
13

Interferometers

13.1 Introduction

The discussion of modules and computerization in previous chapters gives us the

means to consider empirically useful quantized detector networks (QDN). In this

chapter we shall focus on a particular class of network known as interferometers .

Interferometers play a crucial role in quantum mechanics (QM) because they

demonstrate the “paradox” of wave–particle duality in a direct way. On the one

hand, discrete signals are detected by the observer and those signals are usually

interpreted as particles or quanta. On the other hand, the observed frequencies

built up over many runs show effects interpreted as due to the interference

of waves.

In the previous chapter, we used computer algebra (CA) to discuss the Wol-

laston interferometer (WI), a relatively simple interferometer. We shall use the

same approach in the following discussion of the Mach–Zehnder interferometer

(MZI), apparatus that allows the observer to investigate optical transmission

through various materials.

13.2 The Mach–Zehnder Interferometer

The basic structure of an MZI is given in Figure 13.1. A source S of light sends

a monochromatic, unpolarized beam 10 into one input channel of beam splitter

B1. Output channel 11 is deflected by mirror M1 onto a module labeled φ that

contains some medium under investigation, such as a crystal or liquid. The net

effect is to create a phase change in that deflected beam by an amount φ, and

then that modified beam, 12, is passed into beam splitter B2. The second output

channel, 21, from B1, meanwhile, is deflected by mirror M2 into beam splitter

B2. The two deflected beams, 12 and 22, that pass into B2 interfere and are

finally monitored by detectors 13 and 23.

Our analysis of the MZI follows the CA approach used for the WI in the

previous chapter.

https://doi.org/10.1017/9781009401432.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401432.014


13.2 The Mach–Zehnder Interferometer 173

M B

MBS

f

Figure 13.1. The Mach–Zehnder interferometer: S is a source of monochro-
matic, unpolarized light, B1 and B2 are beam splitters, M1 and M2 are
mirrors, and φ contains a medium that changes the phase of the light by φ.

Parameters

For this experiment, the number of stages N is N = 3. From Figure 13.1, the

rank at each stage is seen to be r0 = 1, r1 = r2 = r3 = 2. Since polarization is not

a factor in this version of the experiment, we take the dimensions of the internal

(photonic) space at the four stages to be given by d0 = d1 = d2 = d3 = 1.

The Initial State

Since we are not interested here with polarization, the initial total state |Ψ0) is

given by |Ψ0) ≡ |s0〉⊗ Â1
000 = |s0〉⊗10, where |s0〉 is a normalized photon state.

From Figure 13.1 and the known properties of the modules, we write

Stage Σ0 to Stage Σ1

U1,0

{
|s0〉 ⊗ Â1

000

}
= t1|s1〉 ⊗ Â2

101 + ir1|s1〉 ⊗ Â1
101

≡ |s1〉 ⊗ (t121 + ir111). (13.1)

Stage Σ1 to Stage Σ2

U2,1

{
|s1〉 ⊗ Â1

101

}
= eiφ|s2〉 ⊗ Â1

202 ≡ eiφ|s2〉 ⊗ 12,

U2,1

{
|s1〉 ⊗ Â2

101

}
= |s2〉 ⊗ Â2

202 ≡ |s2〉 ⊗ 22. (13.2)

Stage Σ2 to Stage Σ3

U3,2

{
|s2〉 ⊗ Â1

202

}
= t2|s3〉 ⊗ Â2

303 + ir2|s3〉 ⊗ Â1
300 ≡ |s3〉 ⊗ (t223 + ir213),

U3,2

{
|s2〉 ⊗ Â2

202

}
= ir2|s3〉 ⊗ Â2

303 + t|s3〉 ⊗ Â1
300 ≡ |s3〉 ⊗ (ir223 + t13).

(13.3)

Here we have ignored any phase changes at the mirrors and characterized each

beam splitter separately. In the above, all superscripts are labels, not powers.
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174 Interferometers

This is all the input information required for our CA program MAIN, as

discussed in the previous chapter. The nonzero conditional outcome probabilities

are found to be

Pr(Â1
303|Ψ0) = −2r1r2t1t2 cos(φ) + (r1r2)2 + (t1t2)2,

Pr(Â2
303|Ψ0) = +2r1r2t1t2 cos(φ) + (r1t2)2 + (t1r2)2. (13.4)

These sum up to unity as required, given that (ti)2 + (ri)2 = 1, for i = 1, 2.

The significance here is that the outcome probabilities are affected by the

phase change module. By altering the path length in that module, and other

parameters such as temperature and density of the medium in that module,

significant information about that medium can be extracted.

13.3 Brandt’s Network

The next example is a quantum optics network discussed by Brandt (Brandt,

1999) in terms of conventional positive operator-valued measure operators

(POVMs) and shown in Figure 13.2. A source S prepares a monochromatic

unpolarized beam of light 10 that is split by Wollaston prism W into two

orthogonally polarized components 11 and 21. One component 11 is then passed

into beam splitter B1 and thereby split into two components 12 and 22 with no

change in polarization. Component 12 is subsequently observed at detector 13,

while component 22 is passed into beam splitter B2. Meanwhile, component 21
emerging from the Wollaston prism W has its polarization turned by π/2 at

module R. The resulting beam 32 is then passed into beam splitter B2, where it

interferes with 22, with subsequent detection at detectors 23 and 33.

BB

WS R

Figure 13.2. Brandt’s network: source S prepares an unpolarized, monochro-
matic beam of light that passes through Wollaston prism W . This splits the
beam into two orthogonally polarized components. These are passed through
beam splitters B1 and B2 as shown. Module R rotates the polarization of one of
the polarized beams into that of the other, prior to it being passed through B2.
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Brandt’s analysis was in terms of nonorthogonal system under observation

(SUO) state vectors. Our analysis avoids nonorthogonality issues directly. The

initial state is given by

|Ψ0) ≡ (α|s10〉+ β|s20〉)⊗ Â1
000 = (α|s10〉+ β|s20〉)⊗ 10, (13.5)

where |s10〉, |s20〉 denote orthogonal photon polarization states, and α and β are

complex coefficients satisfying |α|2 + |β|2 = 1. By inspection of Figure 13.2 we

take N = 3, r0 = 1, r1 = 2, r2 = r3 = 3, d0 = d1 = d2 = d3 = 2. The dynamics

is given by the following rules.

Stage Σ0 to Stage Σ1

U1,0

{
|s10〉 ⊗ Â1

000

}
≡ |s11〉 ⊗ Â1

101 = |s11〉 ⊗ 11,

U1,0

{
|s20〉 ⊗ Â1

000

}
≡ |s21〉 ⊗ Â2

101 = |s21〉 ⊗ 21. (13.6)

Stage Σ1 to Stage Σ2

U2,1

{
|s11〉 ⊗ Â1

101

}
≡ t1|s12〉 ⊗ Â1

201 + ir1|s12〉 ⊗ Â2
202 = |s12〉 ⊗

{
t111 + ir122

}
,

U2,1

{
|s21〉 ⊗ Â2

101

}
≡ −|s12〉 ⊗ Â3

202 = −|s12〉 ⊗ 42, (13.7)

where (t1)2 + (r1)2 = 1. The second equation in (13.7) represents a rotation of

the photon polarization vector |s21〉 by − 1
2π into −|s12〉 as it passes through the

module labeled R in Figure 13.2 (the sign change follows the convention used in

Brandt (1999)).

Stage Σ2 to Stage Σ3

U3,2

{
|s12〉 ⊗ Â2

202

}
≡ |s13〉 ⊗ Â2

303 = |s13〉 ⊗ 13,

U3,2

{
|s12〉 ⊗ Â2

202

}
≡ t2|s13〉 ⊗ Â3

303 + ir2|s13〉 ⊗ Â2
303

= t2|s13〉 ⊗ 43 + ir2|s13〉 ⊗ 23,

U3,2

{
|s12〉 ⊗ Â3

202

}
≡ ir2|s13〉 ⊗ Â3

303 + t2|s13〉 ⊗ Â2
303

= ir2|s13〉 ⊗ 43 + t2|s13〉 ⊗ 23, (13.8)

where (t2)2 + (r2)2 = 1.

With this information transcribed into Section A of the CA program MAIN,

we find the following nonzero outcome probabilities for the Brandt network:

Pr(Â1
303|Ψ0) = |α|2(t1)2,

Pr(Â2
303|Ψ0) = |α|2(r1r2)2 − (α∗β + αβ∗)r1r2t2 + |β|2(t2)2,

Pr(Â3
303|Ψ0) = |α|2(r1t2)2 + (α∗β + αβ∗)r1r2t2 + |β|2(r2)2, (13.9)

assuming perfect efficiency and wave-train overlap. When the reflection and

transmission coefficients are chosen as by Brandt (Brandt, 1999), these rates

agree with his precisely.
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Figure 13.3. The HSZ two-photon interferometer.

13.4 The Two-Photon Interferometer

Up to now, we have restricted attention to signality-one processes. It is important

to test our QDN approach on more subtle situations. With this in mind, in this

section we discuss the application of QDN to a signality-two process discussed

by Horne, Shimony, and Zeilinger (HSZ) (Horne et al., 1989). The relevant stage

diagram is given in Figure 13.3.

A source S creates a preparation switch 10 that by stage Σ1 has generated a

two-photon entangled state via module C. As discussed in Horne et al. (1989),

module C creates four separate components that are processed as follows. Com-

ponent 11 passes through phase changer φ1 and then enters beam splitter B1,

while component 21 passes through phase changer φ2 and then enters beam

splitter B2. Components 31 and 41 pass directly on to beam splitters B2 and

B1, respectively, as shown. The observer monitors signals at stage Σ3 as shown.

The aim of the experiment is to investigate photon signal pair correlations in the

detectors.

Parameters

We take N = 3, d[0] = d[1] = d[2] = d[3] = 1, r[0] = 1, r[1] = r[2] = r[3] = 4.

Initial State

The preparation switch is given by

|Ψ, 0) = |s10〉 ⊗ Â1
000. (13.10)

Evolution

Stage Σ0 to Σ1

U1,0

{
|s10〉 ⊗ Â1

000

}
≡ 1√

2
|s11〉 ⊗

{
Â1

1Â
3
101 + Â2

1Â
4
101

}
=

1√
2
|s11〉 ⊗ {51 + 101} .

(13.11)
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Stage Σ1 to Σ2

U2,1

{
|s11〉 ⊗ Â1

1Â
3
101

}
≡ eiφ

1 |s12〉 ⊗ Â1
2Â

3
202 = eiφ

1 |s12〉 ⊗ 52, (13.12)

U2,1

{
|s11〉 ⊗ Â2

1Â
4
101

}
≡ eiφ

2 |s12〉 ⊗ Â2
2Â

4
202 = eiφ

2 |s12〉 ⊗ 102. (13.13)

Stage Σ2 to Σ3

U3,2

{
|s12〉 ⊗ Â1

2Â
3
202

}
= |s13〉 ⊗

{
t1Â4

3 + ir1Â3
3

}{
t2Â1

3 + ir2Â2
3

}
= |s13〉 ⊗

{
t1t293 + ir1t253 + ir2t1103 − r1r263

}
,

U3,2

{
|s12〉 ⊗ Â2

2Â
4
202

}
= |s13〉 ⊗

{
t2Â2

3 + ir2Â1
3

}{
t1Â3

3 + ir1Â4
3

}
= |s13〉 ⊗

{
t1t263 + ir2t153 + ir1t2103 − r1r293

}
.

(13.14)

With this information, program MAIN gives the following nonzero correlation

probabilities:

Pr(Â1
3Â

3
303|Ψ0) = Pr(Â2

3Â
4
303|Ψ0)=

1

2
(r1t2)2 +

1

2
(r2t1)2 + r1r2t1t2 cos(φ1 − φ2),

Pr(Â2
3Â

3
303|Ψ0) = Pr(Â1

3Â
4
303|Ψ0)=

1

2
(r1r2)2 +

1

2
(t2t1)2 − r1r2t1t2 cos(φ1 − φ2).

(13.15)

These agree with the results given in Horne et al. (1989), assuming no losses and

taking t1 = r1 = t2 = r2 = 1/
√
2.

The following comments are relevant.

Partial Questions

The above signal pair correlations show dependency on the phases φ1, φ2, whereas

as pointed out by HSZ, the answers to the partial questions involving single

detectors only have no such dependence. For instance, the probability Pr(13|Ψ0)

that stage Σ3 detector 13 has fired is given by

Pr(13|Ψ0) = Pr(Â1
3Â

3
303|Ψ0) + Pr(Â1

3Â
4
303|Ψ0) =

1

2
, (13.16)

which is independent of the phases. The same result holds for the other single

detectors.

Nonlocality

The QDN formalism shows that the phase change φ1 applied to component 11
could be applied to component 31 instead with no change in physical predictions;

this is evident from the fact that the phase factor exp(iφ1) multiplies the product

Â1
2Â

3
2 in Eq. (13.12). A similar remark applies to the other phase change φ2. Since

the component beams are spatially separated when this phase change is applied,

this means that quantum states are inherently nonlocal in character.
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From such considerations, we conclude that physical space is not as simple as

it seems from a classical perspective. Perhaps a better way of saying this is that

the classical model of physical space as a three-dimensional continuum of spatial

position parameters is a good classical model but contextually incomplete as far

as quantum mechanics is concerned.

Probabilities versus Rates

As with all calculations in QDN, normalization to unity is an idealization that

avoids empirically significant but theoretically marginal considerations to do with

flux factors, particle production rates, and such like. Perhaps the best way to

deal with these issues is to recognize that what is calculated represents idealized

situations. The more empirically useful interpretation of stated probabilities is

that they are best case rates, that is, predicted relative average signal rates during

the time when incoming wave trains are long enough to intersect and interfere,

with no inefficiencies or extraneous losses in detection.
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