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Abstract

It is shown that a Tychonoff space X is pseudocompact if and only if for every metrizable
space Y, all uniformities on Y induce the same topology on the space of continuous functions
from X into Y. Also for certain pairs of spaces X and Y, a necessary and sufficient condition is
established in order that all uniformities on Y induce the same topology on the space of
continuous functions from X into Y.
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Let X and Y be topological spaces, and let Yx denote the space of
continuous functions from X into Y. Every uniformity on Y induces a
uniformity on Yx, which in turn generates a topology on Yx. Two compatible
uniformities on Y (that is, uniformities generating the same topology) may
not induce compatible uniformities on Yx. However, if X is compact, then
the induced uniformities on Yx will always be compatible, since they will all
generate the compact-open topology. In the case that Y is metrizable, this
compactness of X can be weakened to X being pseudocompact, that is, a
Tychonoff space such that every real-valued continuous function on it is
bounded. So that when X is pseudocompact and Y is metrizable, then all
compatible uniformities on Y induce the same topology on Yx, though this
need not be the compact-open topology.

It will be convenient to compare the topology of uniform convergence
with the open-cover topology. This topology was first introduced indepen-
dently by Poppe (1966) and Irudayanathan (1967), and is also discussed by
McCoy (1977). The following two theorems then summarize the propositions
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in this paper. Here R denotes the space of real numbers with the usual
topology.

THEOREM 1. The following are equivalent for a Tychonojf space X.
1. X is pseudocompact.
2. For every metrizable space Y, all compatible uniformities on Y induce

the open-cover topology on Yx.
3. For every metrizable space Y, all compatible uniformities on Y induce

the same topology on Yx.
4. All compatible uniformities on R induce the open -cover topology on R x.
5. All compatible uniformities on R induce the same topology on Rx.
6. There exists a metrizable space Y containing a nontrivial path such that

all compatible uniformities on Y induce the open-cover topology on Yx.
7. There exists a space Y containing a nontrivial path and having a

compatible uniformity with a countable base which induces the open-cover
topology on Yx.

THEOREM 2. Let X be a Tychonoff space, and let Y be a pathwise
connected and locally pathwise connected metric space. Then the following are
equivalent.

1. All compatible uniformities on Y induce the same topology on Yx.
2. All compatible metrics on Yinduce the same topology on Yx.
3. Either X or Y is pseudocompact.

For the remainder of the paper, X and Y will be Tychonoff spaces. The
notation M( Y) will be used to denote the set of all compatible uniformities on
Y. For each ju GM(Y) , define a function from n into the power set of
Yx x Yx as follows. For every U G fi, let

U = {(f,g)e Yxx Yx\(j(x),g(x))<EU for every i£X) .

It is well-known and straightforward to prove that {U | U G fi} is a base for a
uniformity on Yx. Let Yx denote the space Yx with the topology generated
by this uniformity. Open sets in Yx are those sets W such that for every
few, there exists a U G /x such that U[f]CW, where U[f] =
{gGYx|( / ,g)Gf7}.

The open-cover topology on Yx, which was mentioned above, can be
defined as follows. Let F(Y) denote the set of all open covers of Y, and for
each V G T(Y) and each / G Yx, let

Y(j) = {g G y x [for every x £ X , there exists a V E T

such that (J(x), g(x))G Vx V}.
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The open-cover topology is then generated by the subbase {Y(j)\Y G T( Y)
and / G Yx}. Denote this space by Yx. In general, Yx need not be equal to
Yx for any fi G M(Y), even when Y is metrizable. To see this, let X = R, let
Y be the closed unit interval in R, and apply Proposition 3 below.

For notational convenience, the notation Y, § Y2, for topological spaces
Y] and Y2, will mean that Y, and Y2 have the same underlying set and that the
topology of Y, is contained in the topology of Y2.

The open-cover topology is related to the m -topology which has been
studied by Noble (1969). This topology has as its subbasic open sets, sets of
the form {/G Yx | / C G}, where G is a cozero subset of X x Y (here / is
identified with its graph). If Y£ denotes Yx with the m -topology, if X is
normal and countably paracompact and if Y is metrizable then Yx S Y*.. If in
addition, Y is nondiscrete, then Yx = Yx if and only if X is pseudocompact
(these facts have been established by Eklund (1977)). So Theorem 1 is also
true using the m -topology instead of the open-cover topology whenever X is
normal and countably paracompact. Noble showed that if Y is a nondiscrete
locally compact topological group, then Yx = Yx for every fi G M(Y) if and
only if X is pseudocompact. It now follows from Theorem 1 that Noble's
result can be extended to include all nondiscrete spaces Y which are
metrizable whenever X is normal and countably paracompact.

When X is pseudocompact and Y is metrizable, then the topology of
uniform convergence and the open-cover topology are the same.

PROPOSITION 1. Let Y be a metrizable space. If X is pseudocompact, then
Yx = Yx for every fi G M(Y).

PROOF. Let W be open in Yx, and let / G W. Then there exists a ( / £ f i
such that U[f] C W. Now for every x £ X , let Vx be an open neighborhood of
f(x) such that Vx x Vx C U. Let V = {V, \x 6 X } U{Y\/(X)}, which is in
T(Y). It is clear that Y(f)C U[f], so that W is open in Yx

Let T e r ( V ) , let / G Y X , and let g G Y(f). Since pseudocompact-
ness is preserved by continuous functions, then (f x g)(X) is a pseudocom-
pact subset of Y y. Y. Now a pseudocompact subset of a metrizable
space is compact, so that (/x g)(X) is compact. Since g G T"(/), for every
xEX, there exists a VXGY such that (/(x), g(x))G Vxx V,. Also for each
x G X, there exists a [ / , £ / j such that Ux[g(x)] C V,. Let L^ G /LA such that
U*°U*C Ux. Then the open cover {VxxU*x[g(x)]\x EX} of ( /x g ) (X) in
Yx Y has a finite subcover {V^xI/JigOc,)], •• •, V^x[/*n[g(xn)]}. Let t/ =
[/*, n • • • n £/*„. To see that U[g]C Y(f), let h G £/[g] and let i £ X . Then
there is a k such that (f(x), g(x))E VXkxU*k[g(xk)]. Therefore
(g(x),h(x))<=UCU*Xk and (g(xk), g(x))E U*k, so that (g (Xk), h (x)) G

https://doi.org/10.1017/S1446788700011745 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011745


254 R. A. McCoy [4]

U*Xk o U*k C UXk. Hence h(x) G [/*„[g(xt)] C VXk, and thus both /i(x) and /(x)
are in VXk, which is in V.

The metrizability of Y in Proposition 1 cannot be weakened to paracom-
pactness nor changed to compactness, as the following example illustrates.
Let [0, ft] be the ordinals less than or equal to the first uncountable ordinal
with the order topology. Let X = [0, ft]\{ft}, and let Y = [0, ft] x {0,1}, where
{0,1} has the discrete topology. Now X is pseudo-compact and Y is a compact
Hausdorff space and hence paracompact. Since Y is compact, it has only one
compatible uniformity; call it /i. Let v be the compatible uniformity on [0, ft].
For each VE.v and for i = 0 and 1, let V, denote the set {((y, i), (z, j))G
Yx Y|(y,z)G V}. Then fi is generated by the base {V0U Vx\ VG v}.

To see that Y*/ y*, first let £ be an order preserving bijection from X
onto the limit ordinals in X. For every x & X, let Wx = (x, |(x)) x {0,1}, and
define V to be the set {Wx\x G X} U{[0,ft] x {0}, [0,ft] x {I}}, which is an
open cover of Y. Also for i = 0 and 1, define ft G Yx by /• (x) = (x, i) for every
x G X. Clearly /, G Y(f0). Let U = Vo U Vu for V G v, and let g G Yx be such
that fi G U[g]. The object now will be to establish that U[g] £ V(f0). Let TT0

and TTI be the projections of Y onto [0, ft] x {0} and [0, ft] x {1}, respectively.
Since TTO/I(X) = 0 , and by the nature of U, it can be seen that 7rog(X) = 0 .
Also since U is a neighborhood of the diagonal in Y x Y, there is some x0 G X
such that ([xo,ft] x {1}) x ([jc«,ft] x {1}) c U.

There are two cases to consider. First suppose that for every non-limit
ordinal x in X greater than x0, trlg{x) < x0. Then g£ V(f0) for the following
reason. Let z G X be such that g(£(xo)+ l ) e Wz- Since Kxo)+ 1 >Jt0, then
7Tig(£(xo)+ l)<x<>. Also z < 7Tig(£(jCo)+ 1), so that z < x0. Since £ is order
preserving, then £(z)<£(x0). Therefore /o(£(xo)+ 1)£ W« so that g(£(xo) +
1) and /o(£(xo)+ 1) cannot both be in the same member of V; and hence

On the other hand suppose there exists a non-limit ordinal x' in X
greater than x0 such that iTig(x')^ x0. Define h : X—» Y by h(x) = g(x) if
x ̂  x', and h (x') = (ft, 1). Since x' is a non-limit ordinal, then h is continuous.
To see that h G U[g], note that g(x')G [xo,ft] x{l} and h(x')G [xo,ft] x{l},
so that (g(x'),/i(x'))G U. Finally, to see that h£Y(f0), note that h(x') =
(ft, 1) while /0(x') = (x',0); and these are not contained in the same
member of V.

Proposition 1 has the following converse involving real-valued functions.
This is well-known, but its proof is included for the sake of completeness.

PROPOSITION 2. If R*= R* for every fi and v in M(R), then X is
pseudocompact.
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PROOF. Suppose X is not pseudocompact. Then there exists an / E R x

and a sequence {*„} in X such that /(*„)§ n for every n. Let m be the
maximum uniformity on R—that is, the neighborhoods of the diagonal (since
R is paracompact). For each n, let Un - {(y,z)£ R x R | |y - z | < 1/n}, and
let n be the uniformity on R generated by the base {£/„}. Let

V = {(y, z ) E R x . R | | y - z | < 1/(| y | + | z | + 1)},

which is an element of m.
To see that V[f] is not open in Rx, let n and g E. Rx be arbitrary. If

g £ V[/], then define h G Rx by ft(x) = g(x)+l/2n; so that ft £ Un[g].
Now |g(x4 n)-/(x4 n) |<l/( |g(x4 n) | + |/(x4n)| + l)<l/4n, so that
/(x4 n)- l /4n<g(x4 n) . But then f(x4n)+l/4n <h(xin), so that
\h(x4n)-f(x4n)\>l/4n. Also l/(|/i(*4n)| + |/(x4n)| + l)<l/4n, so that
(h(x4n),f(xin))£ V. Therefore h£ V[f], so that Un[g] £ V[f]. Since n and /
were arbitrary, then V[f] is not open in Rx, and thus Rx < Rx.

The full converse of Proposition 1 is true if we require Y to contain a
nontrivial path.

PROPOSITION 3. Let Y be a metrizable space containing a nontrivial path.
If Yx= Yx for every fi G M(Y), then X is pseudocompact.

PROOF. Let p be a compatible metric on Y, and let \i be the uniformity
on y generated by the sets of the form {(y, z) £ Y x Y | p (y, z ) < 1/n}. Since
Y contains a nontrivial path, there is a homeomorphism 17 from the interval
[0,2] into Y. Suppose that X is not pseudocompact. Then there is a
continuous real-valued function a on X and a sequence {xn} in X such that
{a(xn)} are distinct points with a(xn)>n for each n. Let /3 be an order
preserving homeomorphism from R onto the interval (0,1), and let / =
TJ °/3 °a. Let y0 = 17(1), let y = 17(2), and for each n, let yn = f{xn). Choose an
e >0 such that B(y,e)D B(17([0,1]), e) = 0 , where these are the e-
neighborhoods of y and 17 ([0,1]), respectively. Let {Vn} be a pairwise disjoint
sequence of open subsets of Y such that yn G Vn and VnDB(y,e) = 0 for
each n. Let V = Y/{yn|n = 0,1, •••}, and define Y = {VnUB(y,e/n)\n =
1,2, •• •}U{V,B(y0, e)}. Now it can be seen that the constant function
cy £T( / ) . Also it can be shown that if S >0 and0<p(y,z)<min{e,5}, then
cz € V(f)- From this it follows that Y(f) is not open in Yx.

The hypothesis that Y contains a nontrivial path in Proposition 3 cannot
be omitted. To see this, consider QR, where Q is the space of rational
numbers. Then (?£ = Q£ for every /u. £ M(Q), but R is not pseudocompact.
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PROPOSITION 4. Let Y be a pathwise connected and locally pathwise
connected metric space. If all compatible metrics on Y induce the same topology
on Yx, then either X or Y is pseudocompact.

PROOF. Suppose that neither X nor Y is pseudocompact. Then there
exists an unbounded continuous function <p from X into the interval [0, °°).
Let {xn} be a sequence in X such that n < <p(xn)< cp(xn+i) for each n. Also for
each n, let sn = <p(xn); let tn, un, and vn be elements of [0, °°) such that
un < sn < tn < vn < un+u and let /„ and /„ be the closed intervals [«„, vn) and
[vn, Mn+i], respectively. Since Y is not countably compact, there exists a
sequence {Vn} of nonempty open subsets of Y which is a discrete collection in
Y—that is, every element of Y has a neighborhood intersecting at most one
Vn. For each n, let ipn be a homeomorphism from /„ into Vn, and let rjn be a
homeomorphism from /„ into Y such that rjn(vn) = ijjn(vn) and T]n(un+,) =
il>n+l(un+l). Define fe Yx by f(x)= #.<t>(x) if x e <?"'(/„), and /(*)= 7,n<P(x)
if x G <p~\Jn). For each n, let An = iMJ»)> let yn = i^n(sn), and let zn = (/>„(/„).
Finally, let A = U ^=i An, which is a closed subset of Y.

Define two metrics, p, and p2, on Y as follows. First let p be any given
compatible metric on Y which is bounded by 1. Now let y, z GA; say y G Am

and z £ A , If m ^ n, then take pi(y,z)= 1 and p2(y,z)= 1. If m = n, define
p,(y,2)=(l/n)p(y,z) and p2(y,z)= min{l,p(y,z)/p(yn,zn)}. Then p, and p2

are metrics on A compatible with the subspace topology on A. Since A is
closed in Y, p, and p2 can be extended to compatible metrics on Y (see for
example Bing (1947)).

To see that Bpi(f,8) is not contained in BK{f,l) for any 8, let 5 >0 be
arbitrary. Choose integer n greater than 1/5. Now let a be a homeomorphism
from /„ into /„ which takes sn to tn and is fixed on «„ and vn. Define g E Yx

by g(x) = f(x) if x e<p~'(Im) for m/n, and g(x)= ilina<p(x) if x G <?"'(/„).
Since / and g differ only on An, and since the diameter of An with respect to
Pi is less than 1/n, then g €= Bp,(f,8). However, f(xn) = yn and g(xn) = zn,
while p2(yn,zn)= 1. Therefore, g£Bn(j,\\ so that Bpl(f,8)£Bn(f,l)- From
this it follows that the topologies on Yx induced by p, and p2 are different.
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