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GEOMETRY OF G; ORBITS AND ISOPARAMETRIC
HYPERSURFACES

REIKO MIYAOKA

Abstract. We characterize the adjoint G2 orbits in the Lie algebra g of G2 as
fibered spaces over S° with fibers given by the complex Cartan hypersurfaces.
This combines the isoparametric hypersurfaces of case (g, m) = (6, 2) with case
(3,2). The fibrations on two singular orbits turn out to be diffeomorphic to
the twistor fibrations of S® and Ga/SO(4). From the symplectic point of view,
we show that there exists a 2-parameter family of Lagrangian submanifolds on
every orbit.

81. Introduction

The exceptional compact Lie group G2 plays an important role in vari-
ous fields of geometry. Here we are concerned with the adjoint orbits of Go
in S13, where G5 acts on its Lie algebra g =2 R as an isometry with respect
to the bi-invariant metric. They are the unique isoparametric hypersurfaces
with six principal curvatures of multiplicity 2 (see [M4]). Those with multi-
plicity 1 are obtained by the inverse image of the real Cartan hypersurfaces
C2 in S* under the Hopf fibration 7 : S™ — S* (see [M1]). The purpose of
this paper is to characterize the multiplicity 2 case in conjunction with the
complex Cartan hypersurfaces Cg in S7 (the dimension of a hypersurface
is always given in real). The difference is, however, that there is no fibra-
tion between S'3 and S7. On the other hand, since 7= (C3) 2 C3 x S3, by
interchanging the fiber and the base manifold we succeed in obtaining the
following theorems.

THEOREM 1.1. Let M be a principal Go orbit in S, and let My be
the singular orbits. Then M is diffeomorphic to Go/T?, and My are both
diffeomorphic to Q° = Ga/U(2), the complex quadratic. Each orbit has a
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Kdhler structure with respect to the induced metric and, moreover, has a
Kdhler fibration:

(i) M — S8 with the fiber CS = SU(3)/T?, the complex Cartan hyper-
surface;

(ii) My — S8 with the fiber CP? = SU(3)/S(U(2) x U(1)), a fibration
that is diffeomorphic to the twistor fibration on S°;

(iii) M_ — G2/SO(4) with the fiber CP! = SU(2)/S(U(1) x U(1)),
which fibration is diffeomorphic to the twistor fibration on the quaternionic
Kahler manifold Go/SO(4).

Hence, M, is not congruent to M_ in S'3, but the fibrations are converted
from one to the other through the fibration on the principal orbits.

THEOREM 1.2. Let M and M+ be as in Theorem 1.1. Then at each
point of M, there exists a 2-parameter family of Lagrangian submanifolds
transferred from an SO(4) suborbit N® = C3 x S3, which collapses into
N} = RP? x 83 on My. These are minimal Lagrangian submanifolds of
ML and of My, where the latter is the minimal principal orbit.

Theorem 1.1 is not a formal factorization of a homogeneous space but
has a significant application, say, a reduction of analysis on M to that on
the factored spaces (see [MO]).

Isoparametric hypersurfaces in a real space form M are hypersurfaces
with constant principal curvatures. They consist of a 1-parameter family
of parallel hypersurfaces which sweeps out M with focal submanifold(s) at
the end. There are rich examples in M = S™, where the number of principal
curvatures g takes values in {1,2,3,5,6} (see [Mii]). Typical examples are
given by homogeneous hypersurfaces which have been classified as the linear
isotropy orbits of rank 2 symmetric spaces (see [HL]). Other than hyper-
spheres (g = 1) and the Clifford hypersurfaces (g = 2), those with g = 3 were
found by Cartan and called the Cartan hypersurfaces Cr (see [C]). They
are tubes over the standard embedding of FP? in S3¢+1 where F =R, C,
and H are Cayley numbers and d =1, 2,4, 8, respectively. The case g =4 is
exceptional, as there exist infinitely many nonhomogeneous isoparametric
hypersurfaces (see [OT], [FKM]) where the classification problem (see [Y])
still remains open (see [CCJ], [I]).

When g = 6, the multiplicity of each principal curvature coincides, which
takes values m = 1,2 (see [A]). For m =1, the hypersurfaces are homo-
geneous and given by the isotropy orbits of G3/SO(4) (see [DN], [M2]).
Homogeneous hypersurfaces M1? with (g,m) = (6,2) are unique; that is,
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the G orbits (see [HL]). Dorfmeister and Neher [DN] conjectured that the
isoparametric hypersurfaces with (g,m) = (6,2) are homogeneous (see [M4]
for the affirmative answer).

The paper is organized as follows. In Section 2, we review some basic
facts of isoparametric hypersurfaces, and in Section 3, we compute basic
data of GG orbits in terms of the root and root vectors. Finally, we prove
our theorem in a refined way in Section 4.

§2. Preliminaries

We refer readers to [Th] for a survey of isoparametric hypersurfaces. Here
we review fundamental facts and the notation of [M1] and [M3]. Let M be
an isoparametric hypersurface in the unit sphere S™*!. Let £ be a unit
normal vector field. We denote the Riemannian connection on S™*! by @,
and we denote the induced connection on M by V. Let Ay > --- > X\, be
the principal curvatures of M, and let D, (p) be the curvature distribution
of A€ {\1,..., A\, } with multiplicity my. Then D) is completely integrable,
and a leaf Ly is an my-dimensional sphere of S"T!. Choose a local orthonor-
mal frame ey,...,e, consisting of unit principal vectors corresponding to
Aly .oy An. We express

(1) Veats = Aogeo + Aabapé, A= —AS

where 1 < «, 3,0 <n, using the Einstein convention. From the equation of
Codazzi, we obtain for distinct A, Ag, A,

(2) A2 = A) = A2, (h — Ag) = A%, (A — Aa).
Because )\, is constant on M, we can see that

(3) AL =0=A" if A\g=X\#\, and a #b.

ab’

Now, consider the case (g,m)=(6,2). As is well known, we can express

(i—1)rm
6

Note that if we choose 61 =7/12 = —0g, we have a minimal case with

(4) )\iICOt(al—F >, O<91<%,1§i§6.

(5) M=-X=2+V3, A=-Xds=1, Ag=—-\=2—V3.

Denote D; = D),. We take a local frame field ey, e, ..., eq, €5, where e;, €; is
an orthonormal frame of D;. For convenience, we put \; = );, and 7 always
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stands for i or 7. Each leaf L; = L;(p) of D; is a 2-sphere, and M has a
structure of an iterated S? bundle over S%. For a =6 or 1, define the focal
map f,: M — S' by

Ja(p) = cosbap +sin 0,5,
which makes L,(p) collapse into a point p = f,(p). Then we have

(6)  dfa(ej) =sinby (A — Aj)e;j and dfa(€;) =sinba(Aa — Aj)e;,

where the right-hand sides are considered as vectors in T;51% by a parallel
translation of S'3. In the following, we always use such identification. The
rank of f, is constant, and we obtain the focal submanifold M, of M:

M, = {cosb,p+sinb,&, |pe M}.

We denote My = Mg and M_ = M. It follows that T;M, = @#a Dj(q)
from (6) for any q € f,~*(p). An orthonormal basis of the normal space of
M, at p is given by

Ny = —sinf,q + cos0,&,, (4= eq(q) and {, = ea(q),
for any ¢ € L, (p) = £, 1(p). By a standard argument, we obtain the following
(see [M2], [M4]).

LEMMA 2.1. When we identify TpM, with @?:1 Do+ j(p), where the indi-
ces are modulo 6, the shape operators By, Be,, and ng at p with respect to
the basis €q+1,€577,- - - €ats, €75 Gt p are given, respectively, by the sym-
metric matrices

V3 0 0 0 0
1

0 %I 0 0 0

B,=| 0 0 0o o0 o |,
1
0 0 O —%I 0
0 0 0 0 —V3I
0 Ba+1a+2 Ba+1a+3 Ba+1a+4 Ba+1a+5
Ba+2a+1 0 Ba+2a+3 Ba+2a+4 Ba+2a+5
B, = | Ba+3at+1 Ba+sa+2 0 Bat3at+a Baysats |

Ba+4a+1 Ba+4a+2 Ba+4a+3 0 Ba+4a+5
Ba+5a+1 Ba+5a+2 Ba+5a+3 Ba+5a+4 0
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B 0 Ba+1 a+2 @aJrl a+3 5a+1 a+4 ?aJrl a+5
?a+2 a+1 B 0 Ba+2 a+3 ?aJrQ a+4 ?aJrZ a+5

B(fp = ?a+3a+1 @a—&—S a+2 0 Ba+3 a+4 ?a+3 a+5 | >
5@—}—4 a+1 @a+4 a+2 @a+4 a+3 _ 0 Ba+4 a+5
Ba+5 a+1 Ba+5 a+2 Ba+5 a+3 Ba+5 a+4 0

where I (resp., zero) is the 2 X 2 unit (resp., zero) matriz and
1 Ak AR

Bym [ ) =By,
sinfq(Aj — Aa) (Aja A;a
k-
Ja
k
T

=% L3 ol
S Wy e{+v3 \/3’0}

Since any unit normal can be expressed as 7, for some ¢ € Lg(p), all the
shape operators have the same eigenvalues with multiplicity 2.

B _ 1 A%
I S0, (A — Ag) \ AE

ja

In particular, we have B, (e;) = p;e;, where

(8)

83. Geometric data of GG orbits

In this section, we investigate an adjoint G orbit M in S'3, which is the
same as an isotropy orbit of the symmetric space G X G2/G5. Here, G is
the automorphism group of the Cayley numbers C. Let C be generated by

{ep,e1,...,er} satisfying
€y — 1,
e?=—1, 1<i<T,
€i€; = —€;€; = €,

where (i,7,k) is a triple on some segment or a circle of Figure 1 put in the
order shown by its arrows. The automorphism group Go of C is a subgroup
of SO(7), where the metric on C is given by

7 7 7
(z,y) =R(zy) = Z zlyt, for x = Z z'e; and y = Z yle;.
=0 =0 =0
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1

Figure 1

The Lie algebra g of G2 is given as follows (see [OT]). Let Ej; be the standard
basis of 7 x 7 matrices with R-coefficients. Put G;; = E;; — Ej;,4,5 =1,...,7,
and put

3
gi= {771Gi+1i+3 + 112G i12iv6 + 13Git4i45 ‘ n;j €R, Z n; = 0}7
j=1

for 1 <i<7. Then g is given by

7
(9) 9= 0
=1

which satisfies [g;,9:] =0 and [gs, g;] = gk, where (4,7, k) is as before. Note
that [Gyj, Gji] = Gy, for any 1 <14, j,k < 7. Note also that (9) is an orthog-
onal decomposition with respect to the metric (, ) on g given by

1
(X,Y)= —3 Tr XY.
For later use, we decompose g =+ p, where

t=g3+ 94+ g6,
p=g1+g2+9g5+9gr

Let g€ be the complexification of g, and let 7 be the involutive automor-
phism of g€ given by 7(X) = X. Then g = g+ /—1g is the Cartan decom-
position. We identify +/—1g with g by v/—1X — X. Take a maximal abelian
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subspace a = g1 = {{1Gaq + &G37 + &3Gs6 | L €R, S0 & =0} of g, whose
dimension, called the rank of (g©,7), is 2. Let a be a linear form on a, and
put

to={X et|(adH)*(X)=—a(H)*X for all H€a},
pa={X€p|(adH)*(X)=—a(H)*X forall Hea}.

Note that for H € a and a linear form « on a such that a(H) # 0, ad H maps
£, (resp., po) isomorphically onto p, (resp., £,) (see (12) below). Selecting
a suitable ordering in the dual space of a, let 3 be the set of positive roots
of g with respect to a, and let >* = {a €X,5¢ E+}. We have

¥ ={a=—&,a2 =8 —&,a3=E1,
(10)
ay =& —§3,05 = —€3,a6 = &2 — §3},

and the root vectors X; € ¢,, and 7T € p,, are given by

X1 =Gae + G2 — 2G7, X4=Ga6 — G52 €93
Xo =Gr2 — Gy, X5==Gr2+ G3g — 2G5 € g6
a1 X3 = Gs7 + Ggz — 2G12, X6 =Gs7 — Ges €4
Ty = Ga6 + G5 — 2Ghs, Ty =Ga — Gus € g7
Ty = Ga3 + Gar, Ts = Gar — Gaz — 2G5 €95
T3 = G35 + Ge7 + 2G4, Ts = —Gss + Ger € go.

We have immediately
(12) adH(XZ) :Oéi(H)T% adH(TZ) = —OJZ‘(H)XZ'.

Note that any two of the above vectors are mutually orthogonal.

Now, let H =& Gag + £2G37 4 £3Gs56 be a regular element of a, and let
HY = (& —&)Gas+ (&1 — €3)Gar + (&1 + &) Gre be an element of a orthog-
onal to H. For a hypersurface M = Ad Go(H), where H = H/||H||, by using
(12) and ||H*|| = v/3||H| we can express the second fundamental tensor
Ag. of M with respect to the unit normal vector H+ = H+/||H*| at H
by (see [TT])

_ 1 d .

Ar X;=-VxHt =——— — AdexptT,)H*
HL le Oél(H) dt t:O( €xp )

https://doi.org/10.1215/00277630-1331899 Published online by Cambridge University Press


https://doi.org/10.1215/00277630-1331899

182 R. MIYAOKA

1 . J(H* J(H*
= [Ti,HL]:—LN)Xi:—M
o;i(H) oi(H) V3ai(H)
- 1 d .
Aq Tj=-VpH = —— — AdexptX;)H*
HL Vr, i (H) dt t:O( exp )
1 . J(H* (H+
— ~[Xi, J_]:_O‘(~)T%:_a( ) .
a;(H) a;(H) V3o, (H)
Thus, the principal curvatures of M are given by
A1:—§1_§3:_i
V3% Ay’
1
(13) WL -
§1— & A5
g = -8 _ 1
V36 A’

and the unit principal vectors corresponding to \; are X; /|| X;|| and T;/||T;]|.
Note that by A1 > --- > Ag, (13) implies that & > 0 > & > &3, and hence that

(14) ai(H)>0, 1<i<6

follows from (10). Now, putting e; = X; /|| Xil|, e = T3 /|| T3 ||, we calculate the
structure constants Agﬂ with respect to this basis of M. As before, using

(12), we obtain X; = (|| H||/(cw;(H))) % |i=0 Ad(exptT;)H. Here we have

(15) Vi, X = ’H” dt‘t (Ad(exptT) X, = Jﬂ) T, X;].
Similarly, we have

(10 VT = LT T

(17) Vi X = Jﬂ') X, X)),

{0 Vi) =~ X T

Then, noting that [€,€] C €, [€,p] C p, [p,p] C €, we see that A, = Akj - A’“j -
A% =0, 1<14,5,k <6 (be careful for the indices with and without bars).
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Moreover, by (11) and (12), we obtain Agﬁ =0 if two of the indices—say,
(o, B)—satisfy o € [1] and € [4], or o € [2] and [ € [5], or « € [3] and

3 € [6], where [i] = {i,7}. Thus, the possible nonzero Alﬂ are
{[a]v [ﬂ]v h]} = {1a 2, 3}7 {17 276}3 {1737 5}7 {1a 5’6}7
(2,3,4},12,4,6}, {3,4,5},{4,5,6).

For computation of these, Table 1 shows [A, B], A, B € g.

Table 1

Xo| T X3 T3 Xa| Tu X5 Ts X6 | Ts
X4 — X35 —T3| 2X5+3X2| 275 + 3715 —2X3 —3X¢| —2T3 —3T¢| X5 Ts
Ti| T3 | —X3| —2T5 + 3715 2X5 — 3X> —2T3 +3Ts| 2X3—3Xe| 15 | — X5
X2 -X1 T1 —X¢ —T6 Xa| Ty
T =T —-X1 Ts | —X¢ Ty | — X4
X3 X5 | Ts5 | 2X1 —3X4| =271 — 3Ty
T3 -T5| X5 2Ty — 3Ty | 2X1 +3X4
X4 X3 —T3 —Xo T2
Ty T3 X3 Ty =X
X5 X1 Th
Ts =T — X1

REMARK 3.1. M is a Kahler manifold with complex structure J defined

by JX,; =T;,JT; = —X;. This is a general theory, but the vanishing of the

torsion N and V.J can be shown directly from Table 1 and (15)—(18).

Here we may assume that Ay =2+ /3 = —(£; — £3)/V/3&, from which it
follows that & /& = —(2 ++/3). Thus, noting (14), we obtain

15 _ g 1] Kl
I ——— 3 \/§+ 1 3 =1, = \/3 \/g - 1 )
gy W) T i T gy TR
155 1] 1]
=(V3-1), =3, =(V3+1
ca(l) ~ VAT L ao(i) ~ VAT
Now, it follows that
e (4 A= (3 )= (3 Ar) - (R Ar) -0
AiG Aiﬁ Aié Aié A4_12 AZLQ AZQ AZQ
<A§6 A;G) _ _\/ﬁ(\/§+ 1)J’ (Azé A§6> _ _\/g(\/§_|_ 1)17
Ate A V2 Afs Af V2
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Aj2116> — _L J, (A:%G
Asq V2 Asg
A3 A3-
A =-vas (4

51 51
A> _VAVE-D), (A
Az, V2 Az;
A§5> _ V3— 1 (A%S
A215 \/5 A215

10 0
I‘(o 1>’ J_<1

A§6> 1
Ass V2

3
Agl) — _\/51’
Az
A§1) _ V3(V3 - D,
A% vz
A%) _ VW3- 11_7
Ajs V2

o)

Then by (7) and 1/sinf, = +v/2(v/3 + 1) for a = 1,6, respectively, we have
B¢ and B; of My by Lemma 2.1:

(22)

0 0 0

0 0 0

B = 0 0 0
1

0 ~5J 0

—V/3J 0 0

0 0 0 0

1

0 0 0 &I

Be=| 0 0 0 0

1
0 I 0 0
V3 0 0 0

oooo%
<

Similarly, denoting the shape operators of M_ by C¢ and C¥¢, ¢, (€ Dy, we
can express these with respect to Do @ --- @ Dg as

(23)

0o J 0 0

2

-7 0 0 -

Cc=]10 0 0 0
2

0 ZJ 0 0

0 0 0 —J
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0 -1 0 0 0
2
-1 0 0 %I 0
Cc=[0 0 0 0 0
2
0 Zro o0 -I
0 0 0 —-I 0

In particular, M, is not congruent to M_ in S13.
84. Geometry of G, orbits

In [M1, Proposition 2.1], we show that an isoparametric hypersurface N6
in ST with (g,m) = (6,1) is the inverse image of a real Cartan hypersur-
face C3 =2 SO(3)/(Za + Z2) under the Hopf fibration 7 : S7 — S*. Since the
restriction of the fibration to a proper subset of S is trivial, we have a
homeomorphism

(24) NO=~(C3 x 83

Note that CH% is a principal orbit of the adjoint action of SO(3) on the
space of traceless symmetric matrices Sym®(R,3). We can express (24) in
terms of the decomposition of the tangent bundle of N into two integrable
distributions TN =R & S given by

R = span{es, 4, 6},
(25)
S =span{e; — A\jeyq, ea + Aaes, €3 + Azep ),

where S is the direction of the Hopf fiber (see [M1, p. 188, line 6]) and
is totally geodesic. On the other hand, R corresponds to the Lie algebra
50(3) in s0(4), since A}, =0, Al =0, Ajy =0 hold except for the indices
consisting of {2,4,6}. Thus, R is also integrable. Note that NV is an arbitrary
principal orbit, and A; are given by (4) for some 6, € (0,7/6).

In the case (g,m) = (6,2), a parallel argument is not valid because of
the lack of corresponding fibrations. Instead, since SU(3) is a subgroup of
G2, and its Lie algebra is generated by a @ span{Xs, 15, X4, T4, X¢, 15}, the
subspace

(26) R=Ds® Dy ® Dg

defines an integrable distribution on M. The leaves are Cartan hypersurfaces
C¢ = SU(3)/T%, which are half-dimensional Kéhler submanifolds of M2
This defines a Kéhler fibration M — S G/SU(3) with fiber C{.
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We note that 7 (M) =1=m(Ms) in these arguments. On M,, the
space Dg collapses, and it is easy to see that a @ span{Xg, T} = u(2). Thus,
M, is diffeomorphic to G5 /U (2) = Q°, the complex quadric. Moreover, (26)
implies that the focal submanifold M, has a fibration M, — S® with fiber
CP?=SU(3)/S(U(2) x U(1)), which is tangent to dfs(Ds @ D4). The total
space M, = @Q° is diffeomorphic to the twistor space of S = G5/SU(3)
given by Bryant [B1].

Similarly, on M_, the space D collapses, and a @ span{X;,71} = u(2)
shows that M_ = G5 /U(2) = Q°; however, M, and M_ are not congruent as
is seen from (22) and (23).* In fact, since Dy is invariant along L; (A{, =0),
the image of the curvature surface Ly under the focal map fi defines a
totally geodesic S? = CP! fibration on M_. Here, total geodesity follows
since df1(D4) belongs to the kernel of all the shape operators (see (23)). It
is easy to see that span{H, X1, T} and span{ H*, X4, Ty} are isomorphic to
50(3), where

H = Gas + Gs6 — 2G37, H' =Gy — Gsg,

and hence that the space a @ span{Xy,T1, X4,T4} is isomorphic to so(4).
Therefore, the base manifold of this CP! fibration is given by Ga/SO(4),
the quaternionic Kéhler manifold. This implies that M_ is diffeomorphic to
the twistor space of G3/SO(4) given in [B2].

On the other hand, since g3 @ g4 @ g¢ = span{Xy,...,Xg} generates
another so(4) (see [M1, p. 183]), we have a half-dimensional submanifold
at each point of M given by this SO(4) suborbit N. In fact, the tangent
space of N© is spanned by

d C
T, = 7 t:O(Adexthi)H, i=1,...,6.
From Remark 3.1, we see that N® is a Lagrangian submanifold of M. At
each point of M'2, the tangent space of N® is expressed as {ef,es,...,eg};
however, the direction of e; can be replaced by a suitable combination of
e; and e; in each D;. In fact, SO(4) is embedded in G in a 2-parameter
family, such as

sinp Xy — cos T, siny Xy — cos YTy,
(27) cos(p — ) X3 —sin(p — ) T3, sin(2¢) — 3p) X4 — cos(2¢ — 3¢) Ty,

“Here N? is not congruent to N> in S7 (see [M1, Proposition 2.5]).
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sin(¢ — 2¢) X5 — cos(v — 2¢)T5, cos(3p — 1) X — sin(3¢ — ) Tp.

By using Table 1, we can see that the Lie bracket closes in this space,
which generates so0(4) for any fixed ¢ and . The tangent space of the
corresponding SO(4) orbit is the 6-dimensional subspace of TM spanned by

cos ey + sin peq, cos ey + sin ey,
(28) sin(p —1)es + cos(p — )es, cos(2¢ — 3p)eq + sin(2¢) — 3p)es,
cos(¥) — 2p)es + sin(¢ — 2p)es, sin(3¢ — 1)eg + cos(3p — ) eg.

This reflects the fact that the isotropy subgroup 72 of M = G /T? at 0 = T?
acts on T,M as an isometry. Thus, at 0 =T? € M (and hence at each point
of M), there exists a 2-parameter family of the SO(4) orbits which are
Lagrangian.

Note that the distribution R given in (26) and the tangent space of each
SO(4) orbit (e.g., spanned by ej,...,eg) are not transversal; that is, they
do not span T'M. Now we have almost shown Theorems 1.1 and 1.2, which
we restate in a refined way.

MAIN THEOREM. On every Go orbit My, t € (—1,1), and My, which
sweep out S'3, there exists a Kdhler fibration:

(1) M; = Go/T? — S° = Go/SU(3) with fiber C& = SU(3)/T? tangent to
Dy @ Dy @ Dg;

(i) My =2Q° — S5=Gy/SU(3) with fiber CP? = SU(3)/S(U(2) x U(1))
tangent to dfs(D2 @ Dy), where fg is the focal map, and which is dif-
feomorphic to the twistor fibration of S°;

(iii) M_ = Q° — G3/SO(4) with fiber CP! = SU(2)/S(U(1) x U(1)) tan-
gent to df1(Dy), where fi is the focal map, and which is diffeomorphic
to the twistor fibration of the quaternionic Kdhler manifold Go/SO(4).

Note that M, is not congruent to M_ in S'3.

Moreover, at each point of My, there exists a 2-parameter family of Lagrang-
ian submanifolds transferred from an SO(4) suborbit N®, which is tan-
gent to span{e;,1 <i <6}, a set of suitably chosen e; € D;. Here, C& and
NS are not transversal. Such NS collapses into N2 = RP? x S3 on My,
where N is tangent to span{dfs(e;),1 <i <5} and where N_ is tangent to
span{dfi(e;),2 <i < 6}. In particular, these are minimal Lagrangian sub-
manifolds on My and on My, where the latter is the minimal principal
orbit. However, they never define Lagrangian fibrations on My or on M.
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Proof. Here N collapses into NP as Dg and D; collapse on M., respec-
tively. We denote by Ny the minimal principal SO(4) orbit lying in Mj.
Because Ny and N+ are minimal in some totally geodesic 7-sphere of S13,
these are minimal in S'3, and hence minimal in M4 and in My, respectively.

Nonexistence of a Lagrangian fibration follows because the topology of
NS or N2 is not that of a torus. U

Since there are 2-parameter isometric deformations of N3 in My, and
N§ in My, we obtain the following.

COROLLARY 4.1. The nullity of the Lagrangian minimal submanifold N3
mn M, and Ng i My, respectively, is not less than 2.
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