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ON KAEHLER IMMERSIONS

KOICHI OGIUE

1. Introduction. Let M be an (n + p)-dimensional Kaehler manifold of
constant holomorphic sectional curvature ¢. B. O’Neill {3] proved the following
result.

ProrosiTioN A. Let M be an n-dimensional complex submanifold immersed
in M. If p < 3n(n 4+ 1) and if the holomorphic sectional curvature of M with
respect to the induced Kaehler metric is constant, then M is totally geodesic.

He also gave the following example: There is a Kaehler imbedding of an
n-dimensional complex projective space of constant holomorphic sectional
curvature 3 into an {# 4+ $n(n + 1)}-dimensional complex projective space
of constant holomorphic sectional curvature 1. This shows that Proposition A
is the best possible.

The purpose of this paper is to prove the following theorems.

THEOREM 1. Let M be an n-dimensional complex submanifold immersed in an
(n + p)-dimensional Kaehler manifold M of constant holomorphic sectional
curvature T (T > 0). If p = n(n 4+ 1) and if the holomorphic sectionul curva-
ture of M with respect to the induced Kaehler metric is a constant c, then either
¢ = € (i.e., M 1is totally geodesic) or ¢ = 3C.

THEOREM 2. Let M be an n-dimensional complex submanifold immersed in an
(n + p)-dimensional Kaehler manifold M of constant holomorphic sectional
curvature ¢. If

(i) p 2 3nn + 1),
(ii) the holomorphic sectional curvature of M with respect to the induced
Kaehler metric is a constant ¢, and

(iii) the second fumdamental form of the immersion is parallel, then either
¢ =¢C (l.e., M us totally geodesic) or ¢ = 3T, the latter case arising only when
¢>0.

2. Preliminaries. Let J (respectively J) be the complex structure of M
(respectively M) and g (respectively 7) be the Kaehler metric of 3 (respec-
tively /). We denote by V (respectively V) the covariant differentiation with
respect to g (respectively g). Then the second fundamental form o of the
immersion is given by

o(X,Y) = VyV — ViV
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and it satisfies
c(X,JY) =c(JX,Y) = Jo(X, V).
Let R be the curvature tensor field of M. Then the equation of Gauss is
gRX, Y)Z, W) =g((X, W),a(Y,2)) —g((X, Z),a(Y, W))
+ itlg(X, W)g(Y, Z) — g(X, Z2)g(Y, W)
+ ¢UX, W)g(UY, Z) — g(UX, Z)g(JY, W)
+ 2¢(X, JY)g(UZ, W)}.

Let &1, ...,&, Jt1, ..., JE& be local fields of orthonormal vectors normal to
M. If we set, forz =1,...,p,

o(X,Y)=2gdX,Y) &+ Zg(Ai*X, Y) 'jgiv

then Ay, ..., A, A+ ..., Ay are local fields of symmetric linear trans-
formations. We can easily see that A = JA; and JA; = —A,J so that, in
particular, tr 4; = tr A+ = 0. The equation of Gauss can be written in terms
of A,'s as

gRX, V)Z, W) = L {gAd.X, W)gd.Y,Z) — g(4.X, Z)g(4.Y, W)
+ g(JA X, W)g(JAY,Z) — g(JAX,Z)g(JA, Y, W)}
+ elg (X, We(Y, Z2) — g(X, Z)g(Y, W)
+¢UX, W)Y, Z) — g(UX, Z)g(JY, W)
+ 2¢(X,IV)g(JZ, W)}.
Let S be the Ricci tensor of M. Then we have
(1) SX,Y)=3(n+1)gX,Y) —2¢(X 42X, 7).

We can see that the sectional curvature K of M determined by orthonormal
vectors X and Y is given by

2) KX, 7Y) =l 43X, IV + 2(e(X, X),o(V, V) — [[o(X, V)|]*

In particular, the holomorphic sectional curvature H of M determined by a
unit vector X is given by

3) HX) =7 = 2[[e(X, X)[]*
Let ||o|| be the length of the second fundamental form ¢ of the immersion so
that |[g]|2 = 2 > tr 4 2

Let V' be the covariant differentiation with respect to the connection in

(tangent bundle of M) ® (normal bundle) induced naturally from V. Then
we have

(VX/U)(Y: Z) = (vx : U(Yy Z))J' - U(VXYy Z) - U(Y, VXZ)r

where L denotes the normal component.
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We know that the second fundamental form ¢ satisfies a differential equation,
that is,

LeEmMMA 1 [2]. We have
4) Aol = ||Vo||? — 8tr(Z A42)2 — X (tr Aedp)? + 3(n + 2)E|o|[2,

where A denotes the Laplacian and a, 3 = 1,...,p, 1*, ..., p*.

3. Proof of theorems. First we note that ¢ < C.
Since H = ¢, we have from (1)

(4) 2A42=1(n+ 1)@ — o),

where I denotes the identity transformation. From (5) we have
(6) llo]|? = n(m + 1) — ¢).

Moreover, from (3) we have

@) llo (X, X)[|* = 3C€ — ¢)

for every unit vector X.
On the other hand, H = ¢ implies K(X, V) = K(X,JY) = %c provided
that X, Y and JY are orthonormal. Therefore from (2) we have

) lle (X, V)||* = 1@ — ¢)
for orthonormal X, Y and JY.
Let e1,...,¢e, Jei, ..., e, be local fields of orthonormal vectors on M.

Then we have the following

LEmMa 2 [3]. The n(n + 1) local fields of vectors (e, ), Jo(eq, )
(1 £a £b £ n) are orthogonal.

This, together with (7) and (8), implies that (e, €), Jo(ea, €)
(1 £ a =b = n) are linearly independent at each point provided ¢ # ¢.

If ¢ = ¢ then M is totally geodesic in M. From now on we may therefore
assume that ¢ # ¢.

Let &y, ..., &, J&1, ..., JE be local fields of orthonormal vectors normal
to M such that

9 13
‘E'I = c—c o'(eayea)’ forl éaén

5'=(_E—LCF"(‘3’“€’)’ forl<a<bs=n

andr =a+ 100 —a)2n+14a —b).
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Then we can see that the corresponding 4 ;'s are as follows:
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and A, = 0 for a > n(n + 1), where § = (3 — ¢))* and ¢ = (€ — o)%
Hence we have

9) S (trdgdg)? =23 (trd2)? =nn+ 1) — )2
Therefore, from (4), (5), (6) and (9), we have
[|[Vel|? = n(n 4+ 1) (n + 2) (€ — ) (5T — ¢,

from which our theorems follow immediately.
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4, Remark. We consider the special case # = p = 1. We have the following

LeMMA. Let M be a complex curve immersed in o 2-dimensional Kaehler
manifold M of constant holomorphic sectional curvature ¢. If o # 0 everywhere
on M, then

Alog [lof|* = 3@ — [|o][*)-

For the proof see Corollary 1.7 in [1]. As an immediate consequence of this
Lemma, we have the following result which is an improvement of Theorem 2
for the case n = p = 1.

PRrOPOSITION. Let M be a complex curve immersed in a 2-dimensional Kaehler
manifold M of constant holomorphic sectional curvature . If the curvature of M
with respect to the induced Kaehler metric is a constant c, then either ¢ = T (i.e.,
M 1is totally geodesic) or ¢ = 3C, the latter case arising only when T > 0.

The proof is clear from the fact that ||¢||? = 2 — ¢).

Added in proof. A generalization of this proposition is published in J. Math.
Soc. Japan 24 (1972), 518-526.
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