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interbed layer: the impact of dispersion and
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Motivated by buoyancy-driven flows within geological formations, we study the evolution
of a (dense) gravity current in a porous medium bisected by a thin interbed layer. The
gravity current experiences distributed drainage along this low-permeability boundary.
Our theoretical description of this flow takes into account dispersive mass exchange with
the surrounding ambient fluid by considering the evolution of the bulk and dispersed
phases of the gravity current. In turn, we model basal draining by considering two bookend
limits, i.e. no mixing versus perfect mixing in the lower layer. Our formulations are
assessed by comparing model predictions against the output of complementary numerical
simulations run using COMSOL. Numerical output is essential both for determining
the value of the entrainment coefficient used within our theory and for assessing the
reasonableness of key modelling assumptions. Our results suggest that the degree of
dispersion depends on the dip angle and the depth and permeability of the interbed layer.
We further find that the nose position predictions made by our theoretical models are
reasonably accurate up to the point where the no mixing model predicts a retraction of
the gravity current front. Thereafter, the no mixing model significantly under-predicts,
and the perfect mixing model moderately over-predicts, numerical data. Reasons for the
failure of the no mixing model are provided, highlighting the importance of convective
instabilities in the lower layer. A regime diagram is presented that defines the parametric
region where our theoretical models do versus do not yield predictions in good agreement
with numerical simulations.
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1. Introduction

In layered porous media, the flow of a dense (buoyant) fluid into a buoyant (dense) ambient
leads to the formation of gravity currents, where predominantly the flow velocity is aligned
with the bottom (top) boundary. Porous media gravity currents are associated with a wide
variety of geophysical flows, whether naturally occurring, e.g. seawater contamination
of coastal aquifers (Werner et al. 2013; Costall et al. 2020), or else related to human
activities, e.g. underground hydrogen storage (UHS) (Feldmann et al. 2016; Tarkowski
2019; Muhammed et al. 2023) or CO;/acid gas sequestration (Ajayi, Gomes & Bera 2019;
Warnecki et al. 2021; Ali et al. 2022). Not surprisingly, a significant volume of research
has been driven by the need to understand the dynamics of porous media gravity currents,
particularly as they relate to energy industry applications.

In a pioneering study, Huppert & Woods (1995) established initial models for porous
media gravity current flow. They proposed a similarity solution that was then verified
through laboratory experiments. Huppert & Woods (1995) showed that a gravity current
spreads as t2/3 when fed by a constant-flux source. (Separately, they also derived similarity
solutions for a general power-law influx condition.) Many extensions to the Huppert &
Woods (1995) seminal analysis have been pursued. For example, Hesse et al. (2007),
MacMinn et al. (2012), Pegler, Huppert & Neufeld (2014) and Zheng et al. (2015) have
examined similar examples of buoyancy-driven flow but in porous media that are confined
vertically. A question of recent interest, which is more relevant to the research described
in this study, is the impact of a heterogeneous porous medium, particularly when some
fraction of the injectate is allowed to drain through local or distributed fissures. For
example, Anderson, McLaughlin & Miller (2003) investigated the movement of gravity
currents in strongly heterogeneous porous media using homogenization methods. They
found that by employing appropriate coefficients, one can project the similarity solution
appropriate for a (long and thin) gravity current in a uniform medium to gravity current
flow in horizontally or vertically layered porous media. Moreover, Pritchard, Woods
& Hogg (2001) and Farcas & Woods (2009) studied distributed drainage over a thin
permeable layer. The Pritchard et al. (2001) investigation considered miscible flow with
drainage along a horizontal layer while Farcas & Woods (2009) studied immiscible flow
with drainage along an inclined layer. Meanwhile, Neufeld & Huppert (2009) studied
the flow of gravity currents of supercritical CO; in thin layers representing the Utsira
formation beneath the North Sea. In contrast to the modelling approach of Pritchard et al.
(2001), who did not consider the possible dynamical influence of the drained fluid on
the evolution of the gravity current, Neufeld & Huppert (2009) hypothesized that when
gravity current fluid drains into the interbed layers that separate adjacent permeable layers,
such an influence is manifest. More precisely, the weight of the drained fluid adds to
the driving force for draining so that, over time, the velocities of drainage and of the
gravity current front become respectively large and small. Neufeld & Huppert (2009)
thereby identified three distinct regimes for the drainage of (dense) gravity current fluid,
i.e. drainage is driven primarily by (i) the weight of the gravity current, (ii) the combined
weight of the gravity current and the fluid already drained into the lower layer, and
(i1i) the weight of the drained fluid. Regimes (ii) and (iii) are respectively associated
with the arrest and retraction of the gravity current front. Similar kinds of flow behaviour
have been documented in the related studies of Goda & Sato (2011), Acton, Huppert &
Worster (2001), Sahu & Flynn (2017) and Bharath, Sahu & Flynn (2020), who examined,
theoretically and experimentally, distributed drainage over a deep lower layer having a
relatively small permeability. Most notably, and consistent with Pritchard er al. (2001) and
Farcas & Woods (2009), these related studies found that gravity currents stop elongating
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when the rate of basal drainage from the gravity current underside matches the source
influx.

Most of the above research ignores mass transfer between the gravity current and the
ambient fluid saturating the porous medium, e.g. by application of a ‘sharp interface’
assumption in theoretical models. By contrast, and in the context of CO; sequestration,
Neufeld et al. (2010), MacMinn et al. (2012), Pegler et al. (2014) and Khan, Bharath
& Flynn (2022) investigated mixing due to convective dissolution in porous media
buoyancy-driven flow. Also, mass transfer processes associated with seawater intrusions
into coastal aquifers were considered by Huyakorn et al. (1987) and Paster & Dagan
(2007). In such examples of miscible porous media flow, the key modes of mass transfer
are diffusion and hydrodynamic dispersion. Mixing by dispersion is likewise important
when considering the societally important possibility of storing hydrogen (H;) in depleted
natural gas reservoirs. Indeed, the combination of H, leakage through cap-rock and
the dispersive mixing of H, into the ‘cushion gas’ that otherwise occupies the porous
medium reduces the volume of H, that can be recovered economically. Quantifying
such details is challenging; e.g. the study by Lubon & Tarkowski (2021) estimated the
amount of recoverable Hy as anywhere from 50 % to 80 % depending on, among other
factors, the number of H, injection cycles and the degree of heterogeneity within the
medium. As regards this latter variable, Feldmann et al. (2016) highlighted the possibility
of leakage through semi-permeable boundaries by examining H, migration through a
heterogeneous porous medium consisting of sandstone layers separated by tight clay
interlayers.

Also in the context of miscibility, Szulczewski & Juanes (2013) studied, theoretically,
mixing when a fixed amount of dense fluid is released in vertically confined porous
media. They reported evidence of various regimes associated with the flow evolution.
At early and more especially late times, diffusion is vital, especially when it is coupled
with Taylor dispersion. However, at intermediate times, diffusion is insignificant, such that
application of the sharp interface assumption is approximately correct. Meanwhile, Sahu
& Neufeld (2020) studied, theoretically and experimentally, the mixing that occurs in a
homogeneous porous medium due to velocity-dependant transverse dispersion in gravity
currents. In their theoretical model, they exploited mass and buoyancy conservation laws
in conjunction with a semi-empirical expression for dispersion, analogue to turbulent
entrainment in free shear flows. Sahu & Neufeld (2020) tuned the associated entrainment
coefficient from their theoretical model with measured results from the laboratory.
Although transverse dispersion leads, through ‘dispersive entrainment’, to a thickening
of the gravity current, the neglect of longitudinal dispersion means that the gravity current
length predicted by Sahu & Neufeld (2020) must match that anticipated by the sharp
interface model of Huppert & Woods (1995).

The equivalence documented at the end of the previous paragraph runs contrary to
the experimental observations of Bharath et al. (2020). They studied gravity currents
propagating along a permeability jump, and demonstrated that dispersion leads to
enhanced gravity current elongation. The difference of length compared to the sharp
interface case was attributed to longitudinal dispersion. The Sahu & Neufeld (2020) model
therefore appears most effective in describing gravity current flow through homogeneous
media where drainage is not dynamically significant. Recognizing that real geological
media are not always so ideal, Sahu & Neufeld (2023) conducted laboratory experiments
to examine dispersive mixing in gravity currents over layered strata. They showed that the
mixing that occurs in heterogeneous media is approximately twice that in homogeneous
media having otherwise identical properties. To quantify the effects of heterogeneity
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on mixing, Sahu & Neufeld (2023) introduced a term called the ‘jump factor’, which
characterizes the degree of layering within a porous medium. Sahu & Neufeld (2023)
further demonstrated that the early-time entrainment into the gravity current renders
it thick with a rounded nose. Therefore, the long and thin assumption, which is vital
in developing a theoretical model, becomes suspect. Sahu & Neufeld (2023) used
their experimental findings to derive semi-empirical equations that estimate the gravity
current height and length as functions of time and other parameters. The semi-empirical
correlations in question do not, however, distinguish between bulk and dispersed phases
within the gravity current. A pioneering theoretical attempt at drawing such a distinction
was made by Sahu & Neufeld (2020), whose approach was later expanded upon by
Sheikhi, Sahu & Flynn (2023). The authors of this latter investigation separated the
bulk and dispersed phases to study dispersive mixing in gravity currents elongating
over inclined porous media and experiencing local drainage through discrete fissures.
Sheikhi et al. (2023) thereby extended the theoretical model of Sahu & Neufeld (2020)
by introducing two entrainment velocities, i.e. w,1, which is associated with entrainment
from the bulk phase to the dispersed phase, and w,p, which is associated with entrainment
from the surrounding ambient to the dispersed phase. They assumed an identical
entrainment coefficient associated with w,; and w,>, and determined the numerical value
of this entrainment coefficient by fitting theoretical predictions against COMSOL-based
numerical simulations meant to mimic similitude laboratory experimental conditions.
Their theoretical model, combined with the COMSOL numerical simulations, revealed
that five parameters can affect the amount of dispersive mixing in porous media gravity
currents experiencing local drainage: (i) I”, which represents flow conditions upstream of
the local fissure(s); (ii) K, which represents the permeability ratio (fissure-to-medium);
(iii) &, which represents the fissure width; (iv) /, which represents the fissure depth; and
(v) 6, which represents the dip angle.

A primary objective of this study is to extend the work of Sheikhi et al. (2023) to
gravity currents experiencing distributed drainage, as is more representative of many
geological flows compared to the case of localized drainage. To do so, we suppose that
the gravity current propagates through a porous medium and over a thin interbed layer
having a lower — possibly substantially lower — permeability. We develop a theoretical
model and a complementary numerical model to study the details of the dispersive
mixing relevant to this case. In the former case, our formulation is predicated on two
linearizations of the real behaviour. The first pertains to fluid mechanics and supposes
a linear entrainment law of the type proposed for high-Reynolds-number shear flows by
Ellison & Turner (1959) and for low-Reynolds-number porous media flows by Sahu &
Neufeld (2020). The second pertains to thermodynamics and supposes a linear equation
of state, i.e. a linear relationship between fluid density and solute concentration. The
latter linearization in particular seems well-justified in a UHS context: measured data
from Hassanpouryouzband et al. (2020) suggest that nonlinear terms in the equation of
state describing Ho/CH4 mixtures have minor significance. Meanwhile, the validity of the
former linearization is discussed in more detail below. A further objective of our study
is to characterize the drainage of gravity current fluid into the interbed layer and, from
there, into a semi-infinite layer of larger permeability below. (For analytical convenience
and consistent with previous studies — e.g. Huppert & Woods (1995), Neufeld & Huppert
(2009), Bharath et al. (2020) and Sahu & Neufeld (2023) — we assume a dense rather than
a light gravity current. As a result, the gravity current appears ‘upside down’ relative to
those expected e.g. in UHS-type flows. Note, however, that the flow orientation does not
impact the flow dynamics provided that we apply the Boussinesq approximation, which
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Figure 1. Schematic of a leaky gravity current propagating along, and draining through, the permeability jump
associated with an interbed layer of thickness &. We assume equal permeability & in the upper and lower layers,
and a reduced permeability k; in the interbed layer. The gravity current and the fluid that drains from the
gravity current consist of bulk and dispersed phases. These are, respectively, confined by the red and black
curves. Meanwhile, the dashed curve that is drawn through the lower two layers signifies the equivalent depth
of draining fluid, assuming that this draining fluid consists solely of bulk fluid, i.e. has a density that matches
the source density. The variables &y, ho, uy, uz, wei, wez and ¢, depend on x and 7. Conversely, the variables
xn, and xy, depend only on 7. The vertical scale is exaggerated in this schematic.

supposes relatively modest density differences between the injectate and the ambient
fluid.)

The rest of the paper is organized as follows. Section 2 derives the theoretical model for
the gravity current by incorporating a distributed drainage formulation. Particular attention
is paid to two limiting cases, which assume either no mixing or perfect mixing in the
lowest of the porous layers. In § 3, we outline the COMSOL-based numerical simulations
conducted to validate and contextualize the predictions of the theoretical model. In § 4, we
discuss these predictions in more detail, and contrast the predictions with complementary
output from the numerical simulations. Finally, key findings of the current work are
reviewed, and prospects for future research are identified, in § 5.

2. Theoretical model
2.1. Governing equations

We examine the flow of a gravity current, z > 0 in figure 1, that occurs when a dense fluid
with density p; is injected into a uniform porous medium with constant permeability k.
This medium is intersected by a thin interbed layer of permeability k, < k with inclination
angle 6 and depth &. Thus the interbed layer occupies the vertical expanse —§ < z < 0.
In general, and with the application of (buoyant) H, storage in an anticline structure in
mind, we consider an up-dip inclination angle. The (x, z) coordinate system that describes
the directions along and perpendicular to the slope is derived by rotating the natural
coordinates (X, Z) in a clockwise direction by the dip angle 6. The red dot shown in
figure 1 signifies the isolated source, and the origin for both coordinate systems is located
at this same point.
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The continuity equation for the bulk (or unmixed) phase of the gravity current
experiencing drainage over its lower boundary reads
h
% + aa—x(ulhl) = —Wel — Wdl. (2.1)
Here, A is the height of the bulk phase, u; is the bulk phase velocity, and w,; and wy; are
velocities that respectively account for entrainment from the bulk to the dispersed phase
and drainage from the bulk phase through the lower layer. Also, 7 = /¢, in which ¢ is the
porosity. (Note that all velocities in our theoretical model are Darcy velocities.)
Similarly, the continuity equation for the dispersed phase can be stated as
ohy 0 a
—= + —lualhy — h)] = ——uih) + wez — wa1 — waz, (2.2)
at x ox
where hp — hy is the thickness of the dispersed phase, u> (assumed independent of z) is the
advection speed of the dispersed phase, w, is the entrainment velocity from the ambient
to the dispersed phase, and w is the drainage velocity from the dispersed phase through
the lower layer. The latter velocity must be interpreted with some care because it is not
defined everywhere along the extent 0 < x < xy, occupied by the dispersed phase (and
likewise for wy1). We clarify this situation when formally defining the draining velocities
wq1 and wyp below.

Although the solute concentration in the bulk phase is equal to the source concentration
¢s by assumption, the concentration in the dispersed phase varies between 0 and c;.
Therefore a z-averaged solute concentration ¢, is defined in the dispersed phase. Solute
conservation in the dispersed phase can be expressed as

0by 0

K + a(uzbz) = Wer¢s Hxn, — X) — wazc2, (2.3)

in which by = ¢2(hy — hy) is the buoyancy of the dispersed phase, averaged over depth.
Meanwhile H(xy, — x) is a Heaviside step function, which is zero everywhere except
when xy, > x, where xy, indicates the front position of the bulk phase. In this study,
we follow previous work on entraining flows from either the turbulent free shear flow
literature (e.g. Ellison & Turner 1959) or, much more importantly, the porous media flow
literature (e.g. Sahu & Neufeld 2020), and so consider a linear entrainment relationship.
Accordingly, the entrainment velocities are defined as w,; = eu; and wep = eup, where
¢ is the dispersive entrainment coefficient. Extrapolation of these relationships to more
complicated formulations (e.g. w1 = €111 and wey = erup with €1 £ g3, or w,; uf or
Wel X |u1 — up|) remains a topic to be examined in future studies. Our reluctance to pursue
such a line of inquiry here stems not from the physical illogicality of these alternative
formulations but rather from our desire to minimize model complexity and the number of
variables whose value must be set by comparison with numerical output.

By considering a hydrostatic pressure gradient throughout the gravity current and using
Darcy’s law, the horizontal velocity in each phase is given by

- k, ob oh
up(x, 1) = —L'B |:—2 cosb + ¢ (—1 cosf + sin@)} , 2.4)
v 0x ox
- k, a(cah k. 0 boh
uz(x,t)=—g—'3 (c2h2) cos6 + ¢ sinf E—g—'B — 272 cosf + ¢ sinf
v ox v [ox \hy — M

(2.5)

(see Sheikhi et al. 2023). Here, § is the solute contraction coefficient, which we borrow
from the (assumed linear) equation of state p = po(1 4+ Bc¢) in which pq is the density of
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the uncontaminated ambient fluid. Also, v is the kinematic viscosity, which we assume

to be the same throughout the bulk and dispersed phases. By inserting (2.4)—(2.5) and

the expressions for the entrainment velocities w, 1 and w, 2 into (2.1)—~(2.3), we obtain the

following modified governing equations:
ohy kg, d(hU)
=t — — =
at v ox

ohy kg, 9 ow .
— —— — | (hp—h) | — +Csinb | — hh U

k !
85 g . (2.6)
Vv

ot v 0x 0x
kg, (oW )
=—— | —+Csinf | —wg1 — wg2, 2.7
v 0x

by kg, @ ow kg,
2 % L, (S 4 osing) | = & =25 Uey Hxy, — %) — wanCes. (2.8)
ot vV 0x ax v

In the above equations, we have introduced the following symbols:

1 0by 0l .
U=—-|——+ —)cosf —sind, (2.9)
¢y 0Xx 0x
byhy
Y = ————cos0, (2.10)
cs(hy — hy)
C b
c=2-_"72 @2.11)

Cs N cs(hy — hy) .

Note that U, ¥ and C are defined solely for the purpose of simplifying our notation,
i.e these variables do not carry any particular physical meaning. Before studying
(2.6)—(2.8) in more detail, it is necessary to define the drainage velocities wy; and wg;.
These velocities are influenced by the degree of mixing occurring in the lower layer
of the porous medium. Because predicting the extent of mixing in this lower layer is a
complicated task that relies on numerous factors (see e.g. figure 10 in Bharath et al. (2020),
and the discussion thereof), we will confine ourselves to two limiting scenarios, which we
label as perfect mixing and no mixing. Both of the perfect mixing and no mixing cases
are idealizations. Consistent with Pritchard et al. (2001), the former assumes that dense
fluid that drains through the interbed layer immediately dissolves into lower layer ambient
fluid. Meanwhile the latter scenario supposes that mixing details can be ignored in this
lower layer (even though they figure prominently in our description of the gravity current
flow). Thus we assume that the draining flows evolve as depicted in figure 1. The perfect
mixing and no mixing idealizations are helpful bookend-limiting cases that we expect to
often bound the true behaviour of the evolving flow.

2.1.1. Perfect mixing

As noted above, the perfect mixing regime considers an immediate and total dissolution
of drained gravity current fluid when this dense fluid reaches the lower layer. In turn,
and because this lower layer is semi-infinite in extent, it maintains a negligible solute
concentration. The perfect mixing regime is supposed to be approached when the density
difference between the gravity current fluid and the ambient fluid is comparatively large, or
when the permeability in the interbed layer is much smaller than elsewhere. As suggested
by figure 2, perfect mixing is analogous to a situation where drained fluid is removed
from the domain as soon as it exits the interbed layer. Note that such a removal does not
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Figure 2. Schematic of a leaky gravity current experiencing perfect mixing in (and therefore immediate
removal from) the lower layer. The red line indicates the bulk interface, and the black curve indicates the
dispersed interface.

invalidate equations (2.6)—(2.11), which are focused on the flow dynamics in the domain
z> 0.

From figure 2, the drainage velocities wy1 and wy> can be determined by using the
z-component of Darcy’s law, i.e.

ap
0z
where p is the dynamic viscosity, p is the pressure, and g’ = gfc is the reduced gravity.

We enforce continuity of pressure and of the vertical flux at z = 0, and thereby conclude
that

— —pg'cosh — %w, (2.12)

kpgs ((cshi +ba
(2.13)

war(x, ) ={ v csé
0, XN, < x < xn,.

+ 1) cosf, 0=<x<xp,,

This last result considers the draining of bulk phase fluid through the upper and interbed
layers. Meanwhile, and by examining the dispersed phase, it can be shown that

0, 0<x<uxn,,
war (x, 1) = { kpg c
v

(The derivation of (2.13) and (2.14) is outlined in Appendix A.) Note that the (degenerate)
limit £ — 0 is not necessarily associated with the appearance of singularities in (2.13) and
(2.14) because & — 0 likewise implies kp — 0.

hy (2.14)
? + 1 )cos@, XN, =X =< XN,-

2.1.2. No mixing

If no mixing occurs in the lower layer, then the solute concentration of the drained fluid
is the same as the solute concentration of the gravity current fluid directly above it. In
this case, the drainage velocities are obtained by applying (2.12) for both the bulk and
dispersed phases and through all three layers of figure 1. That is,

(Cshl + by n 1) <

kpg' l
- b8s s 0<x<xp,,
wai(x,0) = v cshy + by + ¢l I (2.15)
(1 = K)cgé + Kelo  — 77
0, XNy, =x= XNy»
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and
0, 0<x<uxp,,
hy
- , —+1), [ <&,
wa(x, 1) = | kpg l (2.16)
—==cosf XN, =X < XN,
v hy + 1

T e . 170 lZ Ev
(1 -—K)¢ +KI

(The derivation of (2.15) and (2.16) is outlined in Appendix B.) No corresponding
expressions are provided for 141 and ug; because in the rotated or (x, z) coordinate system,
ug1 and ugo do not impact the evolution of I.) Here, K = kp/k is the permeability ratio.
When & — oo, (2.15)—(2.16) are consistent with the drainage formulation of Acton et al.
(2001) for a gravity current propagating over a deep layer that is permeable but ‘tight’. By
contrast, we again avoid consideration of the limit £ — 0: in the absence of an interbed
layer, figure 1 must be redrawn completely because source fluid will now fall vertically
in the form of a descending plume. Such a flow, studied at some length by Sahu & Flynn
(2015) and Gilmore et al. (2021), is not the focus of the current work.

Finally, and in defining the depth of the contaminated fluid in the lower layer, we
simplify the analysis by defining /(x, 7) as an equivalent depth such that all of the drained
fluid in the lower layer has the same uniform solute concentration c¢;. The evolution
equation for / therefore reads

2.17)

31_ Wdl, O§x<be,
ot

Cwar, XN, <X =< xp,.

In solving (2.17), we acknowledge that we do not distinguish rigorously between the bulk
and dispersed phases for z < 0. On the other hand, no such sacrifice applies for z > 0, thus
our dynamical description of the bulk and dispersed phases of the gravity current is not
jeopardized.

2.2. Boundary conditions

As shown in Sheikhi ef al. (2023), boundary conditions for a gravity current consisting of
bulk and dispersed phases are

kg’ 1 9b oh
s (222 + o1 hycos@ + hysinf | =gqs, hily, =0, (2.18a,b)
v cs 0x 0x 0 b
halo = hilo,  halxy, =0, (2.18¢,d)
blo=0, balyy, =0. (2.18e,f)

Whereas the last five of these expressions are self-explanatory, the first (influx) boundary
condition merits some additional discussion. In this spirit, (2.18a) signifies that all of the
injectate supplied by the source is added to the rear of the gravity current such that the
source volume flux matches the gravity current volume flux measured at x = 0. Thereafter,
and consistent with the numerical treatment of the source to be described in § 3, gravity
current fluid may propagate down-dip or else drain into the interbed layer.
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2.3. Non-dimensional governing equations

Following Goda & Sato (2011), we define a characteristic length scale [1; and a
characteristic time scale 1, as

M=% and 11 vy (2.19a.b)
= — an = , 19a,
1 ng 2 =(s k /
respectively. Thus we define the following dimensionless (starred) variables:
N T G Ny S
I, 11, I 11
/ - I (2.20a—g)
f=—, f=—, W = w2,
I I 1

Also, ¢} = c2/c,. Note that for notational simplicity, we drop the superscript * such that
all variables are now to be interpreted as dimensionless. (By necessity, however, we revert
to dimensional variables in § 3.1 and in the appendices.) Accordingly, (2.6)—(2.8) may be
rewritten as

ohy  d( U)
. —&eU — , 2.21
ot ox ey T wa 2.2
ohy 0 v Iy .
—— — | —h) ——I—Csm@ —mU| = —¢|— +Csin@ ) —wy — wap,
ot 0x
(2.22)
0br 91, (2 | csine U H( ) C (2.23)
Y — - Sin = —_ — . .
9 ox ox ! eU RN, = X) = Wa2
Here,
by = cy(hy — hy), (2.24)
ab oh
(—2 + —1> cosf —sind, (2.25)
brh
= 22 coso, (2.26)
hy — Iy
S (2.27)
T —hy :

Equations (2.21)—(2.23) comprise three equations in three unknowns, namely 41, > and
b>. The dimensionless boundary conditions to be coupled to these equations read

b, oh
2 T ) hycosO +hysing | =—1, hylgy =0, (2.28a.b)
ax ox 0 b
halo = hilo,  h2lxy, =0, (2.28¢,d)
brlo=0, balxy, =0. (2.28e.f)

When a state of perfect mixing can be assumed for the lower layer, the dimensionless
drainage velocities that appear in (2.21)—(2.23) are given by

hi + by

+1), 0<x<uxn,
wq1 = K cosf < ) o

0, XNy, <x= XNy»

(2.29)
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and
0, 0 <x<xp,,

wi = Kcos6 hy
e(

(2.30)
§+1>’ XN, <X < XNy,

where K is the aforementioned permeability ratio. For the no mixing case, by contrast, we

write
hi + b
( 1Jlr 2 1), I <,
K cos6 0<x<uxn,,
Wil = hi +by+1 I b (2.31)
(1—-K)§+KI’ -
0, XN, <X < XNy
and
0, 0 <x<xp,,
hy
B 7 +1), | <&, 53
Wd2 =\ K cos 6 xn, < x < xpn,. (2.32)
hy + 1 > &
(1 —-K)§&+KI’ -
Finally, the non-dimensional analogue of (2.17) becomes
a_ fwar,  0=x <y, (2.33)
ot Cwar, xn, <x ZxN,. ’

An explicit finite difference algorithm is employed to solve the governing equations.
This approach discretizes spatial derivatives using backward finite differences. Note that,
so as to prevent unrealistic singularities, we initialize / with a small value, i.e. I(x, 0) =
1073, Figures 3(a,b) show results for both the perfect mixing and no mixing cases. Because
[ is comparable to £ at early times, the prediction for wy; returned by (2.29) is similar to
that returned by (2.31), and likewise when considering wy», for (2.30) and (2.32). As a
result, and up to ¢ 2~ 100, the gravity current propagates to a comparable extent in both
scenarios. As time evolves, the / predicted by (2.33) for the no mixing case increases
steadily. When /is similar in magnitude to k2, the drainage velocity remains small such that
the gravity current extends beyond the steady-state value that is realized in the long-time
limit. As [ continues to increase, however, the gravity current begins to retract, a pattern
clearly evident from figure 3(b). This pattern of extension and retraction is quite different
from that noted in the perfect mixing case, where the terminal length of the gravity current
is approached monotonically. The difference in behaviour in question therefore provides a
convenient metric by which to assess the validity of one versus the other representation of
lower layer mixing. However, before elaborating on such details and the results anticipated
away from the bookend-limiting cases of figures 3(a,b), it is first necessary to summarize
the numerical technique used to resolve such flows.

3. Numerical simulations

The first purpose of the COMSOL-based numerical simulations is to approximate the
value of ¢ in the theoretical models of § 2. Thereafter, we use numerical results to infer the
strengths and weaknesses of the perfect mixing and no mixing models.
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Figure 3. Theoretical predictions showing gravity current profiles assuming (a) perfect mixing, and (b) no
mixing in the lower layer. Thick lines represent the bulk interface, and thin lines represent the dispersed
interface. Here, K = 0.0025, & = 0.333 (equivalent to Koy = K(1 +1/§) = 0.01) and 6 = 0°. We further
assume that ¢ = 0.0344. The justification for this choice will be presented in § 3.4.

Consistent with the orientation of the flows depicted in figures 1 and 2, we consider
the evolution of a dense gravity current through a less dense ambient. More precisely,
and mimicking similitude laboratory experiments, we assume that the gravity current
and ambient fluids are respectively comprised of salt and fresh water. Although this
choice guides our selection of the equation of state, the results of §4 are, in any event,
non-dimensionalized so as to add a degree of generality to our numerically computed
calculations. Notwithstanding this g)reference for non-dimensional variables, it must be
noted that g; = 15 and ¢; = 0.3 cm s~! in our simulations. Typically, simulations are run
for 20 minutes after injection onset, representing an investment of approximately 30 hours
of wall-clock time on an Intel Core 17-9700 CPU with 3.00 GHz and 16 GB memory. (By
comparison, solving numerically the theoretical model of § 2 requires only about 3 % of
the computational resources needed for the COMSOL simulations.)

3.1. COMSOL set-up

In order to determine the velocity and concentration fields in our numerical simulations,
mass continuity, Darcy’s equation and a solute transport equation are solved. With
COMSOL, this is achieved by leveraging the following two interfaces.

(i) The Darcy’s law (dl) interface prescribes the mass and momentum equations as

du 0w _

— 4+ — =0, 3.1
8x+8Z (3.1a)
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19
— P Y=L gsine, (3.1b)
po 0x  k £o

10

——p-l—KW:ﬁgCOSQ, (31C)
po 0z k £0

respectively.
(i1) The transport of diluted species in porous media (tds) interface solves the solute

transport equation

¢ac+ ac+ dac " 0 D BC+D ac +8 D BC+D ac
—tu—+tw—= — — — — — — |-
ar ax az ax \ Toax Yoz az\ “Coax Yoz

(3.2)

Here, ¢ is the solute concentration, and D,,, Dy, and D,, are components of the
dispersion tensor, D;;. As explained by Bear (1972), this tensor can be defined based on
two independent variables, namely the longitudinal dispersivity ay and the transverse
dispersivity ar, i.e.

Mz W2
D, = — —_—, 3.3
Xx mol + ar, V] +ar 4 (3.3a)
2 2
w u
D,, =D — — 3.3b
2z mol+aL|V|+aT|V| ( )
luw|
Dy; = Dot + (ar. — ar) m’ (3.3¢)

where D,,,; is the coefficient of molecular diffusion, and | V| is overall velocity magnitude.
Following Sheikhi et al. (2023), the dispersivity parameters ar and ar are predicted based
on the empirical correlations of Delgado (2007) as

_ {o.Sd,,, 300 < Pe < 10°,

. = 0.025d,, 34a.b
“=00.025d,, 300 < Pe <105, T (4

in which Pe is the Péclet number, and d), is the bead diameter. In this work, we consider
dp = 0.5 mm in line with similitude experiments of the type performed by Sahu & Flynn
(2017) and Bharath er al. (2020). Note finally that the linear equation of state p = pg
(1 + Bc) allows us to relate the density in (3.1b,c¢) with the solute concentration in (3.2).

3.2. Initial conditions and solver

Initially, it is assumed that the porous medium is filled with fresh water of density py =
0.998 gcm ™3 such that the solute concentration is zero at f = 0. The source consists of
an opening, oriented in z, of height 5 mm across which salt water is injected in x with a
uniform velocity profile. We determine the salt water density from g} by applying

g/
ps = (1 + j) P0- (3.5)

To discretize (3.1) and (3.2), an unstructured triangular mesh (with local refinement
in the neighbourhood of the source) is employed — see figure 4. After performing a grid
independency study, the governing equations are discretized in space using cubic shape
functions for (3.1) and quadratic shape functions for (3.2). A third-order implicit backward
differentiation formula is employed for time discretization.
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Figure 4. Schematic of the numerical set-up for similitude (a) perfect mixing and (b) laboratory experiments.

3.3. Preliminary validation

As described in more detail in Sheikhi et al. (2023), our COMSOL model is validated
using different points of reference. First, we model the flow of a porous media gravity
current along an impermeable boundary and observe strong agreement with the theoretical
solution of Huppert & Woods (1995). This comparison confirms the effectiveness of
the COMSOL model in predicting porous media buoyancy-driven flow (without either
drainage or dispersion). Second, we confirm that our COMSOL model predicts accurately
the amount of dispersion experienced by a passive scalar by juxtaposing numerical model
output with the classical solution of Bear (1972), § 10.6. This comparison confirms the
effectiveness of the COMSOL model in predicting dispersion (without buoyancy effects).
Finally, we compare numerical predictions against the flow patterns observed in similitude
laboratory experiments of a filling box flow consisting of a leaky gravity current fed by a
descending plume, i.e. figures 4(a,c) of Sahu & Flynn (2017). This comparison confirms
the effectiveness of the COMSOL model in predicting distributed drainage for flows driven
by density differences.

3.4. Determination of the entertainment coefficient

Numerical simulations are run under two different mixing scenarios. For one, mixing
details in the lower layer are resolved using (3.1) and (3.2), thereby offering the most
realistic representation of the flow behaviour expected in, say, a similitude laboratory
experiment. For the other, we run numerical experiments that mimic the perfect mixing
case of figure 2 and so eliminate dense fluid from the lower layer. This latter category
of numerical experiment is run so that, by comparison with the analogue model of § 2,
we may estimate the numerical value of the entrainment coefficient ¢. The value so
determined is assumed to apply to both of the perfect mixing and no mixing models, the
latter of which is challenging to reproduce numerically. The primary difference between
these models concerns, of course, mixing details from the lower layer; in turn, mixing
experienced in the domain z < —& seems very unlikely to directly influence mass transport
between the bulk and dispersed phases of the gravity current, and therefore the numerical
value of the entrainment coefficient.
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To make quantitative predictions with our theoretical models, we first have to estimate
the value of the entrainment coefficient €. To this end, and with specific reference to the
perfect mixing case, the difference between the nose positions of the bulk and dispersed
phases in the theoretical versus numerical models is specified by a time-integrated error

E, which is defined as

G P G B
15l N4 theory N4 num

in which ((xn, — xn,)/XN,)theory 1S assessed from the theoretical model, and
((Geny — XN, ) /XN num 1s assessed from the numerical model. When post-processing the
numerical data, we follow the approach suggested by Bharath et al. (2020) and define xy,
(xn,) as the down-dip-most location where fluid having density 80 % (5 %) of the source
density can be found. Note also that we select #{ = 20 (by which time the gravity current
is indeed long and thin) and #, = 200 (by which time the gravity current has propagated
a significant distance downstream). The ¢ that minimizes this time-integrated error is
considered as the optimum value for the entrainment coefficient in the theoretical model.

For mathematical simplicity, the theoretical models of § 2 assume a linear relationship
between w,; and u;, where i = 1, 2. However, and consistent with the free shear flow study
of van Reeuwijk, Holzner & Caulfield (2019) and the porous media flow study of Sheikhi
et al. (2023), we allow the entrainment coefficient to vary with the dip angle 6, and also
with Kz, defined as

Ky = K (1 +7). )

Here, K4 is motivated by the functional forms of (2.29) and (2.30), which demonstrate
that the draining velocities depend directly on K and £~!. In physical terms, Koy
characterizes the ease with which dense fluid may drain through the interbed layer.
Resistance to draining may arise because K is relatively small or because & is relatively
large (though not so large that the interbed thickness is large compared to a characteristic
gravity current thickness); K.y takes into account both of these considerations. The
resistance to draining may arise because of either the value of K or the value of &; K4
takes into account both of these considerations. Thus larger K4 is associated with more
draining and with a slower speed of advance for the gravity current. Corresponding data
are summarized in figure 5. These results suggest that ¢ increases with both of 6 and K.
In this way, our results, though consistent with the porous media flow investigation of
Sheikhi et al. (2023), demonstrate an intriguing difference with van Reeuwijk et al. (2019).
Although they likewise determined that ¢ increases with 6, their investigation pertained
to downslope, not upslope, flow. In other words, van Reeuwijk et al. (2019) determined
that the entrainment coefficient increases with the gravity current speed, whereas porous
media flows evidently exhibit the opposite behaviour. This difference is likely related
to the different entrainment mechanisms that apply for turbulent free shear flows versus
porous media flows. In the former case, entrainment is a consequence of large-scale eddies,
which entrain external ambient fluid via engulfment. Even for small 8, no such mechanism
applies for the porous media flows of interest here, which remain laminar such that gravity
current boundaries remain smooth. Graphical evidence for this last claim is presented in
the next section.
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Figure 5. Error-minimizing value of ¢ versus 6 and Ko = K(1 + 1/§).

4. Results and discussion
4.1. Comparison of theoretical and numerical results

Figure 6 compares the numerical output against the theoretical predictions made by
the perfect mixing and no mixing models. As anticipated, the numerical solution often
lies between the two extremes of perfect (red curves) versus no mixing (black curves).
Consistent with figure 3, the black and red curves very nearly overlap at early times,
but then diverge as ¢ increases. By extension, and for both 6 = 0° and 6 = 5°, there is
good qualitative agreement between the numerical data and the theoretical predictions for
¢t < 100. For ¢ 2 100, the perfect mixing model continues to provide reasonably accurate
predictions for the shape and extent of the bulk and dispersed phases. On the other hand,
the accuracy of the no mixing model suffers from its over-prediction of gravity current
retraction. Additional discussion on this point is provided below.

Shown in figures 7(a—b) are the bulk nose positions, and in figures 7(c—d) the dispersed
nose positions, for the two theoretical models. Also included in figure 7 are corresponding
numerical data, which are indicated by the solid symbols. The no mixing model predicts
a gradual retraction in the bulk phase but an abrupt retraction in the dispersed phase.
As the inset images in figure 7 make clear, the sudden retraction in the dispersed phase
occurs because of a decrease in the thickness of the dispersed phase at its leading edge.
The decrease in question causes a sudden vanishing of the thinned front. As the effective
permeability K. increases, the drainage becomes more robust, and the equivalent drained
depth [ increases more quickly. The retraction, therefore, occurs earlier for larger K.
Beyond the onset of retraction, draining is so robust, and vertical velocities in the gravity
current so large, that the assumption of a hydrostatic flow can no longer be justified. In
figure 7, the (black) line type then changes from solid to dashed. Figure 7 confirms that the
degree of gravity current retraction experienced in the numerical model, though non-zero,
is small and time-delayed, much more so than is predicted by the no mixing model. So
although the no mixing model gives predictions that are in reasonably good agreement
with the numerical data up to the point of retraction, model fidelity suffers thereafter.
Generally more favourable agreement is observed when considering the perfect mixing
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Figure 6. Numerical prediction of the gravity current profile versus the analogue theoretical predictions
corresponding to perfect mixing (red curves) and no mixing (black curves). Thick lines indicate the bulk
interface, and thin lines indicate the dispersed interface. The colour contours show the numerical output: (a—d)
6 = 0°, and (e-h) & = 5°. Here, K = 0.0025 and & = 0.333, which is equivalent to K = 0.01.

model, although the long-time limit is characterized by an over-prediction of the front
positions for both the bulk and dispersed phases. Not surprisingly, deviations are seen to
increase as draining is made more robust, i.e. as the value of K, increases.

The results of figure 7, in particular the observation concerning the eventual
non-hydrostatic nature of the flow in the no mixing case, motivate us to divide the (7, K,r)
parameter space as in figure 8. The red region shows the regime before the onset of
gravity current retraction in the no mixing model. In this red regime, we can use either
theoretical model to predict, with reasonable accuracy, the forward advance of the bulk and
dispersed phases. The green area shows the regime where the no mixing model becomes
unduly influenced by its prediction of gravity current retraction. Here, the no mixing
model generates results that are consistent with respect to the model assumptions but not,
unfortunately, in good agreement with numerically determined behaviour. The severity of
the retraction predicted by the no mixing model stems from its inability to account for the
instabilities that develop within the lower layer draining fluid. We elaborate on this point
in § 4.3. Thereafter, and in the blue region of figure 8, the flow predicted by the no mixing
model becomes non-hydrostatic, and the model violates one of the key assumptions stated
in § 2. In this blue region, therefore, only the perfect mixing model is physically acceptable.
Finally, when K. exceeds approximately 0.075, corresponding to the white region in
figure 8, the drainage velocity becomes so large that the hydrostatic assumption is violated
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Figure 7. Time series of the bulk and dispersed nose positions for 6§ = 0° and (a.c) Ky = 0.01 and
(b,d) Ker = 0.02. Numerical data are indicated by the square symbols; theoretical predictions are indicated
by the red (perfect mixing) and black (no mixing) curves. The dashed black curves indicate the domain where
the hydrostatic assumption becomes invalid in the no mixing model. The inset images show the bulk and
dispersed interfaces before and after the sharp reduction in the position xy, of the dispersed nose for the no
mixing case.

even in the perfect mixing model. In this regime, most of the injectate immediately drains
to the lower layer such that relatively little fluid remains above the permeability jump in the
form of a distinct gravity current. Separate analyses (not shown) suggest that the regime
diagram of figure 8 is insensitive to the choice of inclination angle. Accordingly, the results
of figure 8 are presumed applicable for different 6.

4.2. Effects of Kefr and 6 on dispersion

In this subsection, attention is restricted to the case where both theoretical models yield
accurate predictions corresponding to the red region of figure 8. In this red region, we can
employ the no mixing and perfect mixing models to quantify the impact on dispersion of
two especially important dimensionless parameters, namely K and 6. To this end, we
consider as dispersion metrics the separation distance between the bulk and the dispersed
nose positions, and the fraction of the total buoyancy (per unit width) that is specifically
associated with the dispersed phase. As regards the latter parameter, and with respect to
the thick and thin curves of figure 3, we first calculate

XNd

XNy, XNy
Bbulk = / h1 dx and Bdisp = / Cz(hz — hl) dx = / b2 dx. (4.1a,b)
0 0 0
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Figure 8. Theoretical model regime diagram illustrating the regimes where (i) both of the no mixing and
perfect mixing models return accurate predictions (red), (ii) the no mixing model remains hydrostatic but is
inaccurate owing to its over-prediction of gravity current retraction (green), (iii) the no mixing model is invalid
(blue) and (iv) both models become invalid (white). Formally, data are shown for & = 0°; however, we find
very similar results at different inclination angles.

The dispersed buoyancy fraction Edisp is then found from

Bdisp

L S (4.2)
Bpuik + Baisp

Bdisp =

The sensitivity of dispersion to K is explored in figure 9. Figure 9(a) shows the nose

separation 1 — xy, /xn,, whereas figure 9(b) shows the dispersed buoyancy fraction Bdisp.
In both plots, data are measured at t = 150. Increasing K, leads to more drainage of
bulk fluid from the gravity current, which thereby retards the elongation of the bulk phase.
Although increasing K,z likewise increases the drainage of dispersed fluid, the effect is
comparatively mild, so the net effect of increasing the effective permeability is to increase
both the nose position separation distance and also the dispersed buoyancy fraction. The
trends in question are apparent from both of the no mixing (black curves) and perfect
mixing (red curves) models, and are also evident from the superposed numerical data
(closed symbols). Consistent with figure 7, and for the relatively modest values of ¢ of
interest here, we find better agreement between the numerical data and the predictions of
the no mixing model versus the perfect mixing model.

A complementary comparison but considering the impact of 6 rather than Kz is
presented in figure 10. When the bottom boundary is inclined up-dip such that 6 > 0°,
the gravity current characteristic velocity decreases. Hence entrainment to the dispersed
phase, whether from the surroundings or from the bulk phase, is reduced. Therefore, both
of 1 — xu, /xn, and E’d,-sp decrease with 6. Comparing figure 10 against figure 9 shows that
dispersion intensity is more sensitive to K. than to 6, e.g. doubling the former parameter
yields a bigger change in 1 — xy,/xy, and Bd,-sp than is realized by doubling the latter
parameter. On the other hand, and as with figure 9, figure 10 confirms that output from
the numerical simulations is better aligned with the no mixing model than with its perfect
mixing counterpart.
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Figure 9. (a) Difference of nose separation and (b) buoyancy fraction in the dispersed phase for 6 = 0° but
various K at t = 150.
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Figure 10. As in figure 9 but considering the influence of 6 for K. = 0.01.

4.3. Flow characterization past the point of theoretical model breakdown

Although the theoretical models of §2 become inaccurate and/or invalid in the green
and blue regions of figure 8, we can leverage the numerical results from the COMSOL
simulations to investigate the flow behaviour within these parameter spaces. These
numerical simulations illustrate that following the elongation of both the bulk and
dispersed phases, the bulk phase begins to retract, whereafter the dispersed phase begins
to thin — see figures 11(a,b). The thin leading edge of the dispersed phase eventually
disappears, and the bulk and dispersed phases reach their respective terminal lengths.
Qualitatively similar behaviour is predicted by the no mixing model — see e.g. figure 7
— though in this theoretical case, transitions are more abrupt and the magnitude of the
retraction is much larger.

Examination of the numerical data has a further benefit, namely that it allows us to
study the details of the draining flow. To this end, figure 12 shows the convective flow
patterns that develop in the lower layer for different K. Figure 12 confirms that drainage
is more severe for 0 < x < xy, than it is for xy, < x < xp,. Moreover, and consistent with
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Figure 11. Numerical prediction of the flow in the green and blue regions of figure 8. Inset images show the
gravity current profile in more detail. Here, Koy = 0.03, 6 = 0°, and non-dimensional times are as indicated.

Leahy et al. (2009) and Sahu & Neufeld (2023), this figure demonstrates the presence of
fingers, which result from a Rayleigh—Taylor-type instability. The appearance of fingers is
characterized by alternating bands of upward- versus downward-propagating fluid — see
e.g. the solid red curve in figure 12(a). Moreover, the bulbous shape of the largest finger
from figure 12(b) suggests an eventual separation of this draining fluid from the overlying
gravity current. In either case, the situation differs significantly from the much more
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Figure 12. Numerical prediction of the gravity current and associated draining flow for different K,z at
t = 150, with 8 = 0°. The inset images show the vertical variation of the vertical velocity, w. Curves are
drawn for r = 100 (black lines) and # = 150 (red lines). The red dashed line in (a) displays the location x = 3,
where vertical velocities are evaluated.

0 =0° 6 =5°
Kegy Buisp Ky Baiyp
0.015  0.80 0.015 083
0.03 0.85 0.03 0.68
0.05 0.65 0.05 0.59
0.07 0.77 0.07 0.60

Table 1. Lower layer dispersed buoyancy fraction at t = 150 for various K¢ and 6 = 0°, 5°.

uniform scenario associated with the no mixing model, whereby the vertical velocities
measured in the gravity current, the interbed layer and the lower layer are identical (and
over-predicted). Note finally that as K, increases, fingers form earlier. With reference to
figure 8, this explains why the time interval over which the theoretical models work well
is tighter for larger K.

To categorize mixing in the lower layer, we can extend the definition of Edisp to the
draining flow. Accordingly, we evaluate integrals similar to those of (4.1a,b) but spanning
a vertical domain z < —&. Thus we suppose that Bd,-sp now represents the fraction of the
drained fluid that appears in a dispersed rather than in a bulk phase. Numerical values for
the redefined Bd,-sp are reported in table 1 for various K4 and for two inclination angles,
ie.0 =0%and 6 = 5°.

Although there is some scatter in the data, particularly for the case of a horizontal
permeability jump, the results of table 1 support the conclusion that most of the drained
fluid exists in a dispersed state, especially for small K. This observation is helpful
in the re-examination of figure 7(a), particularly over the time interval 200 < ¢ < 350.
There, we find much better overall agreement between the numerical data and the perfect
mixing model (red curve) than the no mixing model (black curve). The no mixing
model fails to account for the dispersed (and disconnected) nature of the drained flow
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and so over-predicts both the influence of dense fluid from the lower layer and the
severity of gravity current retraction. This limitation is obviously avoided by the perfect
mixing model, which neglects any contribution of the drained flow when calculating the
draining velocity. The perfect mixing model thereby provides a more accurate (though still
imperfect) prediction for the distances travelled by each of the bulk and dispersed phases.

5. Summary and conclusions

The present analysis considers, theoretically and numerically, the flow of a porous media
gravity current along an interbed layer where drainage from the gravity current underside
is spatially distributed. The theoretical model of §2 includes dispersive mixing and
separates the gravity current into bulk and dispersed phases. The latter phase entrains
fluid from the former and also from the surrounding ambient. For expediency, we adopt a
somewhat simpler approach when considering the evolution of the fluid that drains into
the lower layer of the porous medium. Thus we restrict attention to the two bookend
opposite cases of no mixing versus perfect mixing. The non-dimensional governing
equations presented in § 2 make reference to two dimensionless parameters, namely Ko,
the effective permeability defined by (3.7), and 6, the inclination angle of the interbed
layer. Increasing K, by either increasing the permeability of the interbed layer or else
decreasing its thickness intensifies drainage from both the bulk and dispersed phases.
Given that drainage is notably more severe in the bulk phase, increasing Kz (i) yields
a larger separation between the bulk and dispersed nose positions, and (ii) causes a greater
fraction of the gravity current fluid to reside in the dispersed phase. By either metric, we
conclude that dispersion is more significant. Increasing 6, so that the gravity current flows
up a steeper incline, leads to a smaller velocity of advance and therefore to less dispersion.
Our analysis (see e.g. figure 8) suggests that, consistent with Sahu & Neufeld (2023), the
hydrostatic pressure assumption becomes invalid when K,z and ¢ are large. The no mixing
and perfect mixing models do not, therefore, provide meaningful predictions always. In
particular, the no mixing model eventually predicts a draining velocity that is too large and
so exhibits a more limited range of applicability than its perfect mixing counterpart.

To gain additional insights into the veracity of our model predictions, we ran a series of
complementary COMSOL numerical simulations as described in § 3. In the first case,
numerical data are needed to calibrate the value of the entrainment coefficient ¢ that
appears in the governing equations (2.21)—(2.23). Figure 5 demonstrates that the optimum
value of ¢ is a function of K.z and 6. (Note that we consider the same value for ¢ for both
of the no mixing and perfect mixing models because the entrainment coefficient depends
on the details of the dispersive mixing that occurs between the gravity current and the
ambient, but not on mixing processes in the lower layer.) In the second case, numerical
simulations are performed for the sake of comparison with theoretical model output. Not
surprisingly, the numerical simulations require approximately 30 times the number of
floating point operations given e.g. the simplifying assumptions applied in the theoretical
model. Figures such as 6, 7, 9 and 10 confirm that both theoretical models provide a
reasonable description of the gravity current evolution, at least until the point where
the no mixing model predicts flow retraction. Thereafter, the front positions anticipated
by the no (perfect) mixing model significantly under-predict (moderately over-predict)
the numerically derived behaviour. The eventual breakdown of the no mixing model
cannot be regarded as surprising: the model assumes that fluid drained to the lower
layer contributes to basal draining in perpetuity. This picture is rather different from the
numerical simulation results of figure 12, which suggest the appearance of convective

984 A33-23


https://doi.org/10.1017/jfm.2024.203

https://doi.org/10.1017/jfm.2024.203 Published online by Cambridge University Press

S. Sheikhi and M.R. Flynn

fingers that both mix into the lower layer ambient and later detach from gravity current
underside. Fingers are the result of a Rayleigh—Taylor-type instability, are characterized
by adjacent bands of upward- versus downward-directed flow, and materialize earlier for
larger K.¢r. On the other hand, and for smaller K.z, we observe that a greater fraction of
the draining fluid in the lower layer appears in a dispersed rather than bulk phase — see
e.g. table 1. This is, of course, the opposite behaviour to what is observed in the upper
layer. In other words, large K, is associated with robust dispersion above the interbed
layer, but comparatively modest dispersion below. Meanwhile, small K4 is associated
with more modest dispersion above the interbed layer, but more robust dispersion below.
These observations suggest that theoretical models that consider sharp interfaces for the
gravity current and also for the draining fluid may apply only under special circumstances,
e.g. at relatively early times before finger onset.

Although we have presented a careful comparison of theory and numerical simulation,
it remains to confirm independently the accuracy of both categories of models with
similitude laboratory experiments. To this end, we envision running a series of
experiments in the spirit of Huppert, Neufeld & Strandkvist (2013), Bharath et al. (2020)
and Sahu & Neufeld (2023). In such a case, the interbed layer may be included by
application of a thin porous substrate as in the experiments of Thomas, Marino & Linden
(1998). Laboratory experiments must employ a lower layer of large depth so as to avoid
the collision of the draining fluid with the bottom boundary of the tank. If such a collision
were to occur, then a secondary gravity current would appear, which has the potential to
influence the evolution of the gravity current propagating along the interbed layer — see
e.g. Bharath & Flynn (2021). Turning from the laboratory to the field, it is important to
reiterate that our research is motivated by examples of environmental flows in geological
layers. These are more complicated than the physical domain that we consider here, owing,
for instance, to the more complicated pattern of layer heterogeneities than is accounted for
in figure 1. In the next step, it would be beneficial to include multiple interbed layers, as
has been done in the studies of Neufeld & Huppert (2009), Behnam, Bickle & Neufeld
(2021) and Sahu & Neufeld (2023), for example. By doing so, we can better understand
buoyancy-driven flow through non-uniform porous media, e.g. the communication of
H; between different layers in underground hydrogen storage (UHS) projects involving
depleted natural gas reservoirs. Our models also consider that the dynamic viscosity u
is independent of the concentration and is therefore the same in the bulk and dispersed
phases. For the UHS example described in the Introduction, the viscosity of the dispersed
phase (consisting of a mixture of H, and CHy4) should be more than that of the bulk phase
(consisting of Hp). Underestimating the dispersed phase viscosity leads to over-predicting
its propagation speed. Relative to real geological flows, the models presented here might
therefore over-predict the extent of dispersion. Quantifying this effect more precisely is
a topic of current interest; to this end, we hope to report on our findings in a future
publication.
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Appendix A. Derivation of the drainage velocity in the perfect mixing model

With reference to figure 2, we assume a hydrostatic pressure distribution through the
gravity current such that the pressures measured along z = 0 in the bulk and dispersed
phases are

- b .
p1.1(x,0,7) = pog, <h1 + (:_2) cos @ + Py + ppgxsin6, (A1)

N

p2.1(x,0,7) = pog;Chy cos 6 + Py + pogxsin®, (A2)

respectively. Here, subscript / indicates the upper layer of figure 2. Turning to the interbed
layer, we integrate Darcy’s law in the z-direction below the bulk and dispersed phases and
find that

0 0 0
0
/ PLIL g, — / pog,cos 6 dz — / L (A3)
z 0z z z kb
0 0 0
0
/ P21l dz = —/ poCgl cos 0 dz — / Lol wgn dz, (A4)
: 0z z )

in which subscript Il denotes the interbed layer. Fortuitously, all terms under the
right-hand-side integrals of (A3) and (A4) are independent of z, and the integrals
are therefore straightforward to evaluate. Consistent with Acton et al. (2001) and
by considering pressure continuity at z =0 such that pj ;(x,0,7) = p y(x,0,7) and
p2.1(x,0,7) = pa. ;1(x, 0, 7), the pressure distributions through the interbed layer are given
by

- b .
pru(x, z, 1) = poé'; <h1 + 0_2 - Z) cos 6 — ]/:_delZ + Po + pogxsin0, (AS)

N

par(x,z, 1) = ,oog;C(hz —z)cosbh — IiL_b w2z + Po + pogxsin 6, (A6)

for the bulk and dispersed phases, respectively. Also following Acton et al. (2001), we
set p1(x, —&,7) = Po + pogxsin® and pa j1(x, —&,7) = Py + pogxsin6@. Using these
results, the drainage velocities for the perfect mixing case can be recovered by substituting
z = —£& in (AS) and (A6), then solving for wy; and wg;, respectively. So we find that

kpg. (cshi + b
b8s <—C§ Lt 2—1—1)0050, 0 <x<xp,,

wai (x, 1) = v csé (AT)
0, XN, <X < XNy,
and
0, 0 <x<xp,,
1) =1 ke h A8
waa (x, 7) b8 - (Ez n 1) cosh, xw, < x < xx,. (A8)
V
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Appendix B. Derivation of the drainage velocity in the no mixing model

Using (AS5) and (A6), the pressures measured at the base z = —£ of the interbed layer of
figure 1 are

~ by 12 .
pri(x, =&, 1) = pogy (hl + . + S) cos 6 + o wa1€ + Po + pogx sin6, (BD)

S
~ “u .
p2(x, =&, 1) = pogyC(ha + &) cos 6 + ko war€ + Po + pogxsinf. (B2)

If we consider, consistent with Neufeld & Huppert (2009), the continuity of flux
perpendicular to the boundary at z = —&, then the drainage velocities wy; and wy> must
be constant through the interbed and lower layers. Regarding this lower layer, we integrate
Darcy’s law in the z-direction and find that

—£ 5 —£ =
/ pLUL G _ f pogl.cos 0 dz — / ad wy1 dz, (B3)
2 az z : kK
- 5 - —£
/ prt . / poCg. cos§ dz — f ® v dz. (B4)
2 0z z : Kk

Again, all of the terms under the right-hand-side integrals are independent of z. Note
that for the sake of mathematical convenience, we suppose that any drained fluid that
appears in the lower layer forms a uniform layer of depth /. This simplification is in
obvious contrast to figure 1, which defines layer depths /; and /, for the bulk and dispersed
phases, respectively. As a consequence of the simplification, it is appropriate to set C = 1
in the former right-hand-side terms of (B2) and (B4). By assuming pressure continuity
at z = —§, the pressure distributions under the gravity current bulk phase and dispersed
phase can be found. These read

- b .
pru(x, z, 1) = pog., (hl + C—2 — z) cos 6 + kﬁwdl[(l — K)§ — Kz] + Py + pogxsin 0,
K b
(BS)
. m )
p2.a(x, 2, 1) = pogy(hy —z) cos O + X waz[(1 — K)§ — Kz] + Po + pogxsinf. (B6)

Consistent with Acton et al. (2001), we set pi(x, —1,7) = pay(x, —1,7) = Po +
pogx sin 8. Combining this information with (B5) and (B6), the drainage velocities in the
no mixing case can be written as

(Csh1+b2+1> <&

kpg' l
- b8s Cs 0<x<xn,,
wai(x,f) = v csh1 4+ by + ¢4l - (B7)
(1 = K)esé + Keglo  — 7
0, XN, <X < XNy,
and
0, 0<x<uxp,,
h
7 / <_2 + 1) ’ l < Sa
war(x, 1) = | kg l (B3)
—=cos 6 XN, < x < xny.
v hy +1 - %_
(1 -K)E&+KI -
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Reassuringly, (B7) and (B8) are consistent with (A7) and (A8) when [ < & such that fluid
has not yet drained through the depth of the interbed layer.
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