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Abstract

In this paper we study the stability of queueing systems with impatient customers and
a single server operating under a FIFO (first-in–first-out) discipline. We first give a
sufficient condition for the existence of a stationary workload in the case of impatience
until the beginning of service. We then provide a weaker condition of existence on an
enriched probability space using the theory of Anantharam et al. (1997), (1999). The
case of impatience until the end of service is also investigated.
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1. Introduction

In this paper we examine the stability of queueing systems with impatient customers: the
customers agree to wait for service within a limited period of time. They abandon the system
when their patience ends before they could reach the service booth. Such models are particularly
adequate to describe operating systems under sharp delay requirements, such as multimedia
and time sensitive telecommunication and computer networks, on-line audio/video traffic flows,
call centres, or supply chains.

We explicitly construct a stationary state for these systems in the particular case of a single
server obeying the FIFO (first-in–first-out) discipline. To this end, we study a stochastically
recursive sequence representing the workload seen by an arriving customer. This sequence and
its dynamics have been thoroughly studied in the GI/GI/1 case in [4] and [5]. In the G/G/1
context, the workload sequence is driven by a nonmonotonic recursive equation (see (7)); hence,
a construction of Loynes’s type, using a backwards recurrence scheme, is not possible. In this
case we use the following more sophisticated techniques to construct a stationary workload.

(i) Borovkov’s theory of renovating events (see [3, p. 115], [7], and [8]) provides a suffi-
cient condition for the existence and uniqueness of a finite stationary workload. Under
this condition, we can thus construct a stationary loss probability π , and provide bounds
for π (see (14)).

(ii) We provide a weaker condition for the existence of a stationary workload on the enriched
probability space � × R+ (where � is the Palm probability space of reference) using
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FIFO queue with impatience 499

Anantharam and Konstantopoulos’ construction (see [1] and [2]), which is based on
tightness techniques.

In both cases, we use the fact that the workload sequence is strongly dominated by another
sequence, which is driven by a monotonic recursive equation (see (2)). Then the coupling of
the dominating sequence with a unique stationary state allows us to construct the stationary
state of the dominated sequence.

We also address the case where the customers are impatient until the end of their service:
they abandon the queue when their patience ends before a server could complete their service.
This case turns out to be more simple, in the sense that the workload sequence is driven by
a monotonic and continuous recursive random mapping. Then the stability problem can be
handled using Loynes’ scheme.

This paper is organized as follows. In Section 2 we make precise our basic assumptions
and introduce the queue with impatience until the beginning of service. In Section 2.2 we
address the problem of existence of construction points. We provide a sufficient condition for
the existence and uniqueness of a stationary workload in Section 2.4, and for the existence on
an enriched probability space in Section 2.6. In Section 3 we study the case of impatience until
the end of service.

2. The queue with impatient customers

Let R, Z, N, and N
∗ denote the sets of real numbers, integers, nonnegative integers, and

positive integers, respectively. We consider a queue with impatient customers, G/G/1/1+G(b)
(according to Barrer’s notation; see [6]). On the probability space (�,F ,P), furnished with
the measurable bijective flow (θt )t∈R under which P is stationary and ergodic, consider the
θt -compatible point process N , whose points {Tn}n∈Z represent the arrivals of the customers
{Cn}n∈Z, with the convention that T0 is the last arrival before time t = 0. The interarrivals
are denoted by ξn = Tn+1 − Tn for all n ∈ Z. The process N is marked by the sequence
{σn}n∈Z of nonnegative random variables (RVs) representing the service durations requested
by the customers. The queueing system has a single nonidling server, and its buffer is of infinite
capacity. The customers are impatient until the beginning of their service, in that they leave the
system if they do not reach the service booth before a given deadline. In other words, customer
Cn agrees to wait in line for a given period of time, say Dn (his initial patience), and if the
server is not available during this period, he leaves the system forever at time Tn +Dn. Here
{Dn}n∈Z is a sequence of nonnegative marks of (Nt )t∈R. It is furthermore assumed throughout
that ξ0, σ0, and D0 are integrable and that P[ξ0 > 0] > 0. We denote by Xt the number of
customers in the system (or congestion) at time t , for all t ∈ R. We assume throughout that a
customer cannot leave the system once he has entered the service booth, even if his deadline is
reached during his service.

Let (�,F ,P0, θ) be the Palm space of N(σ,D), where θ := θT1 is the associated bijective
discrete flow (we denote its measurable inverse by θ−1). Then, P0 is stationary and ergodic
under θ , i.e. for all A ∈ F , P0[θ−1A] = P0[A] and all A that are θ -invariant (i.e. such that
θA = A) are of probability 0 or 1. Note that, according to these axioms, all θ -contracting
events (such that P0[Ac ∩ θ−1A] = 0) are of probability 0 or 1. We define

θn = θ ◦ θ ◦ · · · ◦ θ and θ−n = θ−1 ◦ θ−1 ◦ · · · ◦ θ−1

for all n ∈ N. Note that the sequence {ξn, σn,Dn}n∈Z is stationary in that, for all n,

ξn = ξ ◦ θn, σn = σ ◦ θn, and Dn = D ◦ θn,
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500 P. MOYAL

where ξ := ξ0, σ := σ0, and D := D0. Note moreover that the RVs ξ , σ , and D are
P0-integrable, and that P0[ξ > 0] > 0. We say that two sequences of RVs {Xn}n∈N and

{Yn}n∈N couple when there exists a P00
-almost surely (P0-a.s.) finite index N such that they

coincide for all n ≥ N . We say that there is strong backwards coupling between {Xn}n∈N and
{Y ◦ θn}n∈N provided that, for some P0-a.s. finite τ , Xn ◦ θ−n = Y for any n ≥ τ .

As is well known (see, e.g. [3, p. 79]), the problems of existence and uniqueness of a
stationary regime for random processes observed at the arrival times can be formulated in a
simple manner on (�,F ,P0, θ). Let Y be an R-valued RV, and let φ be a random mapping
R �→ R, for which we shall emphasize the randomness, when needed, by writing φ[ω](x), the
image of x through φ for the sample ω. The stochastic recursive sequence (SRS) initiated by
Y and driven by φ is defined by

XY0 (ω) = Y (ω), P0-a.s.,

XYn+1(ω) = φ[θnω](XYn (ω)), n ∈ N, P0-a.s.

Then, the problem of existence of a stationary regime for this sequence amounts to that of an
RV Y such that XYn = Y ◦ θn for all n ∈ N. This is in turn equivalent to saying that Y solves
the functional equation

Y ◦ θ = φ(Y ), P0-a.s.

Throughout, the stability study of the queue with impatient customers will be handled under
these settings, for several processes of interest.

2.1. Preliminary result

Let us define x ∨ y = max(x, y), x ∧ y = min(x, y), and x+ = x ∨ 0 for any x, y ∈ R.
On (�,F ,P0, θ), let α and β be two integrable R+-valued RVs such that P0[β > 0] > 0. Let
Fα,β be the real-valued random mapping defined by, for x ∈ R,

Fα,β(x) = [x ∨ α − β]+. (1)

The SRS {YZn }n∈N initiated by Z and driven by Fα,β is stationary if and only if Z solves the
equation

Z ◦ θ = Fα,β(Z). (2)

We have the following result (which completes Lemma 5 of [11]).

Lemma 1. There exists a unique P0-a.s. finite solution Yα,β of (2), given by

Yα,β :=
[

sup
j∈N∗

(
α ◦ θ−j −

j∑
i=1

β ◦ θ−i
)]+

.

Moreover, for any P0-a.s. finite and nonnegative RV Z, the sequence {YZn }n∈N couples in the
strong backwards sense with {Yα,β ◦θn}n∈N, and there exists, P0-a.s., an infinity of indices such
that YZn = 0 if and only if

P0[Yα,β = 0] > 0.

Proof. Equation (2) can be handled using Loynes’s construction (see [3] and [10]) since the
mapping Fα,β is P0-a.s. continuous and nondecreasing. Hence, Yα,β classically reads as the
P0-almost-sure limit of Loynes’s sequence, defined by {Y 0

n ◦ θ−n}n∈N.
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It is routine to check from Birkhoff’s ergodic theorem (and the fact that β is not identically 0)
that Yα,β is P0-a.s. finite. Finally, the coupling property follows from the fact that, for all
nonnegative RVs Z that are P0-a.s. finite (and, in particular, for Z = Yα,β ),

{YZn 
= Y 0
n for all n ∈ N} =

{
YZn = Z −

n−1∑
i=0

β ◦ θi > 0 for all n ∈ N

}
,

which is of probability 0 from Birkhoff’s theorem. The last statement is a classical consequence
of this coupling property under ergodic assumptions.

2.2. General case: construction points

According to the assumptions made above, the total sojourn time of customer Cn does not
exceed Dn + σn, i.e. the sum of his initial patience and the time necessary for his service.
On the other hand, it is at least equal to σn ∧ Dn, i.e. the time until he either loses patience
and leaves the system or is immediately served. Hence, provided that Cn entered the system
before time t (Tn ≤ t), irrespective of whether he has already entered service or left the system
before time t , his remaining maximal sojourn time at time t (i.e. the length of time remaining
before his originally latest possible departure time expires, if not already reached) is given by
[σn +Dn − (t − Tn)]+, whereas his remaining minimal sojourn time at time t (i.e. the length
of time remaining before his earliest possible departure time expires, if not already reached) is
given by [σn∧Dn− (t −Tn)]+.Hence, the largest remaining maximal sojourn time (LRMST)
at time t among all customers who entered before time t is given by

Lt := max
n=1,...,Nt

[σn +Dn − (t − Tn)]+,

and the largest remaining minimal sojourn time (LRmST) at time t , is given by

Mt := max
n=1,...,Nt

[σn ∧Dn − (t − Tn)]+.

The two processes (Lt )t∈R and (Mt )t∈R clearly have càdlàg paths (i.e. paths that are continuous
from the right with left limits). We define, for all finite nonnegative RVs Y andZ and all n ∈ N,
LYn := LTn− and MZ

n := MTn−, the LRMST and LRmST just before the arrival of customer
Cn, provided that LT0− = Y and MT0− = Z, respectively. Then, it is easily checked that,
P0-a.s. for all n ∈ N,

LZn+1 = [LZn ∨ (σn +Dn)− ξn]+ = Fσn+Dn,ξn(Ln),
MZ
n+1 = [MZ

n ∨ (σn ∧Dn)− ξn]+ = Fσn∧Dn,ξ (Mn),

using the notation introduced in (1). Consequently, a stationary LRMST L and a stationary
LRmST M satisfy

L ◦ θ = Fσ+D,ξ (L), M ◦ θ = Fσ∧D,ξ (M).

Consequently, in view of Lemma 1, a unique couple (L,M) exists, given by

L = Yσ+D,ξ =
[

sup
j∈N∗

(
σ−j +D−j −

j∑
i=1

ξ−i
)]+

, (3)

M = Yσ∧D,ξ =
[

sup
j∈N∗

(
σ−j ∧D−j −

j∑
i=1

ξ−i
)]+

. (4)
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In particular, for any initial conditions Y and Z, {LYn }n∈N and {MZ
n }n∈N couple respectively

with {Yσ+D,ξ ◦ θn}n∈N and {Yσ∧D,ξ ◦ θn}n∈N. Therefore, there are, P-a.s., an infinity of indices
such that LYn = 0 if and only if P0[L = 0] > 0, and an infinity of indices such that MZ

n = 0 if
and only if P0[M = 0] > 0. Now noting that, for all initial conditions and all t ≥ 0,

{Lt = 0} ⊆ {Xt = 0} ⊆ {Mt = 0},
we have proven the following elementary result.

Theorem 1. The G/G/s/s+G(b) queue empties P0-a.s. an infinite number of times if

P0
[

sup
j∈N∗

(
σ−j +D−j −

j∑
i=1

ξ−i
)

≤ 0

]
> 0, (5)

and only if

P0
[

sup
j∈N∗

(
σ−j ∧D−j −

j∑
i=1

ξ−i
)

≤ 0

]
> 0. (6)

2.3. The single-server FIFO queue: workload sequence

Throughout Section 2, we assume that the single server obeys the FIFO discipline. For all
t ∈ R, denote by Wt the workload submitted to the server at time t , i.e. the quantity of work
still to be achieved at this time, measured in time units. The process (Wt )t∈R has càdlàg paths,
and we define, for all n,Wn = WT −

n
. Its value at time t equals the work generated by only those

customers who arrive up to time t and who will eventually be served, since the other customers
will never reach the server. Under the FIFO discipline, the served customers are those whose
patience upon arrival exceeds the workload Wt . Between arrival times, the process (Wt )t∈R

decreases at a unit rate. Hence, the workload sequence is driven by the recursive equation

Wn+1 = [Wn + σn1{Wn≤Dn} − ξn]+.
In other words, the workload sequence is stochastically recursive, driven by the random map ϕ
defined by, for all x ∈ R,

ϕ(x) = [x + σ1{x≤D} − ξ ]+.
Hence, a stationary workload W solves

W ◦ θ = ϕ(W). (7)

The random map ϕ is not monotonic in the state variable; hence, a construction of Loynes’s
type is fruitless. In Section 2.4 we use renovating events to provide a sufficient condition for
the existence and uniqueness of a solution to (7). In Section 2.6 we show that, under weaker
assumptions, a solution exists on an enlarged probability space.

2.4. Sufficient condition

Theorem 2. If (5) holds, (7) admits a unique finite solution W such that

Yσ∧D,ξ ≤ W ≤ Yσ+D,ξ , P0-a.s.,

where Yσ+D,ξ and Yσ∧D,ξ are defined by (3) and (4), respectively. Moreover, for any initial
condition Z such that Z ≤ Yσ+D,ξ , P0-a.s., there is strong backwards coupling for {WZ

n }n∈N

with {W ◦ θn}n∈N.
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This result can be related to the classical stability result for the GI/GI/1/1+GI(b)-FIFO
queue (i.e. all sequences are independent and identically distributed, and independent of one
another); see [4, Lemma 2, p. 162] and also [5]. Hence, the recursive sequence {Wn}n∈N is a
Markov chain, which is proven to be ergodic whenever the generic patience D is a.s. finite (an
assumption that is made throughout this paper), and whenever

P[σ < ξ ] > 0. (8)

The latter result follows from typical properties of Markov chains (Harris recurrence and
irreducibility), and it is not surprising that our result, under more general assumptions, is weaker.
More precisely, the existence of a stationary workload and the recurrence of 0 (Theorem 1)
are entailed by Lemma 2 of [4] for a GI/GI/1/1+GI(b)-FIFO queue whenever (5) holds, and
whenever either one of the RVs ξ and σ is absolutely continuous, or P0[D > 0] = 1. Indeed,
it then follows that on an event A such that P0[A] > 0,

σ−1 − ξ−1 < σ−1 +D−1 − ξ−1 ≤ 0,

and (8) holds in view of the stationarity of θ .

Proof of Theorem 2. Existence. Let us first remark that, for any x ∈ R
+,

ϕ(x) = [x + σ1{x≤D} + x1{D<x≤D+σ } + x1{D+σ<x} − ξ ]+
≤ [(D + σ)1{x≤D} + (D + σ)1{D<x≤D+σ } + x1{D+σ<x} − ξ ]+
= [x ∨ (σ +D)− ξ ]+
= Fσ+D,ξ (x), P0-a.s. (9)

In view of the almost-sure increasingness of Fσ+D,ξ , we have, in particular, for all x ≤ y,

ϕ(x) ≤ FD+σ,ξ (y), P0-a.s., (10)

and a straightforward induction shows that Z ≤ Yσ+D,ξ implies that

WZ
n ≤ Yσ+D,ξ ◦ θn, n ≥ 0.

Therefore, define the event

An := {Yσ+D,ξ ◦ θn = 0} for all n.

The sequence {An}n∈N is a sequence of renovating events of length 1 for {WZ
n }n∈N (see [3,

p. 115], [7], and [8]), since
An ⊆ {WZ

n = 0}, n ≥ 0.

Moreover, this sequence is stationary in the sense that, for all n ≥ 0,

An = θ−nA0, n ≥ 0.

Consequently, since (5) amounts to P0[A0] > 0, this is, from [3, Theorem 2.5.3], a sufficient
condition for the existence of a solution W to (7), and for strong backwards coupling to occur
for {WZ

n }n∈N with W .
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Uniqueness. LetW be a solution of (7). First, assuming thatW > D, P0-a.s. (which implies
in particular that W ◦ θ > 0, P0-a.s.) yields

W ◦ θ = W − ξ, P0-a.s.,

an absurdity in view of the ergodic lemma (see [3, Lemma 2.2.1]). Therefore, we have

P0[W ≤ D] > 0. (11)

On the other hand, in view of (10), on the event {W ≤ Yσ+D,ξ },
W ◦ θ = ϕ(W) ≤ Fσ+D,ξ (Yσ+D,ξ ) = Yσ+D,ξ ◦ θ.

Thus, {W ≤ Yσ+D,ξ } is θ -contracting, whereas, on {W ≤ D},
W ◦ θ = [(W + σ)1{W≤D} − ξ ]+ ≤ [(D + σ)1{W≤D} − ξ ]+ ≤ Yσ+D,ξ ◦ θ,

which shows in view of (11) that

0 < P0[W ≤ D] ≤ P0[W ◦ θ ≤ Yσ+D,ξ ◦ θ ] = P0[W ≤ Yσ+D,ξ ].
Therefore, the event {W ≤ Yσ+D,ξ } is P0-almost sure. As a consequence, {WW

n }n∈N =
{W ◦θn}n∈N admits {An}n∈N as a stationary sequence of renovating events of length 1. From [3,
Remark 2.5.3], P0[A0] > 0 implies the uniqueness property.

Finally, for any x ∈ R+, we have, P0-a.s.,

Fσ∧D,ξ (x) = [(σ ∧D)1{x≤D∧σ } + x1{x>D∧σ }1{x≤D} + x1{x>D} − ξ ]+
≤ [(x + σ)1{x≤D∧σ }1{x≤D} + (x + σ)1{x>D∧σ }1{x≤D} + x1{x>D} − ξ ]+
= ϕ(x). (12)

In view of the almost-sure increasingness of Fσ∧D,ξ , this implies that, on the event {Yσ∧D,ξ ≤
W },

Yσ∧D,ξ ◦ θ = Fσ∧D,ξ (Yσ∧D,ξ ) ≤ ϕ(W) = W ◦ θ;
thus, {Yσ∧D,ξ ≤ W } is θ -contracting. It is P0-almost sure since it includes the event {Yσ+D,ξ =
0} (in view of the immediate fact that Yσ∧D,ξ ≤ Yσ+D,ξ , P0-a.s.).

As is customary, under the FIFO discipline, the construction of the stationary versions of
several quantities of interest can be derived from that of the workload sequence. In particular,
provided that (5) holds, we can construct a congestion process and a departure process that are
jointly compatible with the arrival process (Nt )t∈R. Let us remark that, under condition (5),
there also exists a stationary loss probability, denoted by π(b), which is the probability that the
waiting time proposed to a customer exceeds his initial patience, at equilibrium. This reads as

π(b) = P0[W > D]. (13)

With Theorem 2 in hand, we have

P0[Yσ∧D,ξ > D] ≤ π(b) ≤ P0[Yσ+D,ξ > D]. (14)
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2.5. Counterexamples

Let us now focus on cases where condition (5) does not hold. As we show in the following
counterexamples, it is then easy to construct examples where uniqueness and even existence
are not granted when working on the original probability space. Let � := {ω1, ω2}. Denote
by P0 the uniform probability on �, and define the shift θ on (�,P0) by θ(ω1) = ω2 and
θ(ω2) = ω1. Hence, θ is clearly stationary and ergodic under P0. Note that any solution W of
(7) satisfies

W(ω2) = [W(ω1)+ σ(ω1)1{W(ω1)≤D(ω1)} − ξ(ω1)]+, (15)

W(ω1) = [W(ω2)+ σ(ω2)1{W(ω2)≤D(ω2)} − ξ(ω2)]+. (16)

Example 1. (Nonexistence.) Let the RVs ξ , σ , and D be defined on (�,P0, θ), and satisfy

ξ(ω1) = ξ(ω2) = 1,

σ (ω1) > 2, σ (ω2) 
= 2,

D(ω1) ≥ 3, D(ω2) ≤ 2.

First, if W(ω1) ≤ 3 then in view of (15),

W(ω2) = [W(ω1)+ σ(ω1)− 1]+ = W(ω1)+ σ(ω1)− 1.

Then, with (16),

W(ω1) = [W(ω1)+ σ(ω1)− 2 + σ(ω2)1{W(ω2)≤D(ω2)}]+
= W(ω1)+ σ(ω1)− 2 + σ(ω2)1{W(ω2)≤D(ω2)}
> W(ω1),

which is absurd. Hence, W(ω1) > 3, but then W(ω2) = [W(ω1)− 1]+ = W(ω1)− 1 > 2 ≥
D(ω2), which, with (16), yields W(ω1) = [W(ω1) − 2]+ = W(ω1) − 2, another absurdity.
There is no solution to (7).

Example 2. (Nonuniqueness.) Assume that

ξ(ω1) = ξ(ω2) = 1,

σ (ω1) ∈ [0, 2], σ (ω2) = 2 − σ(ω1),

D(ω1) > (1 − σ(ω1))
+, D(ω2) ≤ D(ω1)+ σ(ω1)− 1.

Then, it is easily seen that, for any x ∈ ((1 − σ(ω1))
+,D(ω1)], the RV defined by

W(ω1) = x, W(ω2) = x + σ(ω1)− 1

is a solution to (7).

2.6. Weak stationarity

In this section we show how the techniques developed in [1] allow us to construct a stationary
workload for the queue under weaker assumptions, on a probability space that is enriched with
respect to the original one. This is done again using the stochastic comparison with the LRMST
sequence (see (9)).
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Throughout this section, we suppose without loss of generality that (�,F ) is Polish (see [1]
for a precise definition). We work on the enlarged probability space�×R, on which we define
the shift

θ̃ (ω, x) = (θω, ϕ[ω](x)).
We say that a subset � ⊂ R is locally finite if � ∩ A has a finite cardinal for any interval A.
The following result holds.

Theorem 3. Suppose that either (5) or the following condition holds.

(A) The RVs σ and ξ are valued in a common locally finite space � that includes 0, and is
closed under addition.

Then, the stochastic recursion (7) admits a weak solution in the sense of [1], that is, a
θ̃ -invariant probability P̃

0
on � × R whose �-marginal is P0. Therefore, on (� × R), there

exists an R × M(R)-valued RV (W̃ , ϕ̃) satisfying

W̃ ◦ θ̃ = ϕ̃(W̃ ), P̃
0
-a.s.

In particular, {(W̃ , ϕ̃) ◦ θ̃ n}n∈N is stationary under P̃
0
, and the�-marginal of {ϕ̃[θ̃ n(·)]}n∈N is

the distribution of {ϕ[θn(·)]}n∈N.

Proof. We aim to apply Theorem 1 of [1], whose corrected version is presented in [2]. Let
us check that its hypotheses are met in our case.

First, the sequence {L0
n}n∈N is tight since it converges weakly. On the other hand, (10)

implies, using an immediate induction, that, P0-a.s., W 0
n ≤ L0

n for all n ∈ N. Hence, {W 0
n }n∈N

is tight, since, for all ε > 0, there exists Mε such that, for all n ∈ N,

P0[W 0
n ≤ Mε] ≥ P0[L0

n ≤ Mε] ≥ 1 − ε.

Now on �× R define the RVs

W̃ (ω, x) := x, ϕ̃[ω, x] := ϕ[ω],
and, for all n ∈ N,

W̃n(ω, x) := W̃ (θ̃n(ω, x)).

Note that, for all n ∈ N, A ∈ F , and B ∈ B(R),

P0 ⊗ δ0[θ̃−n(A × R)] = P0[θ−nA] = P0[A]
and

P0 ⊗ δ0[θ̃−n(�× B)] = P0 ⊗ δ0[{(ω, x) ∈ �× R;Wx
n (ω) ∈ B}] = P0[W 0

n ∈ B].
Hence, the probability distributions {(P0 ⊗ δ0) ◦ θ̃−n}n∈N on � × R have �-marginal P0 and
R marginals, the distributions of {W 0

n }n∈N, which form a tight sequence. The sequence
{(P0 ⊗ δ0) ◦ θ̃−n}n∈N is thus tight. Note that this entails in particular the tightness of the
sequence

{Q̄n}n∈N :=
{

1

n

n−1∑
i=0

(P0 ⊗ δ0) ◦ θ̃−i
}
n∈N

.
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x
0 D (ω) D (ω) � 2�p

Figure 1: A path of x �→ fp(ω, x).

We now aim to check condition (A3) of [2, p. 272]. To this end, let us define, for allp ∈ N
∗,

(i) Vp = {(ω, x) ∈ �× R; D(ω) < x < D(ω)+ 2−p},
(ii) for any (ω, x) ∈ �× R,

fp(ω, x) = 1{x≤D(ω)} + (−2px + 1 + 2pD(ω))1{(ω,x)∈Vp},

from which a path is represented in Figure 1,

(iii) for any (ω, x) ∈ �× R,

θ̃p(ω, x) = (θω, [x + fp(ω, x)σ (ω)− ξ(ω)]+).
It is then easily checked that, for all p, Vp is an open set, θ̃ = θ̃p outside Vp, and that θ̃p is
continuous from ω × R into itself.

Let us first assume that condition (A) holds. Note that, for any i ≥ 1, W 0
i ◦ θ−i can be

interpreted as the workload in the system at time 0, assuming that customer C−i finds an empty
system upon arrival. It is then easily checked by induction at the construction points (the
instants at which a customer enters an empty system) that, for all i ≥ 1,

W 0
i ◦ θ−i ∈ � , P0-a.s. (17)

Fix p ≥ 1. As a consequence of (17), we have, for any i ≥ 1,

P0[W 0
i ◦ θ−i ∈ (D,D + 2−p)]
≤ P0[{min{� ∩ (D,D + 1)} ∈ (D,D + 2−p)} ∩ {� ∩ (D,D + 1) 
= ∅}],

and, therefore,

lim
p→∞ lim inf

n→∞ Q̄n(Vp)

= lim
p→∞ lim inf

n→∞
1

n

n∑
i=1

P0[W 0
i ◦ θ−i ∈ (D,D + 2−p)]

≤ lim
p→∞ P0[{min{� ∩ (D,D + 1)} −D ∈ (0, 2−p)} ∩ {� ∩ (D,D + 1) 
= ∅}]

= 0. (18)
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All the same, whenever (5) holds, in view of Theorem 2, there exists, P0-a.s., a finite τ such
that W 0

i ◦ θ−i = W for all i ≥ τ . Hence, the random set

E = {W 0
i ◦ θ−i; i ≥ 1} = {W 0

i ◦ θ−i; i ≤ τ }
is a.s. of finite cardinal, so that (18) holds, replacing � by E .

In conclusion, assumption (A3) of [2, p. 272] is verified under both condition (A) and (5).
Hence, Theorem 1 of [1] holds, meaning that there exists a θ̃ -invariant probability P̃

0
on�×R

whose �-marginal is P0.
It is now straightforward to show that

W̃ ◦ θ̃ (ω, x) = ϕ[ω](x) = ϕ̃[ω, x](W̃ (ω, x)), P̃
0
-a.s.,

so that, for all n ∈ N, P̃
0
-a.s.,

W̃n+1 = ϕ̃[θ̃ n(·)](W̃n),

where {W̃n, ϕ̃[θ̃ n(·)]}n∈N is stationary under P̃
0
.

Note that condition (A) typically holds whenever σ and ξ are valued in a lattice {xn; n ∈ N},
where x > 0.

On another hand, note that condition (A) does not entail (5): take σ(ω1) = 3, σ(ω2) = 1,
D(ω1) = 3, and D(ω2) = 2 in the first example of Section 2.5. Then, condition (A) holds
for � = N, whereas (5) is violated: there exists a weak stationary solution, but no stationary
solution on the original probability space.

2.6.1. Loss system. Consider a loss system G/G/1/1: there is no buffer, so each customer is
served if and only if he finds an empty system upon arrival. This corresponds to a
G/G/1/1+G(b) queue in which the generic patienceD is null P0-a.s. The sufficient condition
for the existence of a stationary workload, constructed in [3, Section 2.6], naturally corresponds
to (5), taking D ≡ 0.

A stationary workload for this queue always exists on � × R, as readily follows from
Theorem 3, since

E ⊂
{[
σ−i −

i∑
j=1

ξ−j
]+

; i ≥ 1

}
,

which has, P0-a.s., a finite cardinal since the sequence {σ−i − ∑i
j=1 ξ−j }i≥1 tends to −∞,

P0-a.s., in view of Birkhoff’s theorem. This result was proved in a similar way in [2], whereas
an explicit construction of a stationary workload on �× N was proposed in [9] and [13] (see
also [12] for a generalization of this result to a dominated lattice-valued SRS).

3. Impatience until the end of service

Let us now consider a G/G/s/s+G(e) queue: the model is the same as that of the previous
sections, except that the customers are now assumed to remain impatient until the end of
their service. Indeed, they leave the system, and are eliminated forever, if their service is not
completed before their deadline. Using the notation and assumptions of the previous section,
customer Cn is thus discarded when the total time he has to wait in the buffer and spend in the
service booth is larger than his initial time creditDn. We assume that the customers are unaware
of their waiting time and deadline, and so wait in the system, and possibly enter service, as long
as their deadline is not reached.
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3.1. Construction points

For any n ∈ Z, the maximal sojourn time of Cn in the system is given by Dn, whereas
its minimal sojourn time is σn ∧ Dn. Then, the LRmST sequence is that of the system with
impatience until the beginning of service, whereas the LRMST sequence {Ln}n∈N is driven by
the recursive equation

Ln+1 = [Ln ∨Dn − ξn]+ = FDn,ξn(Ln),

and, in view of Lemma 1, the unique stationary LRMST reads

YD,ξ =
[

sup
j∈N∗

(
D−j −

j∑
i=1

ξ−i
)]+

.

As in Theorem 1, we have the following result.

Theorem 4. The G/G/s/s+G(b) queue empties, P0-a.s., an infinite number of times if

P0
[

sup
j∈N∗

(
D−j −

j∑
i=1

ξ−i
)

≤ 0

]
> 0, (19)

and only if (6) holds.

3.2. Single-server FIFO queue

Now suppose that the discipline is FIFO. The patience of a customer may expire while he is
in service. Hence, such customers contribute to the workload, since some service is provided
to them, but their service is not completed. More precisely, the quantity of work added to the
workload Wn upon the arrival of customer Cn is given by

⎧⎪⎨
⎪⎩
σn if Wn ≤ (Dn − σn)

+,
σn − (Wn + σn −Dn) = Dn −Wn if (Dn − σn)

+ < Wn ≤ Dn,

0 if Wn > Dn.

This can be reformulated in the compact form

Wn+1 = [Wn + (σn − (Wn + σn −Dn)
+)+ − ξn]+.

Therefore, a stationary workload is an R+-valued RV S that solves the equation

S ◦ θ = ψ(S) := [S + (σ − (S + σ −D)+)+ − ξ ]+. (20)

We have the following result.

Theorem 5. (i) Equation (20) admits a P0-a.s. finite solution S such that

Yσ∧D,ξ ≤ S ≤ YD,ξ , P0-a.s.

(ii) If (19) holds, this solution is unique and, for any RVZ such thatZ ≤ YD,ξ , P0-a.s., {WZ
n }n∈N

converges with strong backwards coupling to S.

(iii) If, in addition, (5) holds then the unique solution is such that S ≤ W , P0-a.s., where W is
the only solution of (7).
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Proof. (i) The random mapping ψ is P0-a.s. nondecreasing and continuous, which can be
easily checked. Hence, a minimal solution S to (20) can be constructed using Loynes’ theorem.
Let us now remark that, for any x,

ψ(x) = [((x + σ) ∧D)1{x≤D} + x1{x>D} − ξ ]+
≤ [(x ∨D) ∧ (x + σ1{x≤D})− ξ ]+
= ϕ(x) ∧ FD,ξ (x), P0-a.s. (21)

This clearly implies that the event {S ≤ YD,ξ } is θ -contracting. On the other hand, S is such
that P0[S ≤ D] > 0, since the contrary would imply that S ◦θ = S− ξ , P0-a.s., a contradiction
to the ergodic lemma. But, on {S ≤ D},

S ◦ θ = [((S + σ) ∧D)− ξ ]+ ≤ [D ∨ YD,ξ − ξ ]+ = YD,ξ ◦ θ.
Consequently, we have

S ≤ YD,ξ , P0-a.s.

Now, for any x, we also have, P0-a.s.,

Fσ∧D,ξ (x) = [(D ∧ σ)1{x≤D∧σ }1{x≤D} + x1{x>D∧σ }1{x≤D} + x1{x>D} − ξ ]+
≤ [(D ∧ (x + σ))1{x≤D∧σ }1{x≤D} + (D ∧ (x + σ))1{x>D∧σ }1{x≤D}

+ x1{x>D} − ξ ]+
= ψ(x), (22)

which implies that the event {Yσ∧D,ξ ≤ S} is θ -contracting. Assuming that Yσ∧D,ξ > σ ∧D,
P0-a.s., would again contradict the ergodic lemma. Thus, {Yσ∧D,ξ ≤ S} is P0-almost sure
since, on {Yσ∧D,ξ ≤ σ ∧D},

Yσ∧D,ξ ◦ θ = [σ ∧D − ξ ]+ ≤ [((S + σ) ∧D)1{S≤D} + S1{S>D} − ξ ]+ = S ◦ θ.
(ii) For any solution S′ of (20), {S′ ≤ S} is θ -contracting. This event is thus P0-almost sure

whenever (19) holds since it is included in {YD,ξ = 0}. Hence, the uniqueness of the solution
is entailed by the minimality of S.

On the other hand, (21) implies by a simple induction that

WZ
n ≤ L

YD,ξ
n = YD,ξ ◦ θn, n ∈ N,

whenever Z ≤ YD,ξ . Thus, for any RV Z such that Z ≤ YD,ξ , P0-a.s., the sequence {{YD,ξ ◦
θn = 0}}n∈N is a sequence of renovating events of length 1 for {W 0

n }n∈N. The strong backwards
coupling property then follows, as in the proof of Theorem 2.

(iii) The fact that ψ is P0-a.s. nondecreasing implies, together with (21), that, on the event
{S ≤ W },

S ◦ θ ≤ [W + (σ − (W + σ −D)+)+ − ξ ]+ ≤ W ◦ θ.
Therefore, {S ≤ W } is θ -contracting. This event is P0-almost sure whenever (5) holds since it
includes {YD+σ,ξ = 0}.

In Figure 2 we represent a sample path of the random functionsϕ,ψ, Fσ∧D, FD , andFσ+D to
illustrate a comparison between (9), (12), (21), and (22). Note in particular thatψ is continuous,
whereas ϕ is not.
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D(ω) 

ψ

ϕ

D(ω)0
x
(ω)σ+D(ω) (ω)σ−(ω)σ

D(ω) (ω)σ+ ξ  (ω)−

D(ω) ξ  (ω)−

(ω)σ ξ  (ω)−

ξ  (ω)
F    Dσ^

FD

F    Dσ+

Figure 2: A sample path of ϕ,ψ, Fσ∧D, FD , and Fσ+D .

For this model, the stationary loss probability π(e) is the probability that the patience of
customer C0 is less than the sum of the stationary workload and his service time, i.e.

π(e) = P0[S > D − σ ].
From Theorem 5(i) we have

P0[Yσ∧D,ξ > D − σ ] ≤ π(e) ≤ P0[YD,ξ > D − σ ].
On the other hand, the stationary probability π̂(e) that a customer does not reach the server is
given by

π̂(e) = P0[S > D].
Then in view of (13) and Theorem 5(ii), the loss probability π(b) of the G/G/1/1+G(b) queue
is larger than π̂(e) for the same parameters.
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