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Abstract

The commutativity degree of a finite group is the probability that two randomly chosen group elements
commute. The object of this paper is to compute the commutativity degree of a class of finite groups
obtained by semidirect product of two finite abelian groups. As a byproduct of our result, we provide an
affirmative answer to an open question posed by Lescot.
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1. Introduction

Let G be a finite group. The commutativity degree of G (see [5, 6]) is given by

Pr(G) =
|{(x, y) ∈G ×G | xy = yx}|

|G|2
.

Let C = {(x, y) ∈G ×G | xy = yx}. Then it is not difficult to see that |C| =
∑

g∈G |CG(g)|,
where CG(g) = {h ∈G | gh = hg} is the centraliser of an element g ∈G in G. Thus

Pr(G) =
1
|G|2

∑
g∈G

|CG(g)|. (1.1)

In [6], Lescot computed the commutativity degrees of dihedral groups (D2n) and
quaternion groups (Q2n+1 ) and showed that

Pr(D2n)→ 1
4 and Pr(Q2n+1 )→ 1

4

as the orders of the groups D2n and Q2n+1 tend to infinity. He then asked, ‘whether there
are other natural families of groups with the same property’. In this paper, we compute
the commutativity degree of a class of finite groups obtained by semidirect product of
two finite abelian groups and provide an affirmative answer to the above question.
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Also, we provide examples of groups having commutativity degree 5/14, using our
result. This particular value of the commutativity degree has some interest because
Rusin misses out this value in his table. (See [7], where Rusin has computed all
possible values of the commutativity degree greater than 11/32.) It may be mentioned
here that a general version of the above question was posed and answered by Erovenko
and Sury [4].

Recall that if H and K are any two groups and θ : K→ Aut(H) is a homomorphism
then the cartesian product H × K forms a group under the binary operation

(h1, k1)(h2, k2) = (h1θ(k1)(h2), k1k2),

where hi ∈ H and ki ∈ K, i = 1, 2. This group is known as the semidirect product of
H by K (with respect to θ), and is denoted by H oθ K. In this paper, we consider the
semidirect product of a cyclic group of order n by an abelian group of order 2m.

Let H = 〈a | an = 1〉 and K be any abelian group of order 2m. Notice that K
has a subgroup of index 2, and hence there is a nontrivial group homomorphism
ε : K→ {−1, 1}, and so there is a group homomorphism θ : K→ Aut(H) so that
θ(k)(a) = aε(k) for all k ∈ K. We consider the group H oθ K. Note that if n = 1 or 2 then
θ becomes trivial and hence the corresponding semidirect product becomes a direct
product; therefore we take n ≥ 3. Also, note that if H = 〈a | an = 1〉, K = 〈b | b2 = 1〉
and θ(b)(a) = a−1, then H oθ K � D2n = 〈a, b | an = b2 = 1, bab−1 = a−1〉. If n is odd,
K = 〈b | b4 = 1〉 and θ(b)(a) = a−1, then H oθ K is isomorphic to the dicyclic group
Q4n = 〈a, b | a2n = 1, b2 = an, bab−1 = a−1〉 . Moreover, if m , 1, 2 then H oθ K is not
isomorphic to any dihedral or dicyclic group.

We have the following main theorem.

T 1.1. Let H = 〈a | an = 1〉 and K be any abelian group of order 2m. Consider
the homomorphism θ : K→ Aut(H) defined as θ(k)(a) = aε(k) for all k ∈ K, where
ε : K→ {−1, 1} is a nontrivial group homomorphism. Then

Pr(H oθ K) =


n + 3

4n
if n is odd,

n + 6
4n

if n is even.

2. Proof of Theorem 1.1

Let G = H oθ K. To prove the theorem, we shall calculate the size of the centraliser
CG((ax, k)) for any ax ∈ H and k ∈ K. For x, r ∈ {0, 1, . . . , n − 1} and for k, ` ∈ K,

(ax, k)(ar, `) = (ax+ε(k)r, k`) and (ar, `)(ax, k) = (ar+ε(`)x, `k).

Since K is abelian, (ar, `) is in CG((ax, k)) if and only if x + ε(k)r = r + ε(`)x (mod n),
or equivalently

x(1 − ε(`)) = r(1 − ε(k)) (mod n). (2.1)

Let x and r vary over Nn = {0, 1, . . . , n − 1}, a ring under arithmetic (mod n).
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Case 1. n odd.

Subcase 1(a). ε(k) = 1.
Equation (2.1) is just x(1 − ε(`)) = 0 (mod n). This holds if and only if ε(`) = 1,

or ε(`) = −1 and x = 0 (since 2x = 0 in the ring Nn if and only if x = 0, because 2 is
invertible in Nn, when n is odd). Thus, when x , 0, ε(`) must be 1 (this holds for
exactly m elements ` of K), and r is arbitrary, while, when x = 0, both r and ` are
arbitrary. Hence

|CG((ax, k))| =

mn if ε(k) = 1 and x , 0,

2mn if ε(k) = 1 and x = 0.

Subcase 1(b). ε(k) = −1.
Equation (2.1) is now x(1 − ε(`)) = 2r (mod n). Again, since 2 is invertible in Nn,

given any of the 2m `’s in K, the last equation determines r. Hence

|CG((ax, k))| = 2m if ε(k) = −1.

Case 2. n even.

Subcase 2(a). ε(k) = 1.
Equation (2.1) is again just x(1 − ε(`)) = 0 (mod n). This holds if and only if

ε(`) = 1, or ε(`) = −1 and x = 0 or x = n/2. Thus, when x , 0, n/2, ε(`) must be 1,
and r is arbitrary, while, when x = 0 or n/2, both r and ` are arbitrary. Hence

|CG((ax, k))| =

mn if ε(k) = 1 and x , 0, n/2,

2mn if ε(k) = 1 and x = 0 or x = n/2.

Subcase 2(b). ε(k) = −1.
Equation (2.1) is now x(1 − ε(`)) = 2r (mod n). Since n is even, the map r 7→

2r (mod n) is a 2-to-1 map from Nn to the set of even integers in Nn, of which
x(1 − ε(`)) (mod n) is one. So given any of the 2m `’s in K, the last equation holds
for exactly two r’s in Nn. Hence

|CG((ax, k))| = 4m if ε(k) = −1.

In Case 1, the three different values of |CG(g)| calculated occur for, respectively,
(n − 1)m, m and mn elements g. Hence∑

g∈G

|CG(g)| = (n − 1)m · mn + m · 2mn + mn · 2m = m2n(n + 3).

In Case 2, the three different values of |CG(g)| occur for, respectively, (n − 2)m, 2m and
mn elements g. Hence∑

g∈G

|CG(g)| = (n − 2)m · mn + 2m · 2mn + mn · 4m = m2n(n + 6).

The result follows from (1.1).
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3. Some consequences

By Theorem 1.1,
Pr(H oθ K)→ 1

4 as n→∞.

This answers the question posed by Lescot [6], as cited above.
Also, putting n = 7 and 14 in Theorem 1.1,

Pr(H oθ K) = 5
14 .

In [7], Rusin determined all possible values of the commutativity degree greater than
11/32 and classified all finite groups having those values as commutativity degree.
Surprisingly, he misses out the value 5/14. Here we are giving two classes of finite
groups, namely H oθ K, where H = 〈a | a7 = 1〉 and 〈a | a14 = 1〉, and K is any abelian
group of even order, having commutativity degree 5/14. It may be mentioned here that
recently, the author together with Das [3] has pointed out the following fact:

Pr(G) =
5
14

if and only if G′ = C7,G
′ ∩ Z(G) = {1} and

G
Z(G)

� D14,

where G′ denotes the commutator subgroup of G and C7 denotes the cyclic group of
order seven.

We conclude the paper with the following discussion.
Let |Cent(G)| = |{CG(x) | x ∈G}|, that is, the number of distinct centralisers in G.

A finite group G is called an n-centraliser group if |Cent(G)| = n, and a primitive n-
centraliser group if

|Cent(G/Z(G))| = |Cent(G)| = n.

In [2], Belcastro and Sherman studied n-centraliser groups for some n and asked about
the existence of n-centraliser groups for any n other than 2 and 3. By counting the
number of distinct centralisers of Q4m, Ashrafi [1] answered this question affirmatively.
Note that by counting the number of distinct centralisers of Cn oθ C2m, where Cn =

〈a | an = 1〉, C2m = 〈b | b2m = 1〉 and θ(b)(a) = a−1,

|Cent(Cn oθ C2m)| =


n + 2 if n is odd,

n
2

+ 2 if n is even.

This also answers affirmatively the questions posed by Belcastro and Sherman, cited
above. Also, if n is odd then (Cn oθ C2m)/Z(Cn oθ C2m) �Cn oθ C2. Therefore, if n is
odd then Cn oθ C2m provides examples of primitive (n + 2)-centraliser groups.
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