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GEOMETRY OF G2 ORBITS AND ISOPARAMETRIC
HYPERSURFACES

REIKO MIYAOKA

Abstract. We characterize the adjoint G2 orbits in the Lie algebra g of G2 as
fibered spaces over S6 with fibers given by the complex Cartan hypersurfaces.

This combines the isoparametric hypersurfaces of case (g,m) = (6,2) with case

(3,2). The fibrations on two singular orbits turn out to be diffeomorphic to

the twistor fibrations of S6 and G2/SO(4). From the symplectic point of view,

we show that there exists a 2-parameter family of Lagrangian submanifolds on
every orbit.

§1. Introduction

The exceptional compact Lie group G2 plays an important role in vari-
ous fields of geometry. Here we are concerned with the adjoint orbits of G2

in S13, where G2 acts on its Lie algebra g ∼= R14 as an isometry with respect
to the bi-invariant metric. They are the unique isoparametric hypersurfaces
with six principal curvatures of multiplicity 2 (see [M4]). Those with multi-
plicity 1 are obtained by the inverse image of the real Cartan hypersurfaces
C3

R in S4 under the Hopf fibration π : S7 → S4 (see [M1]). The purpose of
this paper is to characterize the multiplicity 2 case in conjunction with the
complex Cartan hypersurfaces C6

C in S7 (the dimension of a hypersurface
is always given in real). The difference is, however, that there is no fibra-
tion between S13 and S7. On the other hand, since π−1(C3

R) ∼= C3
R × S3, by

interchanging the fiber and the base manifold we succeed in obtaining the
following theorems.

Theorem 1.1. Let M be a principal G2 orbit in S13, and let M± be
the singular orbits. Then M is diffeomorphic to G2/T

2, and M± are both
diffeomorphic to Q5 = G2/U(2), the complex quadratic. Each orbit has a
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176 R. MIYAOKA

Kähler structure with respect to the induced metric and, moreover, has a
Kähler fibration:

(i) M → S6 with the fiber C6
C = SU(3)/T 2, the complex Cartan hyper-

surface;
(ii) M+ → S6 with the fiber CP 2 = SU(3)/S(U(2) × U(1)), a fibration

that is diffeomorphic to the twistor fibration on S6;
(iii) M− → G2/SO(4) with the fiber CP 1 = SU(2)/S(U(1) × U(1)),

which fibration is diffeomorphic to the twistor fibration on the quaternionic
Kähler manifold G2/SO(4).

Hence, M+ is not congruent to M− in S13, but the fibrations are converted
from one to the other through the fibration on the principal orbits.

Theorem 1.2. Let M and M± be as in Theorem 1.1. Then at each
point of M , there exists a 2-parameter family of Lagrangian submanifolds
transferred from an SO(4) suborbit N6 ∼= C3

R × S3, which collapses into
N5

± ∼= RP 2 × S3 on M±. These are minimal Lagrangian submanifolds of
M± and of M0, where the latter is the minimal principal orbit.

Theorem 1.1 is not a formal factorization of a homogeneous space but
has a significant application, say, a reduction of analysis on M to that on
the factored spaces (see [MO]).

Isoparametric hypersurfaces in a real space form M are hypersurfaces
with constant principal curvatures. They consist of a 1-parameter family
of parallel hypersurfaces which sweeps out M with focal submanifold(s) at
the end. There are rich examples in M = Sn, where the number of principal
curvatures g takes values in {1,2,3,5,6} (see [Mü]). Typical examples are
given by homogeneous hypersurfaces which have been classified as the linear
isotropy orbits of rank 2 symmetric spaces (see [HL]). Other than hyper-
spheres (g = 1) and the Clifford hypersurfaces (g = 2), those with g = 3 were
found by Cartan and called the Cartan hypersurfaces CF (see [C]). They
are tubes over the standard embedding of FP 2 in S3d+1, where F = R,C,
and H are Cayley numbers and d = 1,2,4,8, respectively. The case g = 4 is
exceptional, as there exist infinitely many nonhomogeneous isoparametric
hypersurfaces (see [OT], [FKM]) where the classification problem (see [Y])
still remains open (see [CCJ], [I]).

When g = 6, the multiplicity of each principal curvature coincides, which
takes values m = 1,2 (see [A]). For m = 1, the hypersurfaces are homo-
geneous and given by the isotropy orbits of G2/SO(4) (see [DN], [M2]).
Homogeneous hypersurfaces M12 with (g,m) = (6,2) are unique; that is,
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the G2 orbits (see [HL]). Dorfmeister and Neher [DN] conjectured that the
isoparametric hypersurfaces with (g,m) = (6,2) are homogeneous (see [M4]
for the affirmative answer).

The paper is organized as follows. In Section 2, we review some basic
facts of isoparametric hypersurfaces, and in Section 3, we compute basic
data of G2 orbits in terms of the root and root vectors. Finally, we prove
our theorem in a refined way in Section 4.

§2. Preliminaries

We refer readers to [Th] for a survey of isoparametric hypersurfaces. Here
we review fundamental facts and the notation of [M1] and [M3]. Let M be
an isoparametric hypersurface in the unit sphere Sn+1. Let ξ be a unit
normal vector field. We denote the Riemannian connection on Sn+1 by ∇̃,
and we denote the induced connection on M by ∇. Let λ1 ≥ · · · ≥ λn be
the principal curvatures of M , and let Dλ(p) be the curvature distribution
of λ ∈ {λ1, . . . , λn} with multiplicity mλ. Then Dλ is completely integrable,
and a leaf Lλ is an mλ-dimensional sphere of Sn+1. Choose a local orthonor-
mal frame e1, . . . , en consisting of unit principal vectors corresponding to
λ1, . . . , λn. We express

(1) �̃eαeβ = Λσ
αβeσ + λαδαβξ, Λγ

αβ = −Λβ
αγ

where 1 ≤ α,β,σ ≤ n, using the Einstein convention. From the equation of
Codazzi, we obtain for distinct λα, λβ , λγ ,

(2) Λγ
αβ(λβ − λγ) = Λβ

γα(λα − λβ) = Λα
βγ(λγ − λα).

Because λα is constant on M , we can see that

(3) Λγ
aa = 0 = Λγ

ab, if λa = λb �= λγ and a �= b.

Now, consider the case (g,m) = (6,2). As is well known, we can express

(4) λi = cot
(
θ1 +

(i − 1)π
6

)
, 0 < θ1 <

π

6
,1 ≤ i ≤ 6.

Note that if we choose θ1 = π/12 = −θ6, we have a minimal case with

(5) λ1 = −λ6 = 2 +
√

3, λ2 = −λ5 = 1, λ3 = −λ4 = 2 −
√

3.

Denote Di = Dλi
. We take a local frame field e1, e1̄, . . . , e6, e6̄, where ei, eī is

an orthonormal frame of Di. For convenience, we put λi = λi, and i always

https://doi.org/10.1215/00277630-1331899 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-1331899


178 R. MIYAOKA

stands for i or ī. Each leaf Li = Li(p) of Di is a 2-sphere, and M has a
structure of an iterated S2 bundle over S2. For a = 6 or 1, define the focal
map fa : M → S13 by

fa(p) = cosθap + sinθaξp,

which makes La(p) collapse into a point p̄ = fa(p). Then we have

(6) dfa(ej) = sinθa(λa − λj)ej and dfa(ej̄) = sinθa(λa − λj)ej̄ ,

where the right-hand sides are considered as vectors in Tp̄S
13 by a parallel

translation of S13. In the following, we always use such identification. The
rank of fa is constant, and we obtain the focal submanifold Ma of M :

Ma = {cosθap + sinθaξp | p ∈ M }.

We denote M+ = M6 and M− = M1. It follows that Tp̄Ma =
⊕

j �=a Dj(q)
from (6) for any q ∈ fa

−1(p̄). An orthonormal basis of the normal space of
Ma at p̄ is given by

ηq = − sinθaq + cosθaξq, ζq = ea(q) and ζ̄q = eā(q),

for any q ∈ La(p) = f −1
a (p̄). By a standard argument, we obtain the following

(see [M2], [M4]).

Lemma 2.1. When we identify Tp̄Ma with
⊕5

j=1 Da+j(p), where the indi-
ces are modulo 6, the shape operators Bηp , Bζp , and Bζ̄p

at p̄ with respect to
the basis ea+1, ea+1, . . . , ea+5, ea+5 at p are given, respectively, by the sym-
metric matrices

Bηp =

⎛
⎜⎜⎜⎜⎜⎝

√
3I 0 0 0 0
0 1√

3
I 0 0 0

0 0 0 0 0
0 0 0 − 1√

3
I 0

0 0 0 0 −
√

3I

⎞
⎟⎟⎟⎟⎟⎠ ,

Bζp =

⎛
⎜⎜⎜⎜⎝

0 Ba+1a+2 Ba+1a+3 Ba+1a+4 Ba+1a+5

Ba+2a+1 0 Ba+2a+3 Ba+2a+4 Ba+2a+5

Ba+3a+1 Ba+3a+2 0 Ba+3a+4 Ba+3a+5

Ba+4a+1 Ba+4a+2 Ba+4a+3 0 Ba+4a+5

Ba+5a+1 Ba+5a+2 Ba+5a+3 Ba+5a+4 0

⎞
⎟⎟⎟⎟⎠ ,
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Bζ̄p
=

⎛
⎜⎜⎜⎜⎝

0 B̄a+1a+2 B̄a+1a+3 B̄a+1a+4 B̄a+1a+5

B̄a+2a+1 0 B̄a+2a+3 B̄a+2a+4 B̄a+2a+5

B̄a+3a+1 B̄a+3a+2 0 B̄a+3a+4 B̄a+3a+5

B̄a+4a+1 B̄a+4a+2 B̄a+4a+3 0 B̄a+4a+5

B̄a+5a+1 B̄a+5a+2 B̄a+5a+3 B̄a+5a+4 0

⎞
⎟⎟⎟⎟⎠ ,

where I (resp., zero) is the 2 × 2 unit (resp., zero) matrix and

Bjk =
1

sinθa(λj − λa)

(
Λk

ja Λk̄
ja

Λk
j̄a

Λk̄
j̄a

)
= tBkj ,

(7)

B̄jk =
1

sinθa(λj − λa)

(
Λk

jā Λk̄
jā

Λk
j̄ā

Λk̄
j̄ā

)
= tB̄kj .

In particular, we have Bηp(ej) = μjej , where

(8) μj =
1 + λjλa

λa − λj
∈

{
±

√
3, ± 1√

3
,0

}
.

Since any unit normal can be expressed as ηq for some q ∈ L6(p), all the
shape operators have the same eigenvalues with multiplicity 2.

§3. Geometric data of G2 orbits

In this section, we investigate an adjoint G2 orbit M in S13, which is the
same as an isotropy orbit of the symmetric space G2 × G2/G2. Here, G2 is
the automorphism group of the Cayley numbers C. Let C be generated by
{e0, e1, . . . , e7} satisfying

⎧⎪⎨
⎪⎩

e0 = 1,

e2
i = −1, 1 ≤ i ≤ 7,

eiej = −ejei = ek,

where (i, j, k) is a triple on some segment or a circle of Figure 1 put in the
order shown by its arrows. The automorphism group G2 of C is a subgroup
of SO(7), where the metric on C is given by

(x, y) = 
(xȳ) =
7∑

i=0

xiyi, for x =
7∑

i=0

xiei and y =
7∑

i=0

yiei.
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Figure 1

The Lie algebra g of G2 is given as follows (see [OT]). Let Eij be the standard
basis of 7 × 7 matrices with R-coefficients. Put Gij = Eij − Eji, i, j = 1, . . . ,7,
and put

gi =
{
η1Gi+1i+3 + η2Gi+2i+6 + η3Gi+4i+5

∣∣∣ ηj ∈ R,
3∑

j=1

ηj = 0
}
,

for 1 ≤ i ≤ 7. Then g is given by

(9) g =
7∑

i=1

gi,

which satisfies [gi,gi] = 0 and [gi,gj ] = gk, where (i, j, k) is as before. Note
that [Gij ,Gjk] = Gik for any 1 ≤ i, j, k ≤ 7. Note also that (9) is an orthog-
onal decomposition with respect to the metric ( , ) on g given by

(X,Y ) = − 1
2

TrXY.

For later use, we decompose g = k + p, where

k = g3 + g4 + g6,

p = g1 + g2 + g5 + g7.

Let gC be the complexification of g, and let τ be the involutive automor-
phism of gC given by τ(X) = X̄ . Then gC = g+

√
−1g is the Cartan decom-

position. We identify
√

−1g with g by
√

−1X �→ X . Take a maximal abelian
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subspace a = g1 = {ξ1G24 + ξ2G37 + ξ3G56 | ξ ∈ R,
∑3

i=1 ξi = 0} of g, whose
dimension, called the rank of (gC, τ), is 2. Let α be a linear form on a, and
put

kα =
{
X ∈ k

∣∣ (adH)2(X) = −α(H)2X for all H ∈ a
}
,

pα =
{
X ∈ p

∣∣ (adH)2(X) = −α(H)2X for all H ∈ a
}
.

Note that for H ∈ a and a linear form α on a such that α(H) �= 0, adH maps
kα (resp., pα) isomorphically onto pα (resp., kα) (see (12) below). Selecting
a suitable ordering in the dual space of a, let Σ+ be the set of positive roots
of g with respect to a, and let Σ∗

+ =
{
α ∈ Σ+, α

2 /∈ Σ+

}
. We have

Σ∗
+ = {α1 = −ξ2, α2 = ξ1 − ξ2, α3 = ξ1,

(10)
α4 = ξ1 − ξ3, α5 = −ξ3, α6 = ξ2 − ξ3},

and the root vectors Xi ∈ kαi and Ti ∈ pαi are given by

X1 = G46 + G52 − 2G71, X4 = G46 − G52 ∈ g3

X2 = G72 − G34, X5 = G72 + G34 − 2G15 ∈ g6

X3 = G57 + G63 − 2G12, X6 = G57 − G63 ∈ g4
(11)

T1 = G26 + G45 − 2G13, T4 = G26 − G45 ∈ g7

T2 = G23 + G47, T5 = G47 − G23 − 2G16 ∈ g5

T3 = G35 + G67 + 2G14, T6 = −G35 + G67 ∈ g2.

We have immediately

(12) adH(Xi) = αi(H)Ti, adH(Ti) = −αi(H)Xi.

Note that any two of the above vectors are mutually orthogonal.
Now, let H = ξ1G24 + ξ2G37 + ξ3G56 be a regular element of a, and let

H⊥ = (ξ3 − ξ2)G24 +(ξ1 − ξ3)G37 +(−ξ1 + ξ2)G56 be an element of a orthog-
onal to H . For a hypersurface M = AdG2(H̃), where H̃ = H/‖H‖, by using
(12) and ‖H⊥ ‖ =

√
3‖H‖ we can express the second fundamental tensor

AH̃⊥ of M with respect to the unit normal vector H̃⊥ = H⊥/‖H⊥ ‖ at H̃

by (see [TT])

AH̃⊥ Xi = −∇̃XiH̃
⊥ = − 1

αi(H̃)
d

dt

∣∣∣
t=0

(Adexp tTi)H̃⊥

https://doi.org/10.1215/00277630-1331899 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-1331899


182 R. MIYAOKA

= − 1
αi(H̃)

[Ti, H̃
⊥] = − αi(H̃⊥)

αi(H̃)
Xi = − αi(H⊥)√

3αi(H)
Xi,

AH̃⊥ Ti = −∇̃TiH̃
⊥ =

1
αi(H̃)

d

dt

∣∣∣
t=0

(Adexp tXi)H̃⊥

=
1

αi(H̃)
[Xi, H̃

⊥] = − αi(H̃⊥)
αi(H̃)

Ti = − αi(H⊥)√
3αi(H)

Ti.

Thus, the principal curvatures of M are given by

λ1 = − ξ1 − ξ3√
3ξ2

= − 1
λ4

,

λ2 = −
√

3ξ3

ξ1 − ξ2
= − 1

λ5
,(13)

λ3 =
ξ2 − ξ3√

3ξ1

= − 1
λ6

,

and the unit principal vectors corresponding to λi are Xi/‖Xi‖ and Ti/‖Ti‖.
Note that by λ1 > · · · > λ6, (13) implies that ξ1 > 0 > ξ2 > ξ3, and hence that

(14) αi(H) > 0, 1 ≤ i ≤ 6

follows from (10). Now, putting ei = Xi/‖Xi‖, eī = Ti/‖Ti‖, we calculate the
structure constants Λγ

αβ with respect to this basis of M . As before, using
(12), we obtain Xi =

(
‖H‖/(αi(H))

)
d
dt |t=0 Ad(exp tTi)H̃ . Here we have

(15) ∇XiXj =
‖H‖

αi(H)
d

dt

∣∣∣
t=0

Ad(exp tTi)Xj =
‖H‖

αi(H)
[Ti,Xj ].

Similarly, we have

∇XiTj =
‖H‖

αi(H)
[Ti, Tj ],(16)

∇TiXj = − ‖H‖
αi(H)

[Xi,Xj ],(17)

∇TiTj = − ‖H‖
αi(H)

[Xi, Tj ].(18)

Then, noting that [k, k] ⊂ k, [k,p] ⊂ p, [p,p] ⊂ k, we see that Λk
ij = Λk̄

ij̄
= Λk̄

īj
=

Λk
īj̄

= 0, 1 ≤ i, j, k ≤ 6 (be careful for the indices with and without bars).
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Moreover, by (11) and (12), we obtain Λγ
αβ = 0 if two of the indices—say,

(α,β)—satisfy α ∈ [1] and β ∈ [4], or α ∈ [2] and β ∈ [5], or α ∈ [3] and
β ∈ [6], where [i] = {i, ī}. Thus, the possible nonzero Λγ

αβ are{
[α], [β], [γ]

}
= {1,2,3}, {1,2,6}, {1,3,5}, {1,5,6},

{2,3,4}, {2,4,6}, {3,4,5}, {4,5,6}.

For computation of these, Table 1 shows [A,B],A,B ∈ g.

Table 1

X2 T2 X3 T3 X4 T4 X5 T5 X6 T6

X1 −X3 −T3 2X5 + 3X2 2T5 + 3T2 −2X3 − 3X6 −2T3 − 3T6 X5 T5

T1 T3 −X3 −2T5 + 3T2 2X5 − 3X2 −2T3 + 3T6 2X3 − 3X6 T5 −X5

X2 −X1 T1 −X6 −T6 X4 T4

T2 −T1 −X1 T6 −X6 T4 −X4

X3 X5 T5 2X1 − 3X4 −2T1 − 3T4

T3 −T5 X5 2T1 − 3T4 2X1 + 3X4

X4 X3 −T3 −X2 T2

T4 T3 X3 −T2 −X2

X5 −X1 T1

T5 −T1 −X1

Remark 3.1. M is a Kähler manifold with complex structure J defined
by JXi = Ti, JTi = −Xi. This is a general theory, but the vanishing of the
torsion N and ∇J can be shown directly from Table 1 and (15)–(18).

Here we may assume that λ1 = 2 +
√

3 = −(ξ1 − ξ3)/
√

3ξ2, from which it
follows that ξ1/ξ2 = −(2 +

√
3). Thus, noting (14), we obtain

‖H‖
α1(H)

=
√

3(
√

3 + 1),
‖H‖

α2(H)
= 1,

‖H‖
α3(H)

=
√

3(
√

3 − 1),
(19)

‖H‖
α4(H)

= (
√

3 − 1),
‖H‖

α5(H)
=

√
3,

‖H‖
α6(H)

= (
√

3 + 1).

Now, it follows that

(20)
(

Λ2
16 Λ2̄

16

Λ2
1̄6

Λ2̄
1̄6

)
=

(
Λ2

16̄
Λ2̄

16̄

Λ2
1̄6̄

Λ2̄
1̄6̄

)
=

(
Λ3

42 Λ3̄
42

Λ3
4̄2

Λ3̄
4̄2

)
=

(
Λ3

42̄
Λ3̄

42̄

Λ3
4̄2̄

Λ3̄
4̄2̄

)
= 0,

(
Λ5

16 Λ5̄
16

Λ5
1̄6

Λ5̄
1̄6

)
= −

√
3(

√
3 + 1)√
2

J,

(
Λ5

16̄
Λ5̄

16̄

Λ5
1̄6̄

Λ5̄
1̄6̄

)
= −

√
3(

√
3 + 1)√
2

I,
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(
Λ4

26 Λ4̄
26

Λ4
2̄6

Λ4̄
2̄6

)
= − 1√

2
J,

(
Λ4

26̄
Λ4̄

26̄

Λ4
2̄6̄

Λ4̄
2̄6̄

)
= − 1√

2
I,

(
Λ3

51 Λ3̄
51

Λ3
5̄1

Λ3̄
5̄1

)
= −

√
2J,

(
Λ3

51̄
Λ3̄

5̄1

Λ3
5̄1̄

Λ3̄
5̄1̄

)
= −

√
2I,(21)

(
Λ2

31 Λ2̄
31

Λ2
3̄1

Λ2̄
3̄1

)
=

√
3(

√
3 − 1)√
2

J,

(
Λ2

31̄
Λ2̄

31̄

Λ2
3̄1̄

Λ2̄
3̄1̄

)
=

√
3(

√
3 − 1)√
2

I,

(
Λ3

45 Λ3̄
45

Λ3
4̄5

Λ3̄
4̄5

)
= −

√
3 − 1√

2
J,

(
Λ3

45̄
Λ3̄

45̄

Λ3
4̄5̄

Λ3̄
4̄5̄

)
= −

√
3 − 1√

2
I,

where

I =
(

1 0
0 1

)
, J =

(
0 −1
1 0

)
.

Then by (7) and 1/sinθa = ±
√

2(
√

3 + 1) for a = 1,6, respectively, we have
Bζ and Bζ̄ of M+ by Lemma 2.1:

Bζ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0
√

3J
0 0 0 1√

3
J 0

0 0 0 0 0
0 − 1√

3
J 0 0 0

−
√

3J 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠,

(22)

Bζ̄ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0
√

3I
0 0 0 1√

3
I 0

0 0 0 0 0
0 1√

3
I 0 0 0√

3I 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠.

Similarly, denoting the shape operators of M− by Cζ and Cζ̄ , ζ, ζ̄ ∈ D1, we
can express these with respect to D2 ⊕ · · · ⊕ D6 as

Cζ =

⎛
⎜⎜⎜⎜⎜⎝

0 J 0 0 0
−J 0 0 − 2√

3
J 0

0 0 0 0 0
0 2√

3
J 0 0 J

0 0 0 −J 0

⎞
⎟⎟⎟⎟⎟⎠,

(23)
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Cζ̄ =

⎛
⎜⎜⎜⎜⎜⎝

0 −I 0 0 0
−I 0 0 2√

3
I 0

0 0 0 0 0
0 2√

3
I 0 0 −I

0 0 0 −I 0

⎞
⎟⎟⎟⎟⎟⎠.

In particular, M+ is not congruent to M− in S13.

§4. Geometry of G2 orbits

In [M1, Proposition 2.1], we show that an isoparametric hypersurface N6

in S7 with (g,m) = (6,1) is the inverse image of a real Cartan hypersur-
face C3

R
∼= SO(3)/(Z2 + Z2) under the Hopf fibration π : S7 → S4. Since the

restriction of the fibration to a proper subset of S4 is trivial, we have a
homeomorphism

(24) N6 ∼= C3
R × S3.

Note that C3
R is a principal orbit of the adjoint action of SO(3) on the

space of traceless symmetric matrices Sym0(R,3). We can express (24) in
terms of the decomposition of the tangent bundle of N6 into two integrable
distributions TN = R ⊕ S given by

R = span{e2, e4, e6},
(25)

S = span{e1 − λ1e4, e2 + λ2e5, e3 + λ3e6},

where S is the direction of the Hopf fiber (see [M1, p. 188, line 6]) and
is totally geodesic. On the other hand, R corresponds to the Lie algebra
so(3) in so(4), since Λj

24 = 0, Λj
26 = 0, Λj

46 = 0 hold except for the indices
consisting of {2,4,6}. Thus, R is also integrable. Note that N is an arbitrary
principal orbit, and λi are given by (4) for some θ1 ∈ (0, π/6).

In the case (g,m) = (6,2), a parallel argument is not valid because of
the lack of corresponding fibrations. Instead, since SU(3) is a subgroup of
G2, and its Lie algebra is generated by a ⊕ span{X2, T2,X4, T4,X6, T6}, the
subspace

(26) R = D2 ⊕ D4 ⊕ D6

defines an integrable distribution on M . The leaves are Cartan hypersurfaces
C6

C
∼= SU(3)/T2, which are half-dimensional Kähler submanifolds of M12.

This defines a Kähler fibration M → S6 ∼= G2/SU(3) with fiber C6
C.
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We note that π1(M) = 1 = π1(M±) in these arguments. On M+, the
space D6 collapses, and it is easy to see that a ⊕ span{X6, T6} = u(2). Thus,
M+ is diffeomorphic to G2/U(2) = Q5, the complex quadric. Moreover, (26)
implies that the focal submanifold M+ has a fibration M+ → S6 with fiber
CP 2 ∼= SU(3)/S(U(2) × U(1)), which is tangent to df6(D2 ⊕ D4). The total
space M+

∼= Q5 is diffeomorphic to the twistor space of S6 = G2/SU(3)
given by Bryant [B1].

Similarly, on M−, the space D1 collapses, and a ⊕ span{X1, T1} = u(2)
shows that M− = G2/U(2) = Q5; however, M+ and M− are not congruent as
is seen from (22) and (23).∗ In fact, since D4 is invariant along L1 (Λα

14 = 0),
the image of the curvature surface L4 under the focal map f1 defines a
totally geodesic S2 = CP 1 fibration on M−. Here, total geodesity follows
since df1(D4) belongs to the kernel of all the shape operators (see (23)). It
is easy to see that span{H,X1, T1} and span{H⊥,X4, T4} are isomorphic to
so(3), where

H = G24 + G56 − 2G37, H⊥ = G24 − G56,

and hence that the space a ⊕ span{X1, T1,X4, T4} is isomorphic to so(4).
Therefore, the base manifold of this CP 1 fibration is given by G2/SO(4),
the quaternionic Kähler manifold. This implies that M− is diffeomorphic to
the twistor space of G2/SO(4) given in [B2].

On the other hand, since g3 ⊕ g4 ⊕ g6 = span{X1, . . . ,X6} generates
another so(4) (see [M1, p. 183]), we have a half-dimensional submanifold
at each point of M given by this SO(4) suborbit N6. In fact, the tangent
space of N6 is spanned by

Ti =
d

dt

∣∣∣
t=0

(Adexp tXi)H̃, i = 1, . . . ,6.

From Remark 3.1, we see that N6 is a Lagrangian submanifold of M12. At
each point of M12, the tangent space of N6 is expressed as {e1̄, e2̄, . . . , e6̄};
however, the direction of eī can be replaced by a suitable combination of
ei and eī in each Di. In fact, SO(4) is embedded in G2 in a 2-parameter
family, such as

sinϕX1 − cosϕT1, sinψX2 − cosψT2,

cos(ϕ − ψ)X3 − sin(ϕ − ψ)T3, sin(2ψ − 3ϕ)X4 − cos(2ψ − 3ϕ)T4,(27)

∗Here N5
+ is not congruent to N5

− in S7 (see [M1, Proposition 2.5]).
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sin(ψ − 2ϕ)X5 − cos(ψ − 2ϕ)T5, cos(3ϕ − ψ)X6 − sin(3ϕ − ψ)T6.

By using Table 1, we can see that the Lie bracket closes in this space,
which generates so(4) for any fixed ϕ and ψ. The tangent space of the
corresponding SO(4) orbit is the 6-dimensional subspace of TM spanned by

cosϕe1 + sinϕe1̄, cosψe2 + sinψe2̄,

sin(ϕ − ψ)e3 + cos(ϕ − ψ)e3̄, cos(2ψ − 3ϕ)e4 + sin(2ψ − 3ϕ)e4̄,(28)

cos(ψ − 2ϕ)e5 + sin(ψ − 2ϕ)e5̄, sin(3ϕ − ψ)e6 + cos(3ϕ − ψ)e6̄.

This reflects the fact that the isotropy subgroup T 2 of M = G2/T
2 at o = T 2

acts on ToM as an isometry. Thus, at o = T 2 ∈ M (and hence at each point
of M ), there exists a 2-parameter family of the SO(4) orbits which are
Lagrangian.

Note that the distribution R given in (26) and the tangent space of each
SO(4) orbit (e.g., spanned by e1̄, . . . , e6̄) are not transversal; that is, they
do not span TM . Now we have almost shown Theorems 1.1 and 1.2, which
we restate in a refined way.

Main Theorem. On every G2 orbit Mt, t ∈ (−1,1), and M±, which
sweep out S13, there exists a Kähler fibration:

(i) Mt
∼= G2/T

2 → S6 = G2/SU(3) with fiber C6
C = SU(3)/T 2 tangent to

D2 ⊕ D4 ⊕ D6;
(ii) M+

∼= Q5 → S6 = G2/SU(3) with fiber CP 2 = SU(3)/S(U(2) × U(1))
tangent to df6(D2 ⊕ D4), where f6 is the focal map, and which is dif-
feomorphic to the twistor fibration of S6;

(iii) M− ∼= Q5 → G2/SO(4) with fiber CP 1 = SU(2)/S(U(1) × U(1)) tan-
gent to df1(D4), where f1 is the focal map, and which is diffeomorphic
to the twistor fibration of the quaternionic Kähler manifold G2/SO(4).

Note that M+ is not congruent to M− in S13.
Moreover, at each point of Mt, there exists a 2-parameter family of Lagrang-

ian submanifolds transferred from an SO(4) suborbit N6, which is tan-
gent to span{eī,1 ≤ i ≤ 6}, a set of suitably chosen eī ∈ Di. Here, C6

C and
N6 are not transversal. Such N6 collapses into N5

± ∼= RP 2 × S3 on M±,
where N+ is tangent to span{df6(ei),1 ≤ i ≤ 5} and where N− is tangent to
span{df1(ei),2 ≤ i ≤ 6}. In particular, these are minimal Lagrangian sub-
manifolds on M± and on M0, where the latter is the minimal principal
orbit. However, they never define Lagrangian fibrations on Mt or on M±.
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Proof. Here N6 collapses into N5
± as D6 and D1 collapse on M±, respec-

tively. We denote by N0 the minimal principal SO(4) orbit lying in M0.
Because N0 and N± are minimal in some totally geodesic 7-sphere of S13,
these are minimal in S13, and hence minimal in M± and in M0, respectively.

Nonexistence of a Lagrangian fibration follows because the topology of
N6 or N5

± is not that of a torus.

Since there are 2-parameter isometric deformations of N5
± in M±, and

N6
0 in M0, we obtain the following.

Corollary 4.1. The nullity of the Lagrangian minimal submanifold N5
±

in M±, and N6
0 in M0, respectively, is not less than 2.
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