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Abstract We define a hyperplane group to be a finite group generated by reflections fixing a single
hyperplane pointwise. Landweber and Stong proved that the invariant ring of a hyperplane group is
again a polynomial ring in any characteristic. Recently, Hartmann and Shepler gave a constructive proof
of this result. By their algorithm, one can always construct generators that are additive. In this paper,
we study hyperplane groups of order a power of a prime p in characteristic p and give a slightly different
construction of the generators than Hartmann and Shepler. We then show that such generators have a
particular form. Furthermore, we show that if the group is defined by a finite additive subgroup W ⊆ F

n,
the vanishing ideal of W is generated by polynomials obtained from a set of generators of the invariant
ring that are additive. Finally, we give a shorter proof of the fact that the module of the invariant
differential 1-forms is free in our situation.
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1. Introduction

Given a finite-dimensional representation of a finite group G on a vector space V over a
field F of characteristic p � 0, we say that a non-identity element σ ∈ G is a reflection if
σ fixes a hyperplane of V pointwise. We say that G is a reflection group if G is generated
by reflections. The action of G on V induces an action of G on the hom-dual V ∗ of V

via the rule
σ(x)(v) = x(σ−1(v))

for σ ∈ G, x ∈ V ∗ and v ∈ V . When F is infinite, we note that the symmetric algebra
of V ∗ can be identified with the coordinate ring, F[V ], of V . However, we shall use the
notation F[V ] to denote the symmetric algebra of V ∗ over any field F. The action of G on
V ∗ can be extended to the symmetric algebra of V ∗ via the rules σ(f ·f ′) = σ(f)·σ(f ′) and
σ(f +f ′) = σ(f)+σ(f ′). The ring of functions left invariant by the action of G is denoted
by F[V ]G and the study of this invariant ring is centuries old. We recommend [1,3,11]
as general references for the invariant theory of finite groups.

The invariant ring F[V ]G is much better understood in the non-modular case (i.e. when
the characteristic p of the field does not divide the order |G| of the group G). In this case,
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it is a famous result [2,9,10] that F[V ]G is again a polynomial algebra if and only if G is a
reflection group. The best known example is provided by the usual representation of the
symmetric group which is generated by its transpositions x ↔ y fixing the hyperplane
determined by x − y. In fact, the usual representation of the symmetric group has a
polynomial ring of invariants independently of the characteristic of the field. However,
it remains a most important problem of modular invariant theory to characterize those
groups G with an invariant ring which is again polynomial. It is known that G must be
a reflection group, but it is also known that this is not a sufficient condition [9].

In this paper, we shall study a special family of modular reflection groups that are
known to have polynomial invariant rings. A reflection group G is said to be a hyperplane
group if each element of G fixes the same hyperplane pointwise. To our knowledge, these
groups were first defined and studied by Landweber and Stong in [7]. They proved that
such groups always have polynomial invariant rings.

In what follows, we take V to be a vector space of dimension n + 1 over a field F

of characteristic p > 0 with basis {e, e1, . . . , en}, we take U to be the hyperplane of
V spanned by {e1, . . . , en} and we take G to be a (finite) hyperplane group fixing U

pointwise. We suppose now that {x, x1, . . . , xn} is the hom-dual basis of {e, e1, . . . , en}.
Then U is defined by x = 0 and the induced action of G on V ∗ is of the form

σ(x) = aσx, σ(xi) = xi + ai,σx for 1 � i � n,

where σ ∈ G, aσ, ai,σ ∈ F and aσ �= 0. Namely, under the basis {x, x1, . . . , xn}, the
matrix of σ takes the following form:

⎛
⎜⎜⎜⎜⎝

aσ a1,σ · · · an,σ

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞
⎟⎟⎟⎟⎠ .

We recall that over any field k of characteristic p > 0, a polynomial f(y) ∈ k[y] is said
to be additive in y if

f(y + z) = f(y) + f(z)

in k[y, z]. We note that f is additive in y if and only if each of its terms is of the form
aiy

pi

for ai ∈ k and i � 0. A polynomial in F[x, x1, . . . , xn] is said to be additive in
x1, . . . , xn if

f(x, x1 + y1, . . . , xn + yn) = f(x, x1, . . . , xn) + f(x, y1, . . . , yn)

in F[x, x1, . . . , xn, y1, . . . , yn]. For example, xp
1 − xp−1x1 ∈ k[x, x1] is additive in x1. It

is not hard to see that a homogeneous polynomial f(x, x1, . . . , xn) ∈ F[V ] is additive in
x1, . . . , xn, if and only if

f(x, x1, . . . , xn) = f(x, x1, 0, . . . , 0) + f(x, 0, x2, 0, . . . , 0) + · · · + f(x, 0, . . . , 0, xn),

and each homogeneous polynomial f(x, 0, . . . , 0, xi, 0, . . . , 0) is additive in xi.
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Recently, Hartmann and Shepler [5] examined the Jacobians associated to hyperplane
groups and gave a constructive proof of the result of [7] just cited. More precisely, they
proved that, for the hyperplane group G,

F[V ]G = F[xs, f1, . . . , fn],

where s > 0 is some integer (in fact, s is the order of the image of θ defined below) and
each fi is homogeneous and additive in x1, . . . , xn.

We note that to prove that F[V ]G is polynomial we need only to prove that F[V ]H is
polynomial, where H is the kernel of the group homomorphism

θ : G → F
∗, σ → aσ.

This can be seen as follows. The image of θ is a cyclic subgroup of F
∗ of order coprime

to p. Let s be the order of this cyclic subgroup and define

F[V ]Gθi = {f ∈ F[V ] | σ(f) = θ(σ)if for all σ ∈ G},

often referred to as the semi-invariants associated to the group character θi. Then we
have

F[V ]H =
s−1⊕
i=0

F[V ]Gθi .

Since G is generated by reflections, each F[V ]Gθi is free of rank 1 over F[V ]G [8]. It
follows that F[V ]H is free over F[V ]G. So, F[V ]G is a polynomial ring if F[V ]H is [11,
Corollary 6.7.13].

So, we shall assume G = H in what follows. It is then clear that G is an elementary
abelian p-group (in particular, det(σ) = 1 for any σ ∈ G) and that x ∈ (V ∗)G.

Let G denote the collection of all the finite hyperplane groups on V that fix U pointwise
and fix x, and let W denote the collection of all finite additive subgroups of F

n. It is easy
to see that there exists a one-to-one correspondence between G and W. We have that,
for any G ∈ G, the set

{(a1,σ, a2,σ, . . . , an,σ) | σ ∈ G}
(using the notation established above) is a finite additive subgroup of F

n. And if W is a
finite additive subgroup of F

n, then each w = (a1, a2, . . . , an) ∈ W defines an invertible
linear transformation σw of V ∗ by the rule

σw(x) = x, σw(xi) = xi + aix for 1 � i � n.

Then G = {σw | w ∈ W} ∈ G. Now any group in G is an elementary abelian p-group, and
a finite additive subgroup of F

n is also an elementary abelian p-group. So the one-to-one
correspondence described above is an isomorphism of vector spaces over Fp.

We now view x1, . . . , xn as the dual basis to the standard basis of F
n and view the

polynomial algebra A = F[x1, . . . , xn] as the symmetric algebra of (Fn)∗. For any subset
T ⊂ F

n, the vanishing ideal of T is defined to be

I(T ) = {f ∈ A | f(t) = 0 for all t ∈ T}.
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The well-known Hilbert Basis Theorem tells us that I(T ) is always finitely generated.
Furthermore, if T is finite, then I(T ) is generated by n elements [12, Theorem 4.2.4].

In the next section, we give a slightly different approach from [5] to prove that F[V ]G =
F[x, f1, . . . , xn] for any G in G, where each fi = fi(x, x1, . . . , xn) is homogeneous and
additive in x1, . . . , xn. Furthermore, we prove that if G is defined by W ⊆ F

n, then I(W )
is generated by f1(1, x1, . . . , xn), . . . , fn(1, x1, . . . , xn). We also give a proof of the fact
that the F[V ]G-module of invariant differential 1-forms, (Ω1)G, is free in our situation.

2. Main result

We continue to use the notation established in the introduction: F[V ] = F[x, x1, . . . , xn],
and G is a hyperplane group fixing x and the hyperplane x = 0 pointwise. As above, we
view A = F[x1, . . . , xn] as the coordinate ring of F

n. In the proof of the main theorem
below, we shall need the following well-known result.

Let f, f1, . . . , fn ∈ F[V ]G be a homogeneous system of parameters of degrees
|f |, |f1|, . . . , |fn|, respectively. Then F[V ]G = F[f, f1, . . . , fn] if and only if

|f | · |f1| · · · |fn| = |G| (2.1)

(see [6, Proposition 16]).
It is easy to see that F[V ]G = (F[V ]H)G/H for any normal subgroup H of G. Suppose

we are given a normal subgroup H of G such that G is generated by H and a single
element σ so that G/H is generated by (the image of) σ. For f ∈ F[V ], we define
∆(f) = σ(f) − f . Then ∆ is a twisted derivation: ∆(ff ′) = ∆(f)f ′ + σ(f)∆(f ′), and we
note that ∆: F[V ]H → F[V ]H is a map of F[V ]G modules.

In this situation, we shall construct invariants in two ways. Note that the Nσ(f) in the
next lemma is just the relative norm of f .

Lemma 2.1. Let H be a normal subgroup of G and assume G = 〈H, σ〉.

(i) Suppose f ∈ F[V ]H and assume ∆(f) ∈ F[V ]G. Then

Nσ(f) = N(f) = fp − ∆(f)p−1f ∈ F[V ]G.

(ii) Suppose f, f ′ ∈ F[V ]H with ∆(f ′) | ∆(f) and ∆(f)/∆(f ′) ∈ F[V ]G. Then

Rσ(f, f ′) = R(f, f ′) = f − ∆(f)
∆(f ′)

f ′ ∈ F[V ]G.

Proof. This is done by direct computation. �

Remark 2.2. For any pair f, f ′ ∈ F[V ]H with ∆(f ′), ∆(f) ∈ F[V ]G, we may construct
a G-invariant

∆(f ′)f − ∆(f)f ′

of degree at most |f | + |f ′|.
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Now we give the main result of the paper.

Theorem 2.3. Let F[V ] = F[x, x1, . . . , xn] and let G be a non-trivial finite hyperplane
group on V fixing x and the hyperplane x = 0 pointwise. We have the following.

(i) F[V ]G is a polynomial ring and there exist polynomials f1, . . . , fn ∈ F[V ]G such
that F[V ]G = F[x, f1, . . . , fn], where each fi is homogeneous and additive in
x1, . . . , xn [5].

(ii) If F[V ]G = F[x, f1, . . . , fn], where all fi are homogeneous and additive in x1, . . . , xn,
then each fi is of the form

fi =
di∑

j=0

n∑
k=1

aijkxpdi−pdi−j

xpdi−j

k ,

where aijk ∈ F. Furthermore, if F is a perfect field, then with a suitable choice of
the coordinate functions each fi has the following form

fi = xpdi

i +
di∑

j=1

n∑
k=1

cijkxpdi−pdi−j

xpdi−j

k ,

where cijk ∈ F.

(iii) If G is defined by the additive subgroup W ⊂ F
n and F[V ]G = F[x, f1, . . . , fn],

where each fi = fi(x, x1, . . . , xn) is homogeneous and additive in x1, . . . , xn, then
the vanishing ideal I(W ) is generated by f̂1, . . . , f̂n, where

f̂i = fi(1, x1, . . . , xn).

Proof. We shall give a slightly different proof of the first statement from the one that
appears in [5].

As noted above, we have that G is an elementary abelian p-group. So we assume that
G has rank r > 0 and generated by σ1, σ2, . . . , σr for some r > 0. So we shall induct on
r to show (i). Let us assume {σ1, . . . , σr} is a basis for G over Fp.

Assume that r = 1 and that σ = σ1 corresponds to (a1, . . . , an). We may assume that
a1 �= 0. We note that ∆σ(x1) | ∆σ(xi) for all 2 � i � n. So Rσ(x1, xi) = xi − a−1

1 aix1 is
G-invariant by the lemma. We may conclude that

F[V ]G = F[x, xp
1 − ap−1

1 xp−1x1, x2 − a−1
1 a2x1, . . . , xn − a−1

1 anx1].

So the result is true for r = 1. Now assume r > 1 and define H to be the group generated
by σ1, . . . , σr−1 and assume by induction that

F[V ]H = F[x, f1, . . . , fn]

is polynomial, where the fi are homogeneous and additive in x1, . . . , xn. Using (2.1), we
have

|f1| · |f2| · · · |fn| = |H| = pr−1,
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where |fi| = deg fi. Let σ = σr correspond to (a1, . . . , an) and arrange the fi such that

|f1| � |f2| � · · · � |fn|.

We take i to be the smallest integer such that σ(fi) �= fi. Then, for each j we have

σfj(x, x1 . . . , xn) = fj(x, x1 . . . , xn) + fj(x, a1x, . . . , anx) = fj + bjx
|fj |,

where bj ∈ F. Thus, we have bj = 0 for 1 � j < i and bi �= 0.
Using Lemma 2.1, we take

N(fi) = fp
i − bp−1

i x|fi|(p−1)fi,

and for j > i we take

R(fi, fj) = fj − b−1
i bjx

|fj |−|fi|fi.

Then these homogeneous polynomials are G-invariant and, since

{x, f1, . . . , fi−1, N(fi),R(fi, fi+1), . . . ,R(fi, fn)}

is a homogeneous system of parameters for F[V ]G and the product of their degrees is
p · |H| = |G|, we have (using (2.1)) that

F[V ]G = F[x, f1, . . . , fi−1, N(fi),R(fi, fi+1), . . . ,R(fi, fn)]

is a polynomial ring. Furthermore, each of these polynomials is additive in x1, . . . , xn,
completing the proof of (i).

For (ii), assume F[V ]G = F[x, f1, . . . , fn] is a polynomial ring, where each fi is homo-
geneous and additive in x1, . . . , xn. Now, the polynomial

fi(x, 0, . . . , 0, xj , 0, . . . , 0)

is homogeneous and additive in xj for 1 � i, j � n. Thus, each fi must be of the form

fi =
di∑

j=0

n∑
k=1

aijkxpdi−pdi−j

xpdi−j

k ,

where aijk ∈ F and pdi = |fi|.
Furthermore, since {x, f1, . . . , fn} is a homogeneous system of parameters for F[V ],

{f1(0, x1, . . . , xn), . . . , fn(0, x1, . . . , xn)}

is a homogeneous system of parameters for A = F[x1, . . . , xn]. We also have

fi(0, x1, . . . , xn) =
n∑

k=1

ai0kxpdi

k .
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Since F is perfect, there exists a bik ∈ F such that ai0k = bpdi

ik for each pair (i, k). Thus,

fi(0, x1, . . . , xn) =
( n∑

k=1

bikxk

)pdi

.

Hence, {
yi =

n∑
k=1

bikxk

∣∣∣∣ 1 � i � n

}

is also a homogeneous system of parameters for F[x1, . . . , xn]. In other words, {y1, . . . , yn}
is a basis of the vector space 〈x1, . . . , xn〉. Thus, we have

F[V ] = F[x, y1, . . . , yn],

∆σ(yi) ∈ Fx for 1 � i � n, σ ∈ G,

and each fi can be written in the form

fi(x, x1, . . . , xn) = ypdi

i +
di∑

j=1

n∑
k=1

cijkxpdi−pdi−j

ypdi−j

k ,

with cijk ∈ F. So (ii) follows.

We now prove (iii), i.e. that

I(W ) = (f̂1, . . . , f̂n),

where f̂i = fi(1, x1, . . . , xn). First of all, for any σ ∈ G corresponding to (a1, . . . , an), we
have

0 = ∆σ(fi) = fi(x, a1x, . . . , anx) = fi(1, a1, . . . , an)xpdi
.

Thus,
f̂i(a1, . . . , an) = fi(1, a1, . . . , an) = 0,

and therefore
(f̂1, . . . , f̂n) ⊆ I(W ).

Next, we prove the claim that

dimF A/(f̂1, . . . , f̂n) � |G|.

First, we assume that F is perfect. Then, from (ii), we may assume that each fi is of the
form

fi = xpdi

i +
di∑

j=1

n∑
k=1

cijkxpdi−pdi−j

xpdi−j

k ,
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and thus

f̂i = xpdi

i +
di∑

j=1

n∑
k=1

cijkxpdi−j

k ,

where cijk ∈ F. Then we see that, as a vector space over F, A/(f̂1, . . . , f̂n) is spanned by
the residue classes of the monomials

xe1
1 xe2

2 · · ·xen
n ,

where 0 � ei < pdi . So,

dimF A/(f̂1, . . . , f̂n) �
n∏

i=1

pdi = |G|.

Thus, the claim is true for F a perfect field.
Now assume that F is arbitrary. Let F̄ be the algebraic closure of F (thus, in particular,

F̄ is perfect) and let V̄ = F̄ ⊗F V . Then

F̄[V̄ ] = F̄ ⊗F F[V ]

and

F̄[V̄ ]G = F̄ ⊗F F[V ]G.

So, if we let X = 1 ⊗ x and Xi = 1 ⊗ xi for 1 � i � n, then

F̄[V̄ ] = F̄[X, X1, . . . , Xn]

and

F̄[V̄ ]G = F̄[X, F1, . . . , Fn],

where Fi = fi(X, X1, . . . , Xn) for 1 � i � n. Thus, since F̄ is perfect, for Ā :=
F̄[X1, . . . , Xn] and F̂i = fi(1, X1, . . . , Xn),

dimF̄ Ā/(F̂1, . . . , F̂n) � |G|.

Moreover, from the natural exact sequence

0 → F̄ ⊗F (f̂1, . . . , f̂n)A → F̄ ⊗F A → F̄ ⊗F A/(f̂1, . . . , f̂n) → 0

we see that
Ā/(F̂1, . . . , F̂n) ∼= F̄ ⊗F A/(f̂1, . . . , f̂n).

It follows that
dimF A/(f̂1, . . . , f̂n) = dimF̄ Ā/(F̂1, . . . , F̂n) � |G|.

This proves the claim.
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Furthermore, by the Chinese Remainder Theorem, we have

A/I(W ) �
⊕

w∈W

A/mw � F
|G|,

where mw = I({w}). So,
dimF A/I(W ) = |G|.

Now, from the fact that (f̂1, . . . , f̂n) ⊆ I(W ), as shown earlier, we have that

dimF A/I(W ) � dimF A/(f̂1, . . . , f̂n).

Thus,
|G| = dimF A/I(W ) � dimF A/(f̂1, . . . , f̂n) � |G|,

and so
I(W ) = (f̂1, . . . , f̂n).

This completes the proof of the theorem. �

Note that every fi in the theorem is a polynomial, each of whose monomials only
involves x and another variable. So f̂i is a linear combination of p-powers of the variables
x1, x2, . . . , xn. Thus, we have the following.

Corollary 2.4. Let F be a field of characteristic p > 0 and let W ⊆ F
n be a finite

additive subgroup. Then the vanishing ideal I(W ) can be generated by n polynomials,
each of which is a linear combination of p-powers of the variables.

We remark that the proof of Theorem 2.3 (i) gives an algorithm for constructing a
generating set for the invariant ring. This algorithm differs slightly from the one given
in [5]. In fact, in [5], the polynomials

f ′
j = fj − (bj/(b|fj |/|fi|

i ))f |fj |/|fi|
i , j > i,

were constructed instead of the polynomials R(fi, fj) constructed here.
Also, Hartmann and Shepler studied invariant differential forms of reflection groups

in [4]. In particular, they proved the following result.

Theorem 2.5. Let F = Fq be a finite field and let G be any hyperplane group on V .
Then the F[V ]G-module of invariant differential 1-forms,

(Ω1)G = (F[V ] ⊗F V ∗)G,

is free.

They proved the above theorem by constructing linearly independent generators for
(Ω1)G over F[V ]G from the generators of the polynomial ring F[V ]G produced by their
algorithm. In our situation, we can prove the following.
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Theorem 2.6. Let the situation be as in Theorem 2.3 and assume

F[V ]G = F[x, f1, . . . , fn],

where

fi =
di∑

j=0

n∑
k=1

aijkxpdi−pdi−j

xpdi−j

k

for 1 � i � n. And, as in [4], assume p �= 2. Then (Ω1)G is a free F[V ]G-module. In fact,
if d1 = · · · = dr−1 = 0 and di > 0 for i � r, then dfi/xpdi−2 ∈ (Ω1)G for each i � r, and
the invariant differential 1-forms

dx,df1, . . . ,dfr−1, dfr/xpdr −2, . . . ,dfn/xpdn −2

constitute a basis for (Ω1)G over F[V ]G.

Proof. Without loss of generality, we shall assume fi = xi for 1 � i � r − 1. Also,
we shall use the notation from [4]. In our situation, Qdet = 1, Q(Â) = xn−r+1 and
vol = dx ∧ dx1 ∧ · · · ∧ dxn. Note that, for i � r,

dfi = d
( n∑

k=1

aidikxpdi−1xk

)

=
(

−
n∑

k=1

aidikxpdi−2xk

)
dx +

n∑
k=1

aidikxpdi−1 dxk

= xpdi−2
((

−
n∑

k=1

aidikxk

)
dx +

n∑
k=1

aidikxdxk

)
.

So, dfi/xpdi−2 is an invariant differential 1-form for each i � r. Furthermore,

dx ∧ dx1 ∧ · · · ∧ dxr−1 ∧ dfr/xpdr −2 ∧ · · · ∧ dfn/xpdn −2 = axn−r+1 dx ∧ dx1 ∧ · · · ∧ dxn

= aQ(Â)Qdet vol,

where a ∈ F is the determinant of the (n − r + 1) × (n − r + 1) matrix
⎛
⎜⎝

ardrr · · · ardrn

...
. . .

...
andnr · · · andnn

⎞
⎟⎠ .

We have that a �= 0, since dx,dx1, . . . ,dxr−1, dfr, . . . ,dfn are linearly independent over
F(V )G, and thus

dx ∧ dx1 ∧ · · · ∧ dxr−1 ∧ dfr/xpdr −2 ∧ · · · ∧ dfn/xpdn −2 �= 0.

So, by [4, Theorem 7], (Ω1)G is free over F[V ]G with

dx,dx1, . . . ,dxr−1, dfr/xpdr −2, . . . ,dfn/xpdn −2

as a basis. �
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3. Examples

We now give some examples to show how to use the method given in the proof of The-
orem 2.3 to construct generators for F[V ]G and I(W ). First, we note that if W ⊆ F

n
p is

an additive subgroup, then, after a suitable coordinate transformation,

W = {(c1, . . . , cr, 0, . . . , 0) | ci ∈ Fp}.

Thus,
F[V ]G = F[x, xp

1 − xp−1x1, . . . , x
p
r − xp−1xr, xr+1, . . . , xn],

and thus
I(W ) = (xp

1 − x1, . . . , x
p
r − xr, xr+1, . . . , xn).

So, we shall consider examples in which F �= Fp.

Example 3.1. We assume F �= Fp and take u ∈ F \ Fp. Consider the finite set

W = {(a + bu, b + au) | a, b ∈ Fp} ⊂ F
2.

Then W is an additive group of order p2 generated by the basis elements (1, u), (u, 1).
We denote by σ1, σ2 the algebra automorphisms they define on F[V ] = F[x, x1, x2]
respectively. Let G1 denote the hyperplane group generated by σ1 and let G denote the
hyperplane group G generated by σ1 and σ2. We have

F[V ]G1 = F[x, xp
1 − xp−1x1, x2 − ux1]

and

F[V ]G = F[V ]G2 = F[x, f1, f2],

where

f1 = xp
1 − xp−1x1 − up − u

1 − u2 xp−1(x2 − ux1)

= xp
1 +

up+1 − 1
1 − u2 xp−1x1 − up − u

1 − u2 xp−1x2

and

f2 = (x2 − ux1)p − (1 − u2)p−1xp−1(x2 − ux1)

= xp
2 − upxp

1 − (1 − u2)p−1xp−1x2 + u(1 − u2)p−1xp−1x1.

Thus, I(W ) = (f̂1, f̂2), where

f̂1 = xp
1 +

up+1 − 1
1 − u2 x1 − up − u

1 − u2 x2

and

f̂2 = xp
2 − upxp

1 − (1 − u2)p−1x2 + u(1 − u2)p−1x1.
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Example 3.2. Let F = Fp(u), where u is transcendental over Fp (thus F is not perfect,
as u is not a pth power in F). Let

W = {(a + cu, b + cu2) | a, b, c ∈ Fp}

and let G be the group defined by W . Then G is generated by σ1, σ2 and σ3, where
σ1, σ2 and σ3 correspond to (1, 0), (0, 1) and (u, u2), respectively. We denote by G1 the
group generated by σ1 and by G2 the group generated by σ1 and σ2. Then we have

F[V ]G1 = F[x, xp
1 − xp−1x1, x2],

F[V ]G2 = F[x, xp
1 − xp−1x1, x

p
2 − xp−1x2]

and

F[V ]G = F[x, f1, f2],

where

f1 = (xp
1 − xp−1x1)p − (up − u)p−1xp(p−1)(xp

1 − xp−1x1)

and

f2 = (xp
2 − xp−1x2) − (up + u)(xp

1 − xp−1x1).

Thus, I(W ) = (f̂1, f̂2), where

f̂1 = (xp
1 − x1)p − (up − u)p−1(xp

1 − x1)

and

f̂2 = (xp
2 − x2) − (up + u)(xp

1 − x1).

We note that Example 3.2 shows that if F is not perfect, the method given in the proof
of Theorem 2.3 may fail to produce a generating set with each fi having the form

fi = xpdi

i +
di∑

j=1

n∑
k=1

cijkxpdi−pdi−j

xpdi−j

k ,

where cijk ∈ F. In fact, in Example 3.2,

f2 = (xp
2 − (up + u)xp

1) − xp−1x2 + (up + u)xp−1x1,

and clearly xp
2 − (up + u)xp

1 is not the pth power of a linear form, as required in part (ii)
of the theorem.
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d’Algèbre (Paris, 1967), Exposé 8, pp. 1–11 (Ecole Normale Supérieure de Jeunes Filles,
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