
FZ(h, ) = | fry (¢ + Ki ().
i=1

The strategy in establishing (3.4) will be to estimate the L4/ (Bg) norm of 1—[?1:1 Tf;
by estimating the L4/4(Bg) norms of [ S,[F™]dh.

LEMMA 3.1. For every h with kg(h) < b — a, the inequality

ISKLF H ™D 1 )
L c 1/p
<d¥C Z A(Rd®, M, o /d) (/ |F(t, h)|PH (t, h)"/4 dt) (3.6)
o

holds for ¢ € Kq.p.m(0).

PROOF. Seth =d ! Zz;ll (d — k)hi. A quick computation involving expansions of
powers of ¢ about the point # + 4 shows that

I'(t, h) =v(h) +dA) Y (t + h, h), (3.7
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[13] Restriction of Fourier transforms to curves, 11 13

where v(h) is a vector in RY with coordinates vy (k) = Y"7_, (k,(h) — h)* and
v (h) =0, and A(h) is a d x d matrix with

1 ifi = j,
0 ifi > j,
Aij(h) = h) — )i
i (h) Z (m((J)_l)') i<izdot
0 ifi <d, j=d.

Finally 7 (s, h) = (s, ..., s471/(d — 1)\, ¢(s; h)) with
- 1 ¢ _
ls; )= (s —h+xi(h).
i=1

The function ¢ and the curve Y (¢, h) are defined on [a(h), b(h)] C [0, 1],
where a(h)=a +h and b(h) =b —kg(h) +h. It is now crucial to note that,
for ¢ € Ky p. (o) and fixed h, the offspring function 5 = q~5( ; h) belongs to
Kahy,bny,m(c/d). This follows from (2.16) and (2.10) for the function qS Indeed,
the nonnegativity of W; implies that, if he (R+)d I satisfies «g (h) <b(h) —a(h),
then

- t+iq(h) .1 J _
G = [ wate =g Y 80w R
i=1

1/d
> — v(h) Z(]’[ ¢t —h+ ki (h) + & (h)))

i=1 Vj=1

A%

d 1/d
% v(h) (H ¢t — I+ xa(h) + Kja%)))

j=1

v

Ul Q

4y ~ o\
h) H(J Z Dt —h +ki(h) + Kj(h») :

Here the first inequality follows from (2.10) and ¢ € K4 (o). The last inequality
shows that ¢(-; h) € Kan),bn)(0); it follows from the fact that ¢>(d) is nondecreasing.

Now let g5 be defined by g,(§) =g(v(h) +dA(h)€). Then because of the
unimodularity of 2((h) we have ||gxlly = adl llgllg'. Also if g is supported in Bg

then gy, is supported in the ball of radius Rd> (observe that all the entries of 2(h) are
at most d).
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14 J.-G. Bak, D. M. Oberlin and A. Seeger [14]

Comparing a geometric to an arithmetic mean we see that

b—kq(h) , 1/p'
( f Ig(T (e, )P H(t, )¢ dr)
a

b—ra(h) 1 & @ 2/(d*+d) 1/p'
< ( / (T (2, )P <3 PR AC +Kl~(h)>> dt)

i=1
’

b—kq(h)+h . i 1/p
N (/ 181 (7 (s, IDIP (@D (s; b))/ @ +D dS>
a+h
c/
/ A(Rd®, M, o/d)lgnlly = —dd/q A(Rd®, M, a/d)glly-
By duality this also implies (3.6). -

We now proceed exactly as in [2, proof of Proposition 6.1]. We first have, by an
application of Plancherel’s theorem and the change of variable (¢, h) — I'(¢, h), that

1/2
H/SR,,,[F]dh §c</ |F(t,h)H(t,h)J(t,h)_1/2|2dtdh> . (3.8

2

The change of variable can be justified as in [8, p. 549].
Replacing F with FH@=D/ jn (3.6) and then integrating with respect to 4 now
yields, according to Minkowski’s inequality, the estimate

”/Sh[F]dh

<d¥ co' ARd?, M, ¢/d)
L4(BRr)
1/p
x/ (/ |F(t, h)H (t, h)! =1/ D+/dp)|p dt) dh. (3.9)
By analytic interpolation of (3.9) and (3.8) one obtains

1—v
Hf Skl F1dh C<§A(Rd3, M, a/d)>

L*(Bg)

A(®)/B(®) 1/A(®)
x (/(/ |F(t, h)H(t, h)"J (¢, h)~"/?|B@®) dt> dh) (3.10)

where 0 <9 <1and A, B, s, n are defined by

1 9 11 11
_:1__7 _:_+ﬂ ~_ )
AD) 2 B@) p (2 P)
1 1-9 9 d+1

= (ﬁ)_l—i(l—ﬁ)
2 2q

(3.11)

s ¢
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Now let
4d - 1) _Z(d—l)

T Wd+Ddp -4 g-2
and let A, = A(9(p)), B, = B(3(p)), s, = s(¥(p)) and n = n( (p)). Then

(3.12)

?(p)

np—d+1D9/4=1/p and s,=¢q/d=(d+1)p'/2.

As ¢ € K4 p,m(0) we may use the crucial inequality Jg (1) > ov(h)H9*tD/2(¢, h) and

obtain
Hf SplF1dh < Co P2 ARA?, M, o/d))' 7P
L9/4(Br)

‘ A
X (/ (/ l_[ |F(t, h)H (t, h)"»~(@+D/92(p)| By dt) P
Jj=l

/B, 1/4p
v(h) —Ar dh) )

(3.13)

We are now in the position to apply an inequality by Drury and Marshall [8]
for multilinear operators involving Vandermonde’s determinant—see also [2] for an
exposition. To state this, let

d
Bf1, ... Ll k)=o) ] £+ ki)

i=1

and L;‘(LB ) denote the weighted mixed norm space consisting of functions (¢, &)
G(t, hy with |Gl a ) = ([ IIGC, h)|4v(h) dh)!/4 < 0o. One assumes that 1 <
A<(d+2)/dand 1 < A<B<2A/(d+2—dA), and sets 0 =2/(d +2 —dA).
Forl =1, ..., dlet Q; denote the point in Ri for which the jth coordinate is (6 A) !,
if j # 1, and the /th coordinate is B 1 Let ©(A, B) be the (d — 1)-dimensional closed
convex hull of the points Q1, ..., Q4. Then the inequality

d
IDLA - falllasy < C T Iilln (3.14)
i=1

holds for all (p;', ..., p;') € (A, B).
We apply this inequality to the right-hand side of (3.13) to obtain

H/ SulFldh

1=9(p) d
<Cd, p)o "W~ <colA<Rd3, M, c/d)) [T1sw 2105
j=1

La/4(Bg)
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16 J.-G. Bak, D. M. Oberlin and A. Seeger [16]

whenever (pl_l, cee pgl) € X(A,, Bp). Summing over the permutations 7 € Sy
then yields

d
[17
i=1

<CWd, p)ovP/? (ca_l.A(Rd3, M, c/d))

L4/4(Bg)
1=9(p) d

I f7w! Pl oy (3.15)
=1

J

We now use applications of Holder’s inequality and Christ’s multilinear trick for
the g4-linear expression ]_[?il T f;, exactly as in [2, Section 6]. This yields

qd
[177

i=1

< o —4a¥(p)/2d
L4/9d (Bg)

qd
2
x (co VAR, M, o /d)) 1= TT i1 O PICCHOP g

i=1
Since p < g4 < g this implies (for f; = f) that
ITfllacsr) < Cd, p, g)o~ P/
_ _ 2
x (co T A(RA?, M, o /d))! TP £l @ P EFDR L (3.16)

provided that ¢ € IC  p for some M < co. Observe that from the definition of A we
get

A(Rd*, M, ¢/d)) < Cq p AR, M, ©)
and thus (3.16) implies that
A(R, M, ¢) <C(d, p)AR, M, ¢)17?)/d5=0(p)/2d
which by (3.12) yields (3.3).

4. Examples of curves covered by Theorem 1.1

4.1. Condition (1.6) (and a fortiori condition (1.4)) holds for ¢ (¢) = t# and the
required monotonicity of the first d derivatives holds if 8 > d — 1.

4.2.  Consider the function ¢ () = exp(—t‘ﬁ ) for t > 0. Then induction shows that
d
o@D (1) = ple=t ™ —dB+D <1 + Z aj dtjﬂ)
j=1

and the coefficients satisfy the recursive relation

a1 =B apg — a—1a(d +1—k+d/B)
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[17] Restriction of Fourier transforms to curves, 11 17

ifk<d-—1and
aq.d+1 = —aq—1,4(1 +d/B)

if k =d. It is obvious that, if A > 1, then condition (1.6) is satisfied on a (small)
interval (0, c(A)).

4.3. Suppose that

d 1/d
(Hg(Sj)> <g(Ysy. . sq) forO<s; <smp<---<s5 <00,
j=1

and g is nonnegative and increasing. Set f,(s) =exp(—1/g(s)). Then we also have,
fors = (]_[fl=1 s,

d 1/d
fo®) = exp(~1/g() = exp(—(l"[ l/g(sj)) )
j=1

L d 1/d
ZCXP<—3X2 > = <l_[1 fg(Sj)) .
j= j=

g(sj)

Thus if the first 4 derivatives of a function ¢ are nonnegative and increasing on (0, co)
and if ¢ satisfies (1.6) with A = 1, then the same conditions are satisfied by

t
Y(t) = f (t —w)* " exp(—1/¢ D (w)) du.
0

As mentioned in the introduction, this leads to a sequence of progressively flatter
functions mentioned following the statement of Theorem 1.1.

4.4. Similarly, suppose that

d 1/d
(1_[ g(sj-)> <g(Ysi . sq) for0<a<s;<sx<---<sq<b.
j=1

Assume also that g(s) > e if s € (a, b). Then

d yd | d
(H log(g(Sj))> < p Z log(g(s;))
j:l

Jj=1

d 1/d
= log(l_[ g(Sj)) < log(g(¥/s1- .- 54)).
j=1

Againif Y (1) = [ (t — w)? " log(¢ D () du, if $V)(s) > e and ¢@ is nondecreas-
ing on (a, b), then condition (1.6) with A = 1 for ¢ implies (1.6) with A =1 for /.
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18 J.-G. Bak, D. M. Oberlin and A. Seeger [18]

5. Proof of Theorem 1.2
First assume that (1.7) holds. We will establish (1.8). For A > 1 define

b
T, f(x)= x(x)/ f(t)e—iMx,y(t» dr.

where x is the characteristic function of a set of diameter 1.

DEFINITION. For —oo <a <b < oo and o > 0, let C, (o) be the class of all real-
valued functions ¢ defined on (a, b) for which:

i o¢e Cd((a, b)) and the derivatives ¢, ..., ¢>(d) are nonnegative and non-
decreasing on (a, b); and
(i1) the inequality

d)(d_l)(s) _ d)(d_l)(t) > O_—(l/ol)(s _ t)(l/a)+1—d(d+1)/2 (51)
holds for all s and 7 such thata <t < s < b.

Withg =1+ 1/« and for A > 1, 0 > 0 and large r, define

B=B(, 0,r):=2"" sup sup T3Sl g ey
¢€Cap (@) 11f L4 (a,p)=1
—r<a<b<r

By duality and Lemma 5.1 below, (1.8) is a consequence of the following estimate:
B, o,r) < C(d, a) o'/, (5.2)
LEMMA 5.1. If(1.7) holds for all parallelepipeds E in R then the inequality

BV (s — py(/e+1=d@+D/2 < y@=D gy _ g@d=D

holds whenevera <t < s < b.

We shall give the proof in Section 6.
To begin the proof of (5.2), fix a, b, o, and ¢ € C, (o) and then define

My (f1, - fa)(x)

H T f;(x)

QU

—x(x)/dlf M X v th) l_[f(s+h yds dhy . ..dha_1,
R Ty

j=1

where our convention now is that 4y = 0 and Zj, is the (possibly empty) intersection
of the d intervals (a — hj, b — h;). In what follows we will further simplify the
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notation by writing h = (hy, ..., hg—1) and I'(s, h) = Z?:l y(s + h;). With an eye
to decomposing the multilinear operator M, we define

uy= [T thi=hjl=hi...haer [T 1hi =yl

I<i<j=d I<i<j<d-1

and

(1/a)—d(d+1)/2
K =ut( sup |h— 1) .

I<i<j<d
Note that K is homogeneous of degree al—d. Now, form € Z, let
Sp={heR 27" < K(h) <27™)

and, following [1], define

d
My (fi - fa) () = x(x) / / e ML fi(s + hy) ds dh.
m < Lh j=1

We will need to observe that
Ma—1(Sy) < C(d, a) 27md=De/(1=de), (5.3)

By homogeneity, it is enough to check that my_1({h | K(h) <1}) <C(d). Since
a <2/(d*+d),

{h1K(h) =1} C ({hluCh) =1} U{h|sup |h;| <1},
and so it is enough to check that
mq—1({h |u(h) < 1}) < C(d). (5.4
But it follows from [8] (see [2, Proposition 2.4(i)]) that
mg—1({h|0<h; <---<hg—1; uth) <1} <C(d)

andsomg—1({h:0 <hj |u(h) <1}) < C’'(d). Since

[T Whl=1rili< J]  1hi = hjl=u,

I<i<j=<d I<i<j=d

(5.4) follows.
Now considerations similar to those that led to (3.7) show that

['(s, h) = v(h) +dAM)Y (s + h, h),

https://doi.org/10.1017/51446788708000578 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788708000578

20 J.-G. Bak, D. M. Oberlin and A. Seeger [20]

yhere v(h) is a vector, 2 (k) is a matrix with entries 1 on the diagonal and 0 below,
h= Z‘;Zl hj/d, and

52 Sdfl

y(s,h):(s, CREREE 7

(s, h))

with
~ 1 & _
b5, h) =~ D ol —h+hy).
i=1

Since (5.1) holds for ¢, it holds as well for each 5(-, h). Therefore we have the
estimate

Hx /I e ML) £y ds <A YIBWM, o, ) | fllLa,)-
h

L4 (R4)

Taking (5.3) into consideration, an application of Minkowski’s inequality thus yields

“M)»,m(fla e fd)”Lq,OO(Rd)
d—1
< C(d, )2~ B, 0, r) 27D fy T flloos (5.5)
j=1

where || - ||; stands for the norm in LY (a, b).

Let J(s, h) stand for the absolute value of the Jacobi determinant of the
transformation (s, h) — ['(s, h) (defined on {(s, h):s € Z,}). To obtain an L2
estimate for M, _,,, we will need the following inequality:

J(s, h) > c(d) o~ VYK (h). (5.6)

This inequality follows from (5.1) and the next lemma whose proof is given
in Section 6.

LEMMA 5.2. Suppose that the inequality
c(s =1 =¢ " V(s) =9 Do) (5.7)

holds for some p > 0 and for a <t < s < b. Then there is also the inequality

p—1
c(d)cu(h)( sup |h,~—hj|) < JGs, h)

I<i<j<d

whenever s € 1y,
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Now the transformation (s, k) — I['(s, &) is at most d! to one almost everywhere,

SO
) d 2
! , _
IMsm (f1s -5 Sl gay < d! /Sm /Ih jl:[l fiGs+hj) TG ds dh.
Applying (5.6) and recalling (5.3), we obtain
I Mum(frs - f)ll2wa)
d—1
< C(d, ) 27U g2 prlI=CA=DARA=AN) ) TT 1 filloo- (5:8)
j=1
Interpolating the estimates (5.5) and (5.8) yields that
Mo m (frs ooy Ja)ll Lasd.oomay
d—1
< C(d, @) 2~ @D/ BG 6 )@ fyllgsa [T 1£illoes (5:9)
j=1
with
1—Q2d—-1
e i LY
l -«

If one uses Bourgain’s interpolation argument in [3] (see also [4, appendix]) then one
actually obtains an estimate for the sum M, = Zm M, ., namely,

”M)»(fl’ ey fd)”Lq/d,oc(Rd)
d—1
< C(d, o) A~ DI B o 1@ fllgran [ 1£illse- (5.10)
j=1

To arrive at (5.10) it suffices to prove this bound for f; = xy, the characteristic
function of a measurable set U. One then uses (5.8) to estimate the size of the set
where |sz§ﬁMA,m(f1, ..., fa—1, xu)| = s, and one uses (5.5) to estimate the size
of the set where |sz>,3MA,m(f1» wevs fa—1, xu)| = s; here > 0 will be suitably
chosen. This leads to

> 2s }>

d—1
<2|U] [ad, @)ls™1B(, o, )1 g~ @D/ 04 T 14
i=1

d—1
+Cd, ot)zsfzoU“ﬂ*(l*(mfl)a)/(lfda) l_[ Il fi |I§0],
i=1

> My f(x)
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22 J.-G. Bak, D. M. Oberlin and A. Seeger [22]

and the estimate (5.10) follows by choosing the optimal §. Equation (5.10) gives

d
[175
j=1

L(/d),00(Rd)

d
< C(d, @)}~ @D/ BG o 1@ fillggan T 1£illoer (5.11)
j=2

and if we take for all f; the same characteristic function of a set we also get

Now fix an integer N > g. Applying a version of Holder’s inequality (see [2, (2.1)])
and permuting the functions, (5.11) and (5.12) yield

<Cd, a) A~V D@D B o, )@ g (5.12)

q,00

T.f

N
1_[ L. fj
j=1 La/N.oo(Rd)
N
< C(d, o) AN GNU=DIEdD B o pyNO@M T £ g
j=1
when (ql_l, e, q&l) is one of the N points Q; in RY defined as follows: Q

is the point with the first component d/g, the next d — 1 components 0, and the
remaining N — d components equal to 1/g; Q5 is obtained by shifting the components
of O to the right by one and moving the last component to the front; and so on.
Here L°! should be interpreted as L>°. Applying Christ’s multilinear trick (for
multilinear operators with values in the quasi-normed ¢/N-convex space L4/N-%,
see [2, Proposition 2.3] and also [11]), these estimates yield

N
[177
j=1 La/N-20 (RY)
N
S C(d, a) )\‘—Nd/q O-N(d—l)/(d—d()l) B()‘" o, r)N(S(O()/d 1_[ ”f]”qu’rj
j=1
when (ql_l, cey q,;l) is in the interior of the convex hull £ of Q1, ..., Qy and when
the r; € [1, o] satisfy 29;1 1/rj = N/q. Note that the point (1/¢, ..., 1/q) is the

center of X. Hence, taking f; = f and g; = r; = g, we obtain
15 fl aoo gy < C(d, @) A=Y 6@ D@40 B 6 r)> 1) £y
Therefore, by the definition of B(), o, r),
B, 0,1) < C(d, a) o =D/~ B 5 p)P@/d,
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[23] Restriction of Fourier transforms to curves, 11 23

Recalling the definition of §, some algebra yields (5.2). Thus (1.8) is established.

Now for the converse, we assume that (1.9) holds with 1/ P’ = o/ Q and will show
that (1.7) holds with B replaced by C(d, p)B. Fixan f € C° (R%) with Jf nonnegative
and equal to 1 on [0, 1]¢. Consider a parallelepiped

d
E=x¢+ {thxj-

j=l1

Oftjfl}

and fix a linear isomorphism 7 of R? that satisfies

d

7([0, 11%) = {thxj

j=1

Ogtjgl}.

Let g be defined by g(x) = f(T~!(x — x¢)) so that g is nonnegative and equal to 1
on E. Then a computation shows that ||gllrge) = mg(E)'/P I f P ey I (1.9)
holds then it follows that

b 1/0 ;o
ME)Q < ( f 12y ()¢ dr) < BYCma(EYY" || fll e gay-
a

Since 1/P’ = a/Q this yields (1.7) with B replaced by ||f||gp(Rd)B and therefore
completes the proof of Theorem 1.2.

6. Proofs of Lemmas 5.1 and 5.2

PROOF OF LEMMA 5.1. Write s =t + h and let E;_> be the parallelogram in R>
with vertices

Pi=(t, D)), Py=P| —pey,
Py=(t+h, ¢ "2 +h), Py=P+ pe,

where
p=he“" Vit +n) +¢“2) - P +h) >0,

so that q&(d_])(t + h) is the slope of the line segments P, P; and Py P4. Then (as a
sketch will show)

t+h
my(Eq_2) <2 / 9D(0) + 9D+ h)(s — 1) — 64D (5)) ds

t

t+h ps
=2/ f @9V +h) — VW) du ds
t 1

t+h ps
< 2f f 9D + ) — ¢ V(1)) du ds
t t
=@V +n) — V(). (6.1)

We now prove the following claim.

https://doi.org/10.1017/51446788708000578 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788708000578

24 J.-G. Bak, D. M. Oberlin and A. Seeger [24]

Claim. For 2 <k <d,

_ E g if2<k<d-—1
(d—k) f<s<t4hlcC {ea—i} X Eaq—k <k=< , 6.2
@l ssstehcy - — (6.2)
where {e1, . . ., e4) is the standard basis in R? and E4_j is a parallelepiped in R¥ with
mi(Eq—) = h% 22D 4y — D)), (6.3)

The above calculation (6.1) verifies this claim for k =2, and all d > 2. We argue
by induction on k and assume that 3 < k < d and that the induction hypothesis is true
fork — 1.

Now suppose that s € [¢, t + h]. Then

N
y ) =y P = / y D @) du
t
belongs to

Odg—k x (s —t)({eq—k+1} X Eqg—k+1)
COui x{ul,x) eRxR-10<u<h,xe Eq_kt1},

where Oy4_ denotes the origin in R4=* and where Oy_y is omitted if k = d.
Let x( be any point of Eg_; 1 in R¥~! The set

Eqi:={(,x) —v(l, x0) | x € Eg_s1, 0<v <1}

is a parallelepiped in R that satisfies mk(Ed,k) =my—_1(Eg—k+1), which contains Oy
and {(1, x) : x € E4_r+1}, and which therefore (by convexity) contains

{u(l, x) |10<u =<1, x€Egrs1}.

Thus, with
k=1
! (d—k) =
Eqr:=1\t,..., @ @) )+uy|0<u<h, yeEqg_iy,
(k—1)!
we have

{eq—i} X Eq—y if3<k<d,

@Ryt <s<t+hc
OPw s sibn o

where E;_y is a parallelepiped in R¥ and

m(Eq—) = h*my_1(Eq—+1).
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Since my_1(Egiz1) < hlED*+E=D=212(6@=D ¢ 4 ) — $@=D (7)) we also ob-
tain

mi(Eq—i) < R+ @D 4y — @D (1))

and the claim is proved.
Finally, if we apply the claim for k = d and note that A(Ep) > h, (1.7) yields the
conclusion of the lemma. O

PROOF OF LEMMA 5.2. We begin by noting an inequality for the Vandermonde
determinant (2.1), namely that, if §>0 and ;1 <---<t,, then (with u =
(Ml, ] Mn—l))

153 13 In
/ / / Vi—1(u)(u,—1 —ul)‘s duy_1...du
3] 15} th—1

>Cn) Vo(ty, ..., 1) (tn — 11)°. (6.4)

To see (6.4), we observe that the left-hand side is bounded below by

(t1+0)/2 ri3 1 [l
/ / . f / V1) (up—1 — u1)® du
1 153 th—2 J(tn—1t12)/2
ty — 1 8§ rti+n)/2 pn3 =1 [l
> ( > / f - f f Vi_1(u) du.
2 1 ) th—a J(tp1+ta)/2

Now we also use (2.14), and together with the estimate

(t1+0)/2 pta n=2
/ f Wy —up) [l = un)@nr = u )l dup—y duy
h ( j=2

n—1+1n)/2

1 t tn n—2
> 7 / / (p—1—uy) H[(uj —uy)(up—1 —uj)lduy—y duy,
n In—1 j=2

this yields (6.4).

Now assume that the inequality (5.7) holds if a <s <t < b and let Ji(t1, . . ., tx;
¢(d*k)) be defined as in Lemma (2.3), that is, as the determinant of the k x k
matrix with columns (1, ¢;, ..., t;.‘_z/(k —2)!, ¢(d_k+1)(tj))T. We will show that,
if2<k<danda <t <--- <t <b,then

Ti(tr .ot 9970 = ekye Vi, . ) (e — 1) (6.5)

By choosing {¢;} to be a nondecreasing rearrangement of {s + 4}, the case k =d
of (6.5) will imply Lemma 5.2. If k =2 then (6.5) follows immediately from (5.7).
So, proceeding by induction, assume that (6.5) holds for k — 1. By (2.11)

Ti(tr, ..., e p97)
153 T
:/ f Ti—1(o1, ...,Uk_1;¢(d7k+l)) doy_1...doj.
3l k-1
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By our inductive assumption this exceeds
153 179 :
c(k—l)c/ / Vii1(o1, ..., 0k—1)(0k—1 —01)’ "' doy_y ...doy
I Tk—1
and so (6.4) gives (6.5), completing the proof of Lemma 5.2. O

7. Further results

In this section we gather some results about Fourier restriction with respect to
Euclidean arclength measure on curves, mainly focusing on degenerate homogeneous
curves. For related arguments, see [8, 12, 13].

7.1. Homogeneous curves The following result follows by rescaling techniques
from the result in [2] on nondegenerate curves (analogous to (1.1)). Let

y(6) =@, 12, ), (7.1)

where d > 3, and —o0 < a; <a2<---<ad<oo,andAai7éO,i:1,...,d. We let
‘R be the Fourier restriction operator, setting R f(t) = f(y(¢)). Let

D=ai+a+ - +ay

be the homogeneous’ dimension and assume that D > d(d + 1)/2.

PROPOSITION 7.1. Let pg = (d* +d +2)/(d*> +d) and y be as in (7.1). Then R is
of restricted weak type (pa, p);/D),

IR AU 1yooe gy < €@ @l fll o (1.2)

PROOE. Define

R f)(@0) = Fy () x1, (1)

where I} = [27%~1, 27k]. We may use the nonisotropic dilations adapted to the curve
to rescale the result in the nondegenerate case [2, Theorem 1.1]; we obtain

IR f Nl Lraqary < C2APTDAWP= gy . (7.3)

Let Dy =d(d + 1)/2 and fix 0 < go < p;/D. Since 1/qo > D/p); > Do/p); =1/ pa,
by Holder’s inequality the last estimate implies that

IR f Nl a0y < C27HAO=PA=L £ 1 (74)

Since (D+ 1)/(p)) — 1> (Do+ 1)/(p)) —1=0, an application of Bourgain’s
interpolation lemma to (7.3) and (7.4) gives the assertion. O

https://doi.org/10.1017/51446788708000578 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788708000578

[27] Restriction of Fourier transforms to curves, 11 27

7.2. An improvement For some very specific classes we can improve the second
Lorentz exponent on the left-hand side of (7.2).
We now suppose the stronger restricted strong type estimate

IRf N Lraqwar < Clf llpa.ts (7.5)

where w dt is affine arclength measure. We assume that

1/w € L**°(dr) (7.6)
for some s € (0, 00). Define g by

1 1 1

—-—=— 4+ —. (7.7)
q Pd  SPd

Then as in [8] one can use the Lorentz space multiplication theorem [10, Theorem 4.5],
and it follows that

IR fllzaraan = I(REWYPL - w™YPd| g.pg g0
< CIR AW P oaary w™ P4 pspaoo ar)
1,1
= Cllw™ " 1% 4 IR S ra o any-

Hence (7.5) and (7.6) imply that, for g as in (7.7),

IRfNlLapacary = ClLf Nl pg.t- (7.8)

COROLLARY 7.2. Let y(t) = (t, t%, >*~1) with « >1. Then R maps L7/®!
boundedly to L7/©).7/6,

PROOF. Note that D =6« > 6= Dy. Also one computes w(t) = c(a)t*~ 1 with
c(a) #£ 0 so that wl e LS for s = 1/(a — 1). By [2, Theorem 1.4] it follows that
(7.5) holds with p3 = 7/6, so that the assertion follows. d

7.3. L? — L7 bounds Finally, let us suppose that, instead of (7.5), the estimate

IR fllLoqwan < Cllfll, (7.9)

holds for 1/p + 1/(DpQ) =1, and 1/w € L**°(dr) with 1 < p < py and some s €
(0, 00). Then an argument similar to the one given above together with an interpolation
show that

IR fllLar@n <CIflp
for 1 < p < pg and

1+ s _q
p (s +1)Dog
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