
Adv. Appl. Prob. 38, 729–749 (2006)
Printed in Northern Ireland

© Applied Probability Trust 2006

AN ITERATIVE METHOD FOR MULTIPLE
STOPPING: CONVERGENCE AND STABILITY

CHRISTIAN BENDER ∗ ∗∗ and

JOHN SCHOENMAKERS,∗ Weierstrass Institute for Applied Analysis and Stochastics

Abstract

We present a new iterative procedure for solving the multiple stopping problem in discrete
time and discuss the stability of the algorithm. The algorithm produces monotonically
increasing approximations of the Snell envelope which coincide with the Snell envelope
after finitely many steps. Unlike backward dynamic programming, the algorithm
allows us to calculate approximative solutions with only a few nestings of conditional
expectations and is, therefore, tailor-made for a plain Monte Carlo implementation.
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1. Introduction

Financial derivatives with several early exercise rights play an important role in different
markets, e.g. in electricity markets (swing options) and interest rate markets (chooser flexible
caps). The pricing problem for such instruments is equivalent to a multiple stopping problem
which is usually solved in practice using trinomial forests; see Jaillet et al. (2004) and the
references therein. However, this pricing procedure is restricted to models for low-dimensional
underlying processes, as trees tend to explode as the dimension of the underlying process
increases (the so-called curse of dimensionality).

Obviously, multiple callable instruments with respect to a high-dimensional interest rate
model such as the popular LIBOR market model and multiple callable options on a basket of
several assets do not meet this restriction. New pricing methods for instruments with early
exercise opportunities, based on high-dimensional underlying processes, are therefore called
for.

Only in recent years have several approaches been proposed to overcome the curse of
dimensionality for American-style derivatives, that is, in the case of a single exercise right.
These methods basically rely on Monte Carlo simulation and can be roughly divided into three
groups. The first group directly employs a recursive scheme for solving the stopping problem,
known as backward dynamic programming. Different techniques are applied to approximate
the nested conditional expectations. The stochastic mesh method of Broadie and Glasserman
(2004) and Broadie et al. (2000) and the least-squares regression method of Longstaff and
Schwartz (2001) are among the most popular approaches in this group. An alternative to
backward dynamic programming is to approximate the exercise boundary by simulation; see,
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e.g. Andersen (1999), Ibáñez and Zapatero (2004), and Milstein et al. (2004). The third group
relies on a dual approach developed by Rogers (2002), Haugh and Kogan (2004), and, in a
multiplicative setting, by Jamshidian (2006). By duality, tight upper bounds may be constructed
from given approximative processes.

The methods in these three categories can be transferred from applying to one exercise
opportunity to applying to several, because the multiple stopping problem is equivalent to a
system of nested single stopping problems. Meinshausen and Hambly (2004) suggested an
extension to several exercise rights of the Longstaff and Schwartz (2001) algorithm along these
lines. Their main contribution was a derivation of the dual formulation under several exercise
rights. Ibáñez (2004) presented a generalization to multiple exercise opportunities of the results
of Ibáñez and Zapatero (2004).

The results of the present paper are twofold. First, we suggest an algorithm for the multiple
stopping problem which generalizes a procedure recently introduced by Kolodko and Schoen-
makers (2006) for the single stopping problem. Second, we analyze stability of the algorithm
under one exercise right as well as under several.

Policy-improvement algorithms, such as the one proposed by Kolodko and Schoenmakers
(2006), address one of the main drawbacks of the backward dynamic programming scheme.
Suppose that exercise can take place at one of k time instances. Then, in order to obtain the
value of the optimal stopping problem via backward dynamic programming, one has to calculate
nested conditional expectations of order k. No approximation of the value at time 0 is available
prior to the evaluation of the kth nested conditional expectations. This prevents the use of plain
Monte Carlo simulations in approximating the conditional expectations and necessitates the use
of more complicated approximation procedures for these quantities. Contrarily, the algorithm
of Kolodko and Schoenmakers (2006) yields approximations of the value function at time 0 at
every iteration step, which monotonically increase to coincide with the Snell envelope. This
allows one to calculate approximations of the Snell envelope via a plain Monte Carlo simulation,
if the underlying process is Markovian. Indeed, it was shown in Kolodko and Schoenmakers
(2006) that good approximations can be obtained even for very high-dimensional (d = 40!)
problems.

In fact, the main advantage of the algorithm of Kolodko and Schoenmakers (2006) would
be lost if a multiexercise version were straightforwardly defined as a nesting of one-exercise
versions. This would produce nested conditional expectations at each iteration step and, thus,
again prevent the use of a plain Monte Carlo implementation. Instead, we present a multiple
exercise version of the policy-improvement algorithm in such a way that the order of nestings
does not depend on the number of exercise rights. It is therefore tailored for plain Monte Carlo
simulation of the conditional expectations. We also prove that the algorithm coincides with
the Snell envelope under L exercise rights after the same number of iterations as are needed
for the nested dynamic programming algorithm proposed in Carmona and Touzi (2006). This
shows that our algorithm is theoretically as good as backward dynamic programming, and may
be superior from a practical point of view.

The second contribution of our paper is a stability analysis for the policy-improvement
algorithm of Kolodko and Schoenmakers (2006) and its multiexercise extension. In the case of
a single exercise right, the stability result can be put into words as follows (recall that one can
think of the stopping problem as that of an investor trying to maximize his expected gain). The
shortfall of the investor’s expected gain corresponding to m steps of the perturbed algorithm
below the expected gain corresponding to m steps of the theoretical algorithm converges to 0.
Surprisingly, it can happen that the perturbed algorithm performs better than the theoretical one
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(as is shown in Example 4.1, below). A similar result is obtained in the multiexercise case. This
stability analysis provides a rigorous basis for a Monte Carlo implementation of the algorithms.

Finally, we note that standard policy iterations for dynamic programming (see, e.g. Puterman
(1994), Kushner and Dupuis (2001), and Bertsekas (2001)) are based on lower approximations
of the continuation value due to a (suboptimal) strategy. In contrast, the multiple stopping
problem involves a lower approximation of the continuation value and the cash flow, and,
hence, a lower approximation on both sides of the inequality in the exercise criterion. The
approximation of the cash flow is crucial to avoid additional nestings of conditional expectations
and, therefore, reduces the computational complexity. In fact, in our algorithm both lower
approximations are calculated by means of the same (suboptimal) strategy and the monotone
improvement property is nonetheless established.

The paper is organized as follows. In Section 2 we pose the multiple stopping problem and
explain its connection to the single stopping problem. Then, in Section 3, we state the multiple
exercise algorithm and prove its convergence. In particular, in Subsections 3.2 and 3.3 we
put our main emphasis on the analysis of the building blocks of the algorithm, called one-step
improvements. The results of Subsections 3.2 and 3.3 are crucial for the discussion of stability
in Section 4.

2. On the multiple stopping problem

Suppose that (Z(i) : i = 0, 1, . . . , k) is a nonnegative stochastic process in discrete time on
a probability space (�, F , P) adapted to some filtration (Fi : 0 ≤ i ≤ k) which satisfies

k∑
i=1

E[|Z(i)|] < ∞.

We may think of the process Z as a cash flow which an investor may exercise L times. The
investor’s problem is to maximize his expected gain by exercising optimally. He is subjected to
the additional constraint that he has to wait a minimal time δ ∈ N between exercising two rights.
The introduction of δ avoids mathematical trivialities, as without it the investor could exercise
all rights at the same time. To emphasize that the introduction of δ is not a mathematical oddity,
we will refer to δ as the refracting period, following the terminology of swing options.

We now formalize the multiple stopping problem. For notational convenience we trivially
extend the cash flow process by definingZ(i) = 0 andFi = Fk , for i > k. Let us defineSi (L, δ)

as the set of Fi stopping vectors (τ1(i), . . . , τL(i)) such that i ≤ τ1(i) and τj−1(i) + δ ≤ τj (i)

for all j, 2 ≤ j ≤ L. The multiple stopping problem may then be stated as follows: find a
family of stopping vectors τ ∗(i) ∈ Si (L, δ) such that, for 0 ≤ i ≤ k,

EFi

[ L∑
j=1

Z(τ ∗
j (i))

]
= ess sup

τ∈Si (L,δ)

EFi

[ L∑
j=1

Z(τj )

]
.

The process on the right-hand side is called the Snell envelope of Z under L exercise rights and
we denote it by Y ∗

L(i). We sometimes write Y ∗(i) for Y ∗
1 (i).

The case of one exercise right, L = 1, is very well studied. We here collect the following
facts, which can be found in Neveu (1975, pp. 122–124).

1. The Snell envelope, Y ∗, of Z under one exercise right is the smallest supermartingale
that dominates Z.
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2. A family of optimal stopping times for the stopping problem with one exercise right is
given by

τ ∗(i) = inf{j : j ≥ i, Z(j) ≥ EFj [Y ∗(j + 1)]}, 0 ≤ i ≤ k.

If several optimal stopping families exist, then the above family is the family of smallest
optimal stopping times.

The multiple stopping problem can be reduced to L nested stopping problems with one
exercise right. We briefly explain the reduction.

Define a sequence of processes (X0, . . . , XL, . . . ) as follows: X0 := 0, X1 := Y ∗
1 is the Snell

envelope of Z, and XL, L ≥ 2, is the Snell envelope of the cash flow Z(i)+ EFi [XL−1(i + δ)]
under one exercise right. For L = 1, 2, . . . , we also define

σ ∗
L(i) = inf{j : j ≥ i, Z(j) + EFj [XL−1(j + δ)] ≥ EFj [XL(j + 1)]}, i ≥ 0, (2.1)

i.e. the smallest optimal stopping families for the sequence of single stopping problems. It is
straightforward to show, by induction on L, that

Y ∗
L(i) = XL(i), 1 ≤ i ≤ k, (2.2)

and that a family of optimal stopping vectors for the multiple stopping problem with L exercise
rights and cash flow Z is given by

τ ∗
1,L(i) = σ ∗

L(i),

τ ∗
d+1,L(i) = τ ∗

d,L−1(σ
∗
L(i) + δ), 1 ≤ d ≤ L − 1. (2.3)

Note that, due to the convention that Z(i) = 0 for i > k, we have τ ∗
1,L(i) = σ ∗

L(i) = i for
i ≥ k.

By the above reduction, any algorithm for single optimal stopping problems can, in principle,
be applied iteratively to the multiple stopping problem. For example, Carmona and Touzi (2006)
suggested applying backward dynamic programming iteratively to the L stopping problems.
However, this approach leads to high nestings of conditional expectations and, as a consequence,
to tremendous simulation costs in a plain Monte Carlo approach.

3. An algorithm for multiple stopping

3.1. The algorithm

We are now going to present an algorithm which simultaneously improves the Snell envelope
under L = 1, . . . , D exercise rights, with the order of nested conditional expectations for a
given number of iterations independent of L. In the case of a single exercise right it coincides
with the procedure of Kolodko and Schoenmakers (2006). The building block of the algorithm
is, as in the case of one exercise right, a policy improvement. More precisely, suppose that we
are given the families of stopping times σL(i), 0 ≤ i ≤ k, 1 ≤ L ≤ D, trivially extended by
defining σL(i) = i for i > k. Recall that k is the time horizon of the real cash flow process. We
are interested in the Snell envelope with L, 1 ≤ L ≤ D, exercise rights and refracting period δ.
We interpret σL(i) as the time at which the investor exercises (possibly in a suboptimal way)
the first of his L rights, given that he has not exercised any prior to time i. This interpretation
requires that the stopping families σL under consideration be consistent in the sense of the
following definition.
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Definition 3.1. A family of integer-valued stopping times (τ (i) : 0 ≤ i ≤ k) is said to be
consistent if, for 0 ≤ i < k,

i ≤ τ(i) ≤ k, τ (k) := k,

τ (i) > i �⇒ τ(i) = τ(i + 1). (3.1)

Given consistent stopping families σL, L = 1, 2, . . . , we define associated stopping fami-
lies τd+1,L via

τ1,L(i) = σL(i),

τd+1,L(i) = τd,L−1(σL(i) + δ), 1 ≤ d ≤ L − 1. (3.2)

We can interpret τd,L(i) as the time at which the investor exercises the dth of his L exercise
rights, provided that he has not exercised his first right prior to time i. An approximation of the
Snell envelope with L exercise rights is now given by

YL(i; σ1, . . . , σL) := EFi

[ L∑
d=1

Z(τd,L(i))

]
. (3.3)

Note that YL(i; σ1, . . . , σL) has a simple interpretation as the expected gain (conditional on Fi)
the investor obtains when he employs the stopping families σ1, . . . , σL in exercising the cash
flows. We then introduce intermediate processes,

ŶL(i; σ1, . . . , σL) := max
i+1≤p≤k

EFi

[ L∑
d=1

Z(τd,L(p))

]
, (3.4)

on which a further exercise criterion,

σ̃L(i) := inf{j : j ≥ i, Z(j)+EFj [YL−1(j+δ; σ1, . . . , σL−1)] ≥ ŶL(j ; σ1, . . . , σL)}, (3.5)

is built with Y0(i) := 0. Note that σ̃L(k) = k since max ∅ = −∞ and, obviously, that the
stopping families σ̃L are consistent for 1 ≤ L ≤ D.

Given consistent starting families of stopping times σ
(0)
L , 1 ≤ L ≤ D, we iteratively define

σ
(m)
L (i) := σ̃

(m−1)
L (i),

Y
(m)
L (i) := YL(i; σ

(m)
1 , . . . , σ

(m)
L ). (3.6)

Here σ̃
(·)
L is the result of applying the tilde operation to σ

(·)
L . Similar notation is used below.

Canonical consistent starting families are given, for instance, by σ
(0)
L (i) = i, L = 1, 2, . . . .

Theorem 3.1. Suppose that the stopping families σ
(0)
L (i) are consistent for all L, 1 ≤ L ≤ D.

Then, for all m ∈ N, L, 1 ≤ L ≤ D, and i, 0 ≤ i ≤ k,

Y
(m+1)
L (i) ≥ Y

(m)
L (i).

Moreover, for m ≥ k − i,

Y
(m)
L (i) = Y ∗

L(i),

where Y ∗
L denotes the Snell envelope of Z under L exercise rights.
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The dynamic programming scheme suggests defining another approximation of the Snell
envelope, namely

yL(i; σ1, . . . , σL) := max{Z(i) + EFj [YL−1(i + δ; σ1, . . . , σL−1)],
EFi [YL(i + 1; σ1, . . . , σL)]}, 1 ≤ L ≤ D, 0 ≤ i ≤ k, (3.7)

given consistent stopping families σ1, . . . , σD . Based on yL, we will also consider the modified
algorithm

σ
(m)
L (i) := σ̃

(m−1)
L (i),

y
(m)
L (i) := yL(i; σ

(m)
1 , . . . , σ

(m)
L ), (3.8)

with the same stopping families σ
(m)
L as in (3.6). The approximation yL does not admit as

intuitive an interpretation as does YL, but the modified algorithm yields better approximations
than the one based on YL.

Theorem 3.2. All assertions of Theorem 3.1 hold with Y
(m)
L replaced by y

(m)
L . Moreover, for

all m ∈ N, L, 1 ≤ L ≤ D and i, 0 ≤ i ≤ k,

y
(m)
L (i) ≥ Y

(m)
L (i)

(provided that both algorithms are initiated with the same stopping families).

We prove Theorems 3.1 and 3.2 in Subsection 3.4. Before we scrutinize the building blocks
of the algorithm, which we will refer to as one-step improvements in the following subsections,
let us briefly discuss the implementation of the algorithm.

3.1.1. On the implementation of the algorithm. Although Theorems 3.1 and 3.2 state conver-
gence to the Snell envelope in finitely many steps, in practice only a few steps (not the whole
algorithm) may be calculated. In this respect the main benefit of the theorems is that every step
improves upon the previous one. Specifically, we recommend the following procedure, if the
underlying process has a Markovian structure.

1. Choose appropriate starting families. If no better choice is known a priori, start with the
canonical families σ

(0)
L (i) = i.

2. Apply the plain Monte Carlo estimator to approximate all (conditional) expectations in
the iteration steps based on (3.3) and (3.5), which are not known analytically.

3. The obtained approximations are (up to simulation error) lower bounds of the Snell
envelope. Upper bounds (up to simulation error) can be calculated from the lower bounds
by the dual method of Meinshausen and Hambly (2004).

More detailed information on the implementation, including a generalization of the pseudo-
code of Schoenmakers (2005, pp. 166ff.) to the case of two exercise rights, can be found in an
addendum provided online (Bender and Schoenmakers (2006)). Simulation results in the case
of a single exercise right were presented in Kolodko and Schoenmakers (2006) for a Bermudan
swaption on a 40-dimensional underlying.

3.2. A generalization of the one-step improvement in the case of one exercise right

We now investigate a single improvement step in the case of one exercise right and gener-
alize results of Kolodko and Schoenmakers (2006). These generalizations will be of crucial
importance in investigating the stability of the proposed algorithm in Section 4.
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Suppose that a consistent stopping family (τ (i) : 1 ≤ i ≤ k) is given. We then define the
process

Y (i; τ) := EFi [Z(τ(i))].
Based on the sequence (τ (i) : 1 ≤ i ≤ k), Kolodko and Schoenmakers (2006) constructed a
new family, (τ̃ (i) : 1 ≤ i ≤ k), in the following way. Introduce an intermediate process

Ỹ (i; τ) := max{p : i≤p≤k} EFi [Z(τ(p))],

which serves as a new exercise criterion, i.e.

τ̃ (i) := inf{j : i ≤ j ≤ k, Ỹ (j ; τ) ≤ Z(j)}
= inf

{
j : i ≤ j ≤ k, max{p : j≤p≤k} EFj [Z(τ(p))] ≤ Z(j)

}
, 0 ≤ i ≤ k.

Kolodko and Schoenmakers (2006, Theorem 3.1) showed that τ̃ is an improvement on τ in the
sense that the new strategy promises a higher expected gain for the investor than does the old
one, i.e. Y (i; τ̃ ) ≥ Ỹ (i; τ) ≥ Y (i; τ).

Our first aim is to extend this chain of inequalities to a wider class of stopping families
than τ̃ . To this end we first compare the intermediate processes Ỹ (i; τ) and

Ŷ (i; τ) := max{p : i+1≤p≤k} EFi [Z(τ(p))].

By 1A we denote the indicator function of the set A.

Lemma 3.1. Suppose the stopping family τ is consistent. Then, for 0 ≤ i ≤ k,

Ỹ (i; τ) = 1{τ(i)>i} Ŷ (i; τ) + 1{τ(i)=i} max{Ŷ (i; τ), Z(i)}. (3.9)

In particular,
Z(i) ≥ Ỹ (i; τ) ⇐⇒ Z(i) ≥ Ŷ (i; τ) (3.10)

and
τ̃ (i) = inf{j : i ≤ j ≤ k, Ŷ (j) ≤ Z(j)}. (3.11)

Proof. By property (3.1), we have

EFi [Z(τ(i))] = EFi [1{τ(i)=i} Z(i)] + EFi [1{τ(i)>i} Z(τ(i + 1))]
= 1{τ(i)=i} Z(i) + 1{τ(i)>i} EFi [Z(τ(i + 1))].

Since
Ỹ (i; τ) = max{Ŷ (i; τ), EFi [Z(τ(i))]},

(3.9) follows with (3.10) and (3.11) as immediate consequences.

We next define another stopping family, namely

τ̂ (i) := inf{j : i ≤ j ≤ k, Ŷ (j) < Z(j)}.
Clearly, by (3.11),

τ̂ (i) ≥ τ̃ (i).
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Theorem 3.3. Let (τ (i) : 1 ≤ i ≤ k) be a consistent stopping family. Suppose that (τ̄ (i) : 1 ≤
i ≤ k) is also consistent and satisfies

τ̃ (i) ≤ τ̄ (i) ≤ τ̂ (i), 0 ≤ i ≤ k. (3.12)

Then
Y (i; τ̄ ) ≥ Ỹ (i; τ) ≥ Y (i; τ), 0 ≤ i ≤ k.

Remark 3.1. Obviously, the choices τ̄ = τ̃ and τ̄ = τ̂ are examples of a family τ̄ satisfy-
ing (3.1) and (3.12).

Proof of Theorem 3.3. The right-hand inequality is trivial. We prove the left-hand inequality
by backward induction on i. For i = k, note that Y (k; τ̄ ) = Z(k) = Ỹ (k; τ). Now suppose
that 0 ≤ i ≤ k − 1 and that the assertion holds for i + 1. It holds that {τ̄ (i) = i} ⊂ {τ̃ (i) = i},
by (3.12). Hence, on the set {τ̄ (i) = i}, we obtain

Y (i; τ̄ ) = Z(i) ≥ Ỹ (i; τ).

However, on {τ̄ (i) > i} we have τ̄ (i) = τ̄ (i + 1) and the induction hypothesis thus yields

Y (i; τ̄ ) = EFi [Z(τ̄ (i + 1))] = EFi [Y (i + 1; τ̄ )] ≥ EFi [Ỹ (i + 1; τ)]
= EFi

[
max

i+1≤p≤k
EFi+1 [Z(τ(p))]

]
≥ max

i+1≤p≤k
EFi [Z(τ(p))]

= Ŷ (i; τ).

Property (3.12) implies that {τ̄ (i) > i} ⊂ {τ̂ (i) > i}. Thus, on {τ̄ (i) > i}, Ŷ (i; τ) ≥ Z(i) and,
by (3.9), Ŷ (i; τ) = Ỹ (i; τ).

Motivated by the previous theorem we introduce the notion of an improver.

Definition 3.2. Suppose that τ is a consistent stopping family. A stopping family τ̄ is called
an improver of τ if it is consistent and satisfies (3.12) for 0 ≤ i ≤ k.

The next theorem provides another justification for the name ‘improver’.

Theorem 3.4. Suppose that τ is a consistent stopping family and that τ̄ is an improver of τ .
Then

Y (i; τ) = Y ∗(i), i ≥ j + 1

implies that
Y (i; τ̄ ) = Y ∗(i), i ≥ j.

Proof. We will exploit the fact that the Snell envelope is the smallest supermartingale
dominating Z. By Theorem 3.3, for 0 ≤ i ≤ k − 1 we have

Y (i; τ̄ ) ≥ Ỹ (i; τ) ≥ EFi [Z(τ(i + 1))] = EFi [Y (i + 1; τ)].
Therefore, for j ≤ i ≤ k − 1,

Y (i; τ̄ ) ≥ EFi [Y ∗(i + 1)] ≥ EFi [Y (i + 1; τ̄ )].
This means that (Y (i; τ̄ ) : j ≤ i ≤ k) is a supermartingale. We may also deduce from Theo-
rem 3.3 that, for 0 ≤ i ≤ k,

Y (i; τ̄ ) ≥ 1{τ̄ (i)=i} Z(i) + 1{τ̄ (i)>i} Ỹ (i; τ).
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However, as in the proof of Theorem 3.3, we obtain

1{τ̄ (i)>i} Ỹ (i; τ) ≥ 1{τ̄ (i)>i} Ŷ (i; τ) ≥ 1{τ̄ (i)>i} Z(i).

Thus, (Y (i; τ̄ ) : j ≤ i ≤ k) is a supermartingale dominating Z. Therefore,

Y (i; τ̄ ) ≥ Y ∗(i) for i ≥ j.

Proving the reverse inequality is trivial.

Remark 3.2. The proof of the previous theorem shows that, for any improver τ̄ ,

Y (i; τ̄ ) ≥ Z(i), 0 ≤ i ≤ k. (3.13)

We end this section with a comparison between different improvers.

Proposition 3.1. Suppose that τ is consistent and that τ̄ is an improver of τ . Then, for all
0 ≤ i ≤ k,

Y (i; τ̂ ) ≥ Y (i; τ̄ ) ≥ Y (i; τ̃ ).

Proof. We prove only the right-hand inequality; the proof of the left-hand inequality is
similar. For i = k equality holds. Suppose that 0 ≤ i ≤ k − 1 and that the inequality holds
for i + 1. Then, on {τ̄ (i) > i} ∩ {τ̃ (i) > i},

Y (i; τ̄ ) = EFi [Y (i + 1; τ̄ )] ≥ EFi [Y (i + 1; τ̃ )] = Y (i; τ̃ )

by the induction hypothesis. On {τ̄ (i) > i} ∩ {τ̃ (i) = i} we have

Y (i; τ̄ ) ≥ Z(i) = Y (i; τ̃ )

by (3.13). Finally, the set {τ̄ (i) = i} ∩ {τ̃ (i) > i} is evanescent by the definition of an improver.

3.3. The one-step improvement in the case of several exercise rights

We now investigate the one-step improvement under several exercise rights defined in
(3.2)–(3.5). To this end, suppose that consistent stopping families σ1, . . . , σD are given.
The following obvious representations of YL(i; σ1, . . . , σL) and ŶL(i; σ1, . . . , σL) allow us
to extend Theorem 3.3 to the case of several exercise rights.

Lemma 3.2. For 2 ≤ L ≤ D and 0 ≤ i ≤ k, define

ZL(i; σ1, . . . , σL−1) = Z(i) + EFi [YL−1(i + δ; σ1, . . . , σL−1)].
Then

YL(i; σ1, . . . , σL) = EFi [ZL(σL(i); σ1, . . . , σL−1)],
ŶL(i; σ1, . . . , σL) = max

i+1≤p≤k
EFi [ZL(σL(p); σ1, . . . , σL−1)].

By the previous lemma, we may rewrite σ̃L (see (3.5)) as

σ̃L(i) = inf
{
j : j ≥ i, ZL(j ; σ1, . . . , σL−1) ≥ max

p≥j+1
EFj [ZL(σL(p); σ1, . . . , σL−1)]

}
,

for 0 ≤ i ≤ k. Consequently, the step from σL to σ̃L is a one-step improvement with one
exercise right and cash flow ZL( · ; σ1, . . . , σL−1).

As in the case of one exercise right, we also consider the stopping family

σ̂L(i) = inf
{
j : j ≥ i, ZL(j ; σ1, . . . , σL−1) > max

p≥j+1
EFj [ZL(σL(p); σ1, . . . , σL−1)]

}
,

for 0 ≤ i ≤ k.

https://doi.org/10.1239/aap/1158684999 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1158684999


738 C. BENDER AND J. SCHOENMAKERS

Definition 3.3. A stopping family σ̄L is said to be an L-improver of σL with respect to
(σ1, . . . , σL−1) if σ̄L is consistent and

σ̃L(i) ≤ σ̄L(i) ≤ σ̂L(i).

In an abuse of this terminology, we will simply speak of an improver when L and (σ1, . . . , σL−1)

are evident from the context.

We now state a generalization of Theorem 3.3 which justifies the name ‘improver’ here.

Theorem 3.5. Suppose that consistent stopping families σ1, . . . , σD with respective improvers
σ̄1, . . . , σ̄D are given. Then, for 1 ≤ L ≤ D, the following chain of inequalities holds:

YL(i; σ̄1, . . . , σ̄L) ≥ YL(i; σ1, . . . , σL−1, σ̄L)

≥ YL(i; σ1, . . . , σL−1, σ̃L)

≥ max{YL(i; σ1, . . . , σL), ŶL(i; σ1, . . . , σL)}.
Proof. By the previous considerations, σ̄L is also a 1-improver of σL with respect to the

cash flow ZL( · ; σ1, . . . , σL−1) (with the convention that Z1 = Z). In view of Lemma 3.2, the
second inequality follows from Proposition 3.1 and the third from Theorem 3.3. We will prove
the first inequality by induction on L. Note that the inequality is trivial for L = 1. The step
from L − 1 to L can be shown as follows. By Lemma 3.2, we have

YL(i; σ̄1, . . . , σ̄L) − YL(i; σ1, . . . , σL−1, σ̄L)

= EFi [Z(σ̄L(i)) + YL−1(σ̄L(i) + δ; σ̄1, . . . , σ̄L−1)]
− EFi [Z(σ̄L(i)) + YL−1(σ̄L(i) + δ; σ1, . . . , σL−1)]

= EFi [YL−1(σ̄L(i) + δ; σ̄1, . . . , σ̄L−1) − YL−1(σ̄L(i) + δ; σ1, . . . , σL−1)].
As the second and the third asserted inequalities are already proved, the induction hypothesis
(for the first inequality) implies that

YL−1(σ̄L(i) + δ; σ̄1, . . . , σ̄L−1) ≥ YL−1(σ̄L(i) + δ; σ1, . . . , σL−1).

Thus,
YL(i; σ̄1, . . . , σ̄L) − YL(i; σ1, . . . , σL−1, σ̄L) ≥ 0,

completing the proof.

The following corollary of the previous theorem follows simply from the definition of yL

in (3.7).

Corollary 3.1. Suppose that consistent stopping families σ1, . . . , σD with respective improvers
σ̄1, . . . , σ̄D are given. Then the following chain of inequalities holds for 1 ≤ L ≤ D:

yL(i; σ̄1, . . . , σ̄L) ≥ yL(i; σ1, . . . , σL−1, σ̄L)

≥ yL(i; σ1, . . . , σL−1, σ̃L)

≥ yL(i; σ1, . . . , σL).

We are now ready to give the proofs of Theorems 3.1 and 3.2.
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3.4. Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. The monotonicity assertion is a direct consequence of Theorem 3.5
since, by definition,

Y
(m)
L (i) = Y (i; σ

(m)
1 , . . . , σ

(m)
L ),

σ
(m+1)
d = σ̃

(m)
d , 1 ≤ d ≤ L.

Recall that the barred quantities in Theorem 3.5 can always be replaced with their tilded
counterparts according to the definition of an improver.

To prove the second assertion, we will show by backward induction on i that, for m + i ≥ k

and all L, 1 ≤ L ≤ D,
σ

(m)
L (i) = σ ∗

L(i), (3.14)

where the family of stopping families (σ ∗
1 , . . . , σ ∗

D) is that defined in (2.1). For i = k this claim
is obvious. Suppose that it holds for all j ≥ i + 1. Recall, in view of (2.3), that (σ ∗

1 , . . . , σ ∗
D)

induces an optimal strategy, i.e. that YL(i; σ ∗
1 , . . . , σ ∗

L) = Y ∗
L(i). Thus, for j ≥ i + 1 and

m + i ≥ k, we have

Y
(m−1)
L (j) = YL(j ; σ

(m−1)
1 , . . . , σ

(m−1)
L ) = YL(j ; σ ∗

1 , . . . , σ ∗
L) = Y ∗

L(j)

and, consequently, by the supermartingale property of the Snell envelope, also

ŶL(j − 1; σ
(m−1)
1 , . . . , σ

(m−1)
L ) = max

p≥j
EFj−1 [Y (m−1)

L (p)] = EFj−1 [Y ∗
L(j)].

Hence, by (2.1), (2.2), (3.5), and (3.6), for i + m ≥ k we have

σ
(m)
L (i) = inf{j : j ≥ i, Z(j) + EFj [YL−1(j + δ; σ

(m−1)
1 , . . . , σ

(m−1)
L−1 )]

≥ ŶL(j ; σ
(m−1)
1 , . . . , σ

(m−1)
L )}

= inf{j : j ≥ i, Z(j) + EFj [Y ∗
L−1(j + δ)] ≥ EFj [Y ∗

L(j + 1)]}
= σ ∗

L(i).

Equation (3.14) now yields Y
(m)
L (i) = Y ∗

L(i) for m + i ≥ k and all L, 1 ≤ L ≤ D.

Proof of Theorem 3.2. We first show that

yL(i; σ1, . . . , σL) ≥ YL(i; σ1, . . . , σL) (3.15)

for all L, 1 ≤ L ≤ D, and i, 0 ≤ i ≤ k, given consistent stopping families σ1, . . . , σD . By
Lemma 3.2 and the consistency of σL, we have

YL(i; σ1, . . . , σL) = 1{σL(i)=i}(Z(i) + EFi [YL−1(i + δ; σ1, . . . , σL−1)])
+ 1{σL(i)>i} EFi [YL(i + 1; σ1, . . . , σL)].

This proves (3.15) and, with the choice (σ1, . . . , σD) = (σ
(m)
1 , . . . , σ

(m)
D ), also y

(m)
L (i) ≥

Y
(m)
L (i). In particular, for m ≥ k − i, application of Theorem 3.1 yields

Y ∗
L(i) ≥ y

(m)
L (i) ≥ Y

(m)
L (i) = Y ∗

L(i).

The monotonicity in m follows directly from Corollary 3.1.

Remark 3.3. The proofs show that after any m ≥ k − i improvements, not only the improve-
ments denoted using tildes, the corresponding approximations coincide with the Snell envelope
under L exercise rights up from time i on.
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4. Stability

In this section we discuss the stability of the algorithms. We start with the analysis of the
one-step improvement under one exercise right. Then we prove the stability of the Y -algorithm
(i.e. (3.6)) under one exercise right. Finally, stability of the yL-algorithm (i.e. (3.8)) for the
general case is established under an additional assumption.

4.1. Stability of the one-step improvement (L = 1)

Suppose that a consistent stopping family τ is given. As we cannot expect to know the
conditional expectations analytically in general, but may only calculate approximations, instead
of τ̃ (i) we consider a sequence of stopping families

τ̃ (N)(i) := inf{j : i ≤ j ≤ k, Ŷ (j ; τ) + ε(N)(j) ≤ Z(j)},
where N ∈ N and ε(N)(i) is a sequence of Fi-adapted processes.

We will first show, in some simple examples, that we must expect neither

τ̃ (N)(i) → τ̃ (i) in probability

nor
Y (0; τ̃ (N)) → Y (0; τ̃ ), (4.1)

when
lim

N→∞ ε(N)(i) = 0, P-almost surely (P-a.s.).

Example 4.1. (i) Suppose that (ξN)N∈N is a sequence of independent binary trials with P(ξN =
1) = P(ξN = 0) = 1

2 . We define the process (Z(i) : i = 0, 1) by Z(0) = Z(1) := 1.
The σ -field F0 = F1 is that generated by the sequence of trials. Moreover, the sequence
of perturbations is defined by ε(N)(0) := ξN/N and ε(N)(1) := 0. Then, starting with any
consistent stopping family τ , we obtain τ̃ (N)(0) = ξN . In particular, no subsequence of τ̃ (N)(0)

converges in probability.

(ii) Let � = {ω0, ω1}, let F be the power set of �, and let P({ω1}) = 1
4 = 1 − P({ω0}). We

define the process (Z(i) : i = 0, 1, 2) by

Z(0) = Z(2) := 2, Z(1, ω0) := 1, Z(1, ω1) := 3,

and let Fi denote the filtration generated by Z. We start with the stopping family τ(i) = i. As
E[Z(1)] = 3

2 , we have

Z(0) = 2 ≥ max{ 3
2 , 2} = max{E[Z(1)], E[Z(2)]} = Ŷ (0, τ ).

Therefore, τ̃ (0) = 0 andY (0; τ̃ ) = 2. The perturbation sequence ε(N) is defined to be ε(N)(1) =
ε(N)(2) := 0 and ε(N)(0) := 1/N . A straightforward calculation shows that, for N ≥ 2,

τ̃ (N)(0, ω0) = 2, τ̃ (N)(0, ω1) = 1.

Thus,
Y (0; τ̃ (N)) = 9

4 > 2 = Y (0; τ̃ ),

which violates (4.1).
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At first glance, Example 4.1 paints a rather sceptical picture of the stability properties of the
one-step improvement. Indeed, the best we can now hope for is that

(ia) there is a sequence, τ̄ (N), of improvers of τ such that

|τ̃ (N)(i) − τ̄ (N)(i)| → 0 P-a.s.,

and

(iia) the shortfall of Y (i; τ̃ (N)) below Y (i; τ̃ ) converges to 0 P-a.s.

Note, however, that convergence of the shortfall as in (iia) is the relevant question, not conver-
gence of the distance as in (4.1), since the shortfall corresponds to a change for the worse of
τ̃ (N) compared to τ̃ . As we are interested in an improvement, it suffices to guarantee that such
a change for the worse converges to 0. An additional improvement of τ̃ (N) compared to τ̃ due
to the error processes ε(N) may be seen as a welcome side effect.

We now prove assertions (ia) and (iia). We first introduce a new sequence of stopping
families which turns out to consist of improvers. Let us define τ̄ (N)(k) = k and, for 1 ≤ i < k,
with ‘∨’ denoting logical ‘or’,

τ̄ (N)(i) = i ⇐⇒ (τ̃ (M)(i) > i for only finitely many M)

∨ (τ̃ (M)(i) = i for infinitely many M and τ̃ (N)(i) = i),

τ̄ (N)(i) 
= i �⇒ τ̄ (N)(i) = τ̄ (N)(i + 1).

We then have the following result.

Theorem 4.1. Suppose that

lim
N→∞ ε(N)(i) = 0 P-a.s.,

for all i, 0 ≤ i ≤ k. Then τ̄ (N) is an improver of τ for every N ∈ N.

Proof. The consistency property (3.1) is satisfied by definition. We show (3.12) by backward
induction on i. The case i = k is immediate. Suppose that 0 ≤ i ≤ k − 1 and that (3.12) holds
for i + 1. On {τ̃ (M)(i) = i for infinitely many M} we have, for infinitely many M (depending
on ω), Z(i) ≥ Ŷ (i; τ) + ε(M)(i). This means that

Z(i) ≥ Ŷ (i; τ) on {τ̃ (M)(i) = i for infinitely many M}

as ε(M)(i) tends to 0, almost surely. However, on the one hand,

{τ̄ (N)(i) = i} ⊂ {τ̃ (M)(i) = i for infinitely many M}.

Thus,

Z(i) ≥ Ŷ (i; τ) on {τ̄ (N)(i) = i},
but this implies that τ̃ (i) = i on {τ̄ (N)(i) = i}. Consequently, (3.12) holds on {τ̄ (N)(i) = i}.
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On the other hand,

{τ̄ (N)(i) > i} ⊂ {τ̃ (M)(i) > i for infinitely many M}
and an analogous argument yields

Z(i) ≤ Ŷ (i; τ) on {τ̄ (N)(i) > i}.
Consequently τ̂ (i) > i and, thus, by the induction hypothesis,

τ̄ (N)(i) = τ̄ (N)(i + 1) ≤ τ̂ (i + 1) = τ̂ (i) on {τ̄ (N)(i) > i}.
The induction hypothesis can be applied in the same way to show that

τ̄ (N)(i) ≥ τ̃ (i) on {τ̄ (N)(i) > i} ∩ {τ̃ (i) > i},
an inequality that is trivially satisfied on {τ̄ (N)(i) > i} ∩ {τ̃ (i) = i}. This completes the proof
of (3.12).

The next theorem completes the proof of assertion (ia).

Theorem 4.2. We have
|τ̃ (N)(i) − τ̄ (N)(i)| → 0 P-a.s.

or, equivalently,

P

( ⋂
N∈N

∞⋃
M=N

{τ̃ (M)(i) 
= τ̄ (M)(i)}
)

= 0.

Proof. The statement is obvious for i = k. Suppose that 0 ≤ i ≤ k−1 and that the statement
holds for i + 1. Define

A(N, i) =
∞⋃

M=N

{τ̃ (M)(i) 
= τ̄ (M)(i)}.

Clearly
A(N, i) = B(N, i) ∪ C(N, i) ∪ D(N, i),

where

B(N, i) =
∞⋃

M=N

{τ̃ (M)(i) = i} ∩ {τ̄ (M)(i) > i},

C(N, i) =
∞⋃

M=N

{τ̃ (M)(i) > i} ∩ {τ̄ (M)(i) = i},

D(N, i) =
∞⋃

M=N

{τ̃ (M)(i) > i} ∩ {τ̄ (M)(i) > i} ∩ {τ̃ (M)(i) 
= τ̄ (M)(i)}.

Since the sets B(N, i), C(N, i), and D(N, i) are decreasing in N , we have

⋂
N∈N

A(N, i) =
( ⋂

N∈N

B(N, i)

)
∪

( ⋂
N∈N

C(N, i)

)
∪

( ⋂
N∈N

D(N, i)

)
.
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We will show that the three sets on the right-hand side are evanescent. First, as τ̄ (M) and τ̃ (M)

are consistent, it holds that D(N, i) ⊂ A(N, i + 1). Hence, the intersection of the D(N, i) is
a null set by the induction hypothesis. By the definition of τ̄ (M), we have

C(N, i) ⊂
∞⋃

M=N

{τ̃ (M)(i) > i} ∩ {τ̃ (K)(i) > i for only finitely many K}.

Thus, the intersection of the C(N, i) is a null set. A similar argument applies to the intersection
of the B(N, i).

Assertion (iia) follows from the next theorem.

Theorem 4.3. Suppose that, for all i, 0 ≤ i ≤ k,

lim
N→∞ ε(N)(i) = 0 P-a.s.

Then, for all i, 0 ≤ i ≤ k, we have

lim
N→∞ |Y (i; τ̃ (N)) − Y (i; τ̄ (N))| = 0 P-a.s.

and
lim

N→∞(Y (i; τ̃ (N)) − Y (i; τ̃ ))− = 0 P-a.s.

Remark 4.1. By the dominated convergence theorem, the above convergences also hold in
L1(P), the space of P-integrable random variables.

Proof of Theorem 4.3. The first claim is easily derived from Theorem 4.2 and dominated
convergence. The second then follows from Proposition 3.1 and Theorem 4.1.

Remark 4.2. Applying the left-hand inequality of Proposition 3.1 yields

lim
N→∞(Y (i; τ̃ (N)) − Y (i; τ̂ ))+ = 0 P-a.s.

Thus, convergence of Y (i; τ̃ (N)) to Y (i; τ̃ ) holds whenever τ̃ (i) = τ̂ (i) for all i, 0 ≤ i ≤ k.

4.2. Stability of the algorithm: the case L = 1

We are now going to explain how the stability result for the one-step improvement carries
over to the algorithm in the case of one exercise right. We will make use of the following
perturbed monotonicity result.

Proposition 4.1. Suppose that (τN) is a sequence of consistent stopping families and that, for
all i, 0 ≤ i ≤ k,

lim
N→∞(Y (i; τN) − Y (i; τ))− = 0 P-a.s.

Then, for all i, 0 ≤ i ≤ k,

lim
N→∞(Y (i; τ̃N ) − Y (i; τ̃ ))− = 0 P-a.s.,

where
τ̃N (i) := inf{j : i ≤ j ≤ k, Ŷ (j ; τN) ≤ Z(j)}.
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Remark 4.3. For a sequence such that τN = σ for all N , with σ being consistent, Proposi-
tion 4.1 states that

Y (i; σ) ≥ Y (i; τ) �⇒ Y (i; σ̃ ) ≥ Y (i; τ̃ ).

Hence, the better the input stopping family, the better the improvement.

Proof of Proposition 4.1. The statement will be proved by backward induction on i. The
induction base (i.e. the result for i = k) is obvious. Suppose that the statement holds for some
i + 1, 1 ≤ i + 1 ≤ k.

We first note that, by Remark 3.2,

1{τ̃ (i)=i}(Y (i; τ̃N ) − Y (i; τ̃ ))− ≤ (Y (i; τ̃N ) − Z(i))− = 0. (4.2)

We next show that the statement is true on the set {τ̃M(i) = i for infinitely many M}. For this we
need the following preliminary result. By Jensen’s inequality and the dominated convergence
theorem, for all p ≥ i we have

(EFi [Y (p; τN)] − EFi [Y (p; τ)])− ≤ EFi [(Y (p; τN) − Y (p; τ))−] → 0.

Thus,
lim

N→∞(Ŷ (i; τN) − Ŷ (i; τ))− = 0 P-a.s., (4.3)

since the operator ‘max’ is continuous with respect to the metric generated by the negative part.
On {τ̃M(i) = i for infinitely many M} we have, for infinitely many M , Ŷ (i; τM) ≤ Z(i). Since

(Z(i) − Ŷ (i; τ))− ≤ (Z(i) − Ŷ (i; τM))− + (Ŷ (i; τM) − Ŷ (i; τ))−,

we may conclude from (4.3) that

Z(i) ≥ Ŷ (i; τ) on {τ̃M(i) = i for infinitely many M}.
Hence,

{τ̃M(i) = i for infinitely many M} ⊂ {τ̃ (i) = i}.
On the latter set the statement was proved in (4.2).

It remains to verify the statement on the set

E(i) = {τ̃M(i) = i for only finitely many M} ∩ {τ̃ (i) > i}.
Define

N0(i) = 1E(i) max{N : τ̃N (i) = i} + 1,

and note that the process N0(i) is Fi-adapted. Since

τ̃N (i) > i on {N ≥ N0(i)} ∩ E(i),

it follows from the consistency of τ̃N , the induction hypothesis, Jensen’s inequality, and the
dominated convergence theorem that

1{N≥N0(i)}∩E(i)(Y (i; τ̃N ) − Y (i; τ̃ ))−
= 1{N≥N0(i)}∩E(i)(E

Fi [Y (i + 1; τ̃N )] − EFi [Y (i + 1; τ̃ )])−
≤ EFi [(Y (i + 1; τ̃N ) − Y (i + 1; τ̃ ))−]
→ 0.

This completes the proof.
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For notational convenience we state the stability result of the algorithm for two improvement
steps (m = 2) only. It is immediately obvious how this extends to higher iterations. We will
also omit all subscripts, which are superfluous in the case of one exercise right. For instance,
we write τ (1) instead of τ

(1)
1,1 . First note that, with τ = τ (0),

τ (1)(i) = τ̃ (i),

τ (2)(i) = ˜̃τ(i) := inf{j : i ≤ j ≤ k, Ŷ (j ; τ̃ ) ≤ Z(j)}.

Let us suppose that, for (N1, N2) ∈ N × N, we are given sequences ε(N1)(i) and ε(N1,N2)(i)

such that

lim
N1→∞ ε(N1)(i) = 0 P-a.s.

for 0 ≤ i ≤ k and

lim
N2→∞ ε(N1,N2)(i) = 0 P-a.s.

for 0 ≤ i ≤ k and N1 ∈ N. We then define

τ̃ (N1)(i) := inf{j : i ≤ j ≤ k, Ŷ (j ; τ) + ε(N1)(j) ≤ Z(j)} (as above),

˜̃τ (N1)(i) := inf{j : i ≤ j ≤ k, Ŷ (j ; τ̃ (N1)) ≤ Z(j)},
˜̃τ (N1,N2)(i) := inf{j : i ≤ j ≤ k, Ŷ (j ; τ̃ (N1)) + ε(N1,N2)(j) ≤ Z(j)}.

Theorem 4.3 now yields

lim
N1→∞(Y (i; τ̃ (N1)) − Y (i; τ̃ ))− = 0 P-a.s. (4.4)

lim
N2→∞(Y (i; ˜̃τ (N1,N2)) − Y (i; ˜̃τ (N1)))− = 0 P-a.s.

In view of (4.4) we obtain, from Proposition 4.1,

lim
N1→∞(Y (i; ˜̃τ (N1)) − Y (i; ˜̃τ))− = 0 P-a.s.

Since

(Y (i; ˜̃τ (N1,N2)) − Y (2)(i))− ≤ (Y (i; ˜̃τ (N1,N2)) − Y (i; ˜̃τ (N1)))− + (Y (i; ˜̃τ (N1)) − Y (i; ˜̃τ))−,

we then obtain the following theorem.

Theorem 4.4. For all i, 0 ≤ i ≤ k,

lim
N1→∞ lim

N2→∞(Y (i; ˜̃τ (N1,N2)) − Y (2)(i))− = 0 P-a.s.

and in L1(P).

The generalization of this result to m iteration steps may be put into words as follows: the
shortfall of the investor’s expected gain corresponding to m perturbed steps of the algorithm
below the expected gain corresponding to m theoretical steps converges to 0.
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4.3. Stability under several exercise rights

The stability issue becomes more involved under several exercise rights. One reason is that
we cannot expect the inequality

YL(i; σ̄1, . . . , σ̄L) ≥ YL(i; σ̃1, . . . , σ̃L),

where σ̄1, . . . , σ̄L are arbitrary improvers of σ1, . . . , σL, to hold, but rather only the inequalities
stated in Theorem 3.5. That theorem suggests that we must satisfy ourselves with the following
stability result for the one-step improvement under several exercise rights.

Theorem 4.5. Suppose that σ1, . . . , σD are consistent stopping families. For 1 ≤ L ≤ D,
define

σ̃
(N)
L (i) = inf{j : j ≥ i, Z(j) + EFj [YL−1(j + δ; σ1, . . . , σL−1)]

≥ ŶL(j ; σ1, . . . , σL) + ε
(N)
L (j)},

where, for all L, 1 ≤ L ≤ D, and i, 0 ≤ i ≤ k,

lim
N→∞ ε

(N)
L (i) = 0 P-a.s.

Then there are sequences of improvers, σ̄ (N)
1 , . . . , σ̄

(N)
D , of σ1, . . . , σD such that, for all L, 1 ≤

L ≤ D,
lim

N→∞ |σ̃ (N)
L (i) − σ̄

(N)
L (i)| = 0.

Moreover,

lim
N→∞ |YL(i; σ̃

(N)
1 , . . . , σ̃

(N)
L ) − YL(i; σ̄

(N)
1 , . . . , σ̄

(N)
L )| = 0 P-a.s.

and
lim

N→∞(YL(i; σ̃
(N)
1 , . . . , σ̃

(N)
L ) − YL(i; σ1, . . . , σL−1, σ̃L))− = 0 P-a.s.

Proof. In view of Lemma 3.2 and Theorem 3.5, the theorem follows by straightforward
reduction to the case of one exercise right.

A more satisfactory result can be derived for the yL-algorithm (i.e. (3.8)) under an additional
assumption.

Theorem 4.6. Under the assumptions (and with the notation) of the previous theorem, suppose
additionally that, for 1 ≤ i ≤ k − 1 and 1 ≤ L ≤ D,

P
(
ZL(i; σ1, . . . , σL−1) = max

p≥i+1
EFi [ZL(σL(p); σ1, . . . , σL−1)]

)
= 0. (4.5)

Then, for 0 ≤ i ≤ k and 1 ≤ L ≤ D,

lim
N→∞ |yL(i; σ̃

(N)
1 , . . . , σ̃

(N)
L ) − yL(i; σ̃1, . . . , σ̃L)| = 0 P-a.s.

Proof. Assumption (4.5) guarantees that σ̃L(i) = σ̂L(i) for 1 ≤ i ≤ k and 1 ≤ L ≤ D.
Thus, σ̄

(N)
L (i) = σ̃L(i) for 1 ≤ i ≤ k, 1 ≤ L ≤ D, and N ∈ N, by the definition of an
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improver. (Here σ̄
(N)
L (i) denotes the sequences introduced in Theorem 4.5.) For 1 ≤ i ≤ k

and 1 ≤ L ≤ D, Theorem 4.5 now yields

lim
N→∞ σ̃

(N)
L (i) = σ̃L(i) P-a.s.

Hence, the assertion follows from the definition of yL and an application of the dominated
convergence theorem. (Recall that the definition of yL does not involve the value of the stopping
families at time 0.)

We now discuss the stability of the yL-algorithm. We again demonstrate the stability of
the multiple stopping algorithm for only two steps (m = 2). Suppose that we are given
consistent starting families σ1, . . . , σD (with the superscript ‘0’ suppressed in the notation of
the algorithm). Recall that

σ
(1)
L (i) := σ̃L(i),

σ
(2)
L (i) := σ̃

(1)
L (i) = ˜̃σL(i).

We shall suppose that both (4.5) and its analogue for σ̃L hold, i.e. that, for 1 ≤ i ≤ k − 1 and
1 ≤ L ≤ D,

P
(
ZL(i; σ̃1, . . . , σ̃L−1) = max

p≥i+1
EFi [ZL(σ̃L(p); σ̃1, . . . , σ̃L−1)]

)
= 0. (4.6)

We next consider the perturbed versions,

σ̃
(N1)
L (i) = inf{j : j ≥ i, Z(j) + EFj [YL−1(j + δ; σ1, . . . , σL−1)]

≥ ŶL(j ; σ1, . . . , σL) + ε
(N1)
L (j)},

˜̃σ (N1,N2)
L (i) = inf{j : j ≥ i, Z(j) + EFj [YL−1(j + δ; σ̃

(N1)
1 , . . . , σ̃

(N1)
L−1 )]

≥ ŶL(j ; σ̃
(N1)
1 , . . . , σ̃

(N1)
L ) + ε

(N1,N2)
L (j)},

with

lim
N1→∞ ε

(N1)
L (i) = 0 P-a.s.,

lim
N2→∞ ε

(N1,N2)
L (i) = 0 P-a.s.

We denote by ˜̃σ (N1)
L the theoretical improvement of σ̃

(N1)
L under the tilde operation. The

additional assumption (4.5) now ensures that, for 1 ≤ i ≤ k,

lim
N→∞ σ̃

(N)
L (i) = σ̃L(i) P-a.s.

(see the proof of Theorem 4.6). Thus, we can write (applying Lemma 3.2),

˜̃σ (N1)
L (i) = inf

{
j : j ≥ i, ZL(j ; σ̃1, . . . , σ̃L−1)

≥ max
p≥j+1

EFj [ZL(σ̃L(p); σ̃1, . . . , σ̃L−1)] + ε̃
(N1)
L (i)

}
,

where
lim

N1→∞ ε̃
(N1)
L (i) = 0 P-a.s.
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We now define ¯̃σ (N1)
L (k) = k and, for 1 ≤ i < k,

¯̃σ (N1)
L (i) = i ⇐⇒ ( ˜̃σ (M)

L (i) > i for only finitely many M)

∨ ( ˜̃σ (M)
L (i) = i for infinitely many M and ˜̃σ (N1)

L (i) = i),

¯̃σ (N1)
L (i) 
= i �⇒ ¯̃σ (N1)

L (i) = ¯̃σ (N1)
L (i + 1).

By Theorem 4.2, for all i, 1 ≤ i ≤ k and L, 1 ≤ L ≤ D, we have

lim
N1→∞ | ˜̃σ (N1)

L (i) − ¯̃σ (N1)
L (i)| = 0.

However, assumption (4.6) implies that the improvers ¯̃σ (N1)
L (i) coincide with ˜̃σL(i) for 1 ≤ i ≤

k. Hence, the dominated convergence theorem yields, on the one hand,

lim
N1→∞ |yL(i; ˜̃σ (N1)

1 , . . . , ˜̃σ (N1)
L ) − yL(i; ˜̃σ1, . . . ˜̃σL)| = 0 P-a.s.

On the other hand, a direct application of Theorem 4.6 gives

lim
N2→∞ |yL(i; ˜̃σ (N1,N2)

1 , . . . , ˜̃σ (N1,N2)
L ) − yL(i; ˜̃σ (N1)

1 , . . . ˜̃σ (N1)
L )| = 0 P-a.s.

The discussion is summarized in the following theorem.

Theorem 4.7. Suppose that (4.5) and (4.6) hold. Then, for all i, 0 ≤ i ≤ k and L, 1 ≤ L ≤ D,

lim
N1→∞ lim

N2→∞ |yL(i; ˜̃σ (N1,N2)
1 , . . . , ˜̃σ (N1,N2)

L ) − y
(2)
L (i)| = 0 P-a.s.

and in L1(P).

The straightforward generalization to higher-order iterations is left to the reader.

Remark 4.4. (i) Stability of the YL-algorithm can be proven along the same lines if (4.5)
and (4.6) also hold for i = 0. We emphasize, however, that this additional assumption can
always be violated by a poor choice of the constant Z(0). This is why we refrained from
making this additional assumption and presented the stability analysis for the yL-algorithm.

(ii) Assumptions (4.5) and (4.6) can be replaced by the weaker condition that the limits

lim
N1→∞ σ̃

(N1)
L (i), lim

N1→∞ lim
N2→∞

˜̃σ (N1,N2)
L (i)

exist for 1 ≤ i ≤ k − 1 and 1 ≤ L ≤ D. Then y
(2)
L (i) in Theorem 4.7 must be replaced by

some theoretical yL-two-step improvement of (σ1, . . . , σl). An analogous result holds for the
YL-algorithm when the limits also exist for i = 0.
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