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It is shown that a ring R is a rc-regular ring with no infinite trivial subring if and only if R is a subdirect sum
of a strongly regular ring and a finite ring. Some other characterizations of such a ring are given. Similar
result is proved for a periodic ring. As a corollary, it is shown that every 5-ring is a subdirect sum of a Unite
ring and a commutative ring. This was conjectured by Putcha and Yaqub.
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In [7] Laffey proved that if R is an infinite periodic ring which is orthogonally finite
and with all trivial subrings finite, then R has a commutative ideal / such that R/I is
finite. Recently Armendariz [1] showed that such a ring is described as follows:
R = F(BS, where F is a finite ring and S is a finite direct sum of periodic fields. He also
gave an analogue result for strongly rc-regular rings. More recently, in [6] we removed
the assumption of orthogonal finiteness, and proved that a 7t-regular ring (resp. periodic
ring) R with no infinite trivial subring has a strongly regular ideal (resp. commutative
ideal) M such that R/M is finite. In this paper, we will show that a ring R is a 7r-regular
ring (resp. periodic ring) with no infinite trivial subring if and only if R is a subdirect
sum of a strongly regular ring (resp. ./-ring) and a finite ring. We will also provide
several characterizations of 7i-regular rings (resp. periodic rings) with no infinite trivial
subring. As a result, we will solve the open problem of Putcha and Yaqub in [8]
affirmatively.

The Jacobson radical of a ring R will be denoted by J(R), and the prime radical by
P(R). The ring of integers will be denoted by Z.

A ring R is called Tt-regular if for each x in R there exists a positive integer n
(depending on x) and an element y of R such that x" = xnyx". A 7i-regular ring R for
which the n in the above can be taken to be 1 for all x is called von Neumann regular.
A strongly regular ring is a von Neumann regular ring with no nonzero nilpotent
element. By a trivial subring of a ring R we mean a subring S of R with S2=0.

Theorem 1. The following conditions are equivalent for a ring R.

(1) R is a n-regular ring with no infinite trivial subring.
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(2) R has a strongly regular ideal M such that R/M is a finite ring.

(5) R is a subdirect sum of a strongly regular ring and a finite ring.

(4) R has a finite ideal I such that R/I is strongly regular.

(5) P(R) is finite and R/P(R) is the direct sum of a strongly regular ring and a finite
ring.

(6) R is a n-regular ring with only finitely many nilpotent elements.

(7) There exists a finite subset S of R such that for each xeR, there is aeR such that
ax = xa and x — x2aeS.

Proof. (1)=>(2). This was proved in [6].
(2)=>(3). Take an ideal I of R which is maximal with respect to the property that

InM = 0. We claim that R/I has no nonzero nilpotent element. Let a be an element of
R such that a2 el and let meM. Then we see (ama)2 e M r\ I=0. Since amaeM and
since M has no nonzero nilpotent element, we get ama=0. Then we obtain ma = 0,
because maeM and (ma)2 = 0. Thus we get Ma=O. Similarly we obtain aM = 0. Now let
A = M n(Ra + aR + Za + I). Then we see that A2<zM(Ra+aR + Za + I)cM nl = 0.
Since AcM, we get A=0. By the choice of /, we conclude that as I. This proves that
R/I has no nonzero nilpotent element. Let b be an arbitrary element of R. Since R/M is
a finite ring, it is rc-regular, and so there exists a positive integer n and xeR such that
bn — bnxbneM. Since M is strongly regular, there exists yeM such that b" — b"xb'' =
(b"-b''xb'')y(bn—b''xb''). Then it holds that bn = b"zbn, where z = x + y-xbny-ybnx +
xb"yb"x. Therefore R, and hence R/I, is rc-regular. As shown above, R/I has no nonzero
nilpotent element, and hence R/I is strongly regular. Thus R is a subdirect sum of the
strongly regular ring R/I and the finite ring R/M.

(3)=>(4). By hypothesis, there exist ideals / and M with 7 n M = 0 such that R/I is
strongly regular and R/M is finite. Then I can be embedded in the finite ring R/M, and
so / is finite.

(4)=>(5). Since every element of P(R) is nilpotent and since R/I has no nonzero
nilpotent element, we get P(7?)<=7. Hence P(R) is finite. Let R' = R/P(R), and I' = I/P(R).
We claim that 7' is a semisimple ring. Suppose, to the contrary, that J(7')#0. Since 7' is
a finite ring, J(I') is nilpotent. Hence 7'J(7') is a nilpotent left ideal of 7?'. Since P(R') = 0,
we get 7'J(7') = 0. Thus {R'J(r))2 = R'J(r)R'J(I')<=I'J(r) = 0, and hence .7(7') = 0. Thus
the finite semisimple ring 7' has an identity e (see e.g. [5, Corollary 2, p. 30]). Since 7' is
an ideal of 7?', we can easily see that e is a central idempotent of R'. Hence we have the
decomposition R' = I'@S, where S = {r—re\reR'}. Since S is isomorphic to 7?/7, S is
strongly regular.

(5)=>(6). By hypothesis 7? has a finite ideal 7 (=>P(7?)) such that 7*/7 is strongly
regular. Since 7?/7 has no nilpotent element, all nilpotent elements of R are contained in
the finite ideal 7. Hence those forms a finite set. To prove the 7t-regularity of R, take an
arbitrary prime ideal of 7?. Then, by hypothesis, R/P is either a division ring or a finite
simple ring. Obviously 7? is of bounded index. Therefore, by Corollary 2.2 of [4], we
conclude that 7? is Tt-regular.
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(6)=*(7). Since R is of bounded index, R is strongly n-regular by Theorem 5 of [2].
Let S be the set of all nilpotent elements of R and let x be any element of R. By
Theorem 3 and Lemma 4 of [2] there exists aeR such that xa = ax and x—x2aeS.

(7)=*(1). It is easy to see that all trivial subrings of R are contained in S. Hence R has
no infinite trivial subring. To prove the ^-regularity of R, take an arbitrary element x of
R. By hypothesis there exists aleR such that alx = xal and x — x2a1eS. Let us set
b1 = x—x2a1. Inductively, if bn-leS is defined, then we obtain aneR such that
anb

2-l=b2-1an and b2-l-b$-1aneS, and then we define bn = b2-1—b*.1an. Since S is
finite, there are positive integers k<m such that bk = bm. Then we get y, zsR such
that x2lt"1=x2I"' + 1y=z^2''"1 + 1- If we set n = sk~l, a = y", and b=z", then we have
xn = xZna = bx2n. Hence we obtain x2n = x2nabx2n. This proves that R is 7r-regular.

Since the condition (7) of Theorem 1 is inherited by every homomorphic image of R,
we have the following:

Corollary 1. / / R is a n-regular ring with no infinite trivial subring, then so is every
homomorphic image of R.

The following example shows that, in the condition (3) of Theorem 1, "subdirect sum"
can not be replaced by "direct sum",

Example. Let K be a finite field, / an infinite set, and let K' denote the direct
product of the /-copies of K. Take a maximal ideal M of Kl containing the direct sum
Kin of the /-copies of K. Let n be the order of K. Then the field K'/M satisfies the
identity X"-X=0. Hence we conclude that K'/M is isomorphic to the field K. Let R
be the additive abelian group K' ® (K'/M) and define multiplication in R by (a, r)
(b, s) = (ab, as + rb). Then R is a ring satisfying the equivalent conditions of Theorem 1.
In fact, (K'/M)* = {(0,r)|reK'/M} is a finite ideal of R, and R/(K'/M)*(^K') is
strongly regular, and hence R satisfies the condition (4) of Theorem 1. It is easy to see
that R cannot be represented as the direct sum of a strongly regular ring and a finite
ring.

A ring R is said to be periodic if for each x e R, there exist distinct positive integers m,
n for which xm=x". A ring R is called a ./-ring if for each xeR, there exists an integer
n > 1 such that x = x". We can easily see that a ring R is a J-ring if and only if R is a
periodic ring with no nonzero nilpotent element. Finally, following [8], a ring R is
called a <5-ring if R has a finite subset S such that for each xeR, there exists a
polynomial / (X)eZ[X] such that x-x2f(x)eS.

Theorem 2. The following conditions are equivalent for a ring R.

(1) R is a periodic ring with no infinite trivial subring.

(2) R has a J-ideal M such that R/M is a finite ring.

(3) R is a subdirect sum of a J-ring and a finite ring.

(4) R has a finite ideal I such that R/I is a J-ring.
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(5) P(R) is finite and R/P(R) is the direct sum of a strongly regular ring and a finite
semisimple ring.

(6) R is a periodic ring with only finitely many nilpotent elements.

(7) R is a 5-ring.

In preparation for the proof of Theorem 2, we state two lemmas the first of which is
Proposition 2 of [3].

Lemma 1 ([3]). Let R be a ring. Suppose that for each xeR, there exists a positive
integer n and a polynomial p(X)eZ[X'} for which x" = xn+l p(x). Then R is periodic.

Lemma 2. Let I be an ideal of a ring R. Then R is periodic if and only if both I and
R/I are periodic.

Proof. It suffices to prove the " i f part. Let x be an arbitrary element of R. Since R/I
is periodic, there exist positive integers n<m such that x"—xmel. Since / is periodic,
there exist positive integers k<h such that (x" — xm)k=(x" — xm)h. This equation can be
rewritten in the form xnk = xak+1p(x) for some p (X)eZ[X] . Hence, by Lemma 1, R is
periodic.

Now we can prove Theorem 2. The proof proceeds parallel to the proof of Theorem
1.

Proof of Theorem 2. (1)=>(2). This was shown in the proof of Corollary 1 of [6].
(2)=>(3). As shown in the proof of (2)=>(3) of Theorem 1, there exists an ideal I of R

with / n M = 0 such that R/I has no nonzero nilpotent element. By virtue of Lemma 2,
we can easily see that R/I is a J-ring. Therefore R is a subdirect sum of the J-ring R/I
and the finite ring R/M.

(3)=>(4) and (4)=>(5) can be shown by the similar way as in the corresponding parts of
the proof of Theorem 1.

(5)=>(6). Using Lemma 2, we can prove that R is periodic. By the same argument as
in the proof of (5)=>(6) of Theorem 1, we also see that R has only finitely many
nilpotent elements.

(6)=>(7). Let N be the set of all nilpotent elements of R and let x be an arbitrary
element of R. Since R is periodic, there exist positive integers m and n such that
xm_xm+n jfen w e h a v e that x - x " + 1 e N . By hypothesis, N is finite, and hence R is a
5-ring.

(7)=>(1). It was proved in Lemma 2 of [8] that R satisfies the hypothesis of Lemma 1.
Hence R is periodic. Since every subring of a <5-ring is a (5-ring, R has no infinite trivial
subring by Theorem 1 of [8].

The following corollary is the answer to the question of Putcha and Yaqub [8, p. 20].

Corollary 2. Every S-ring is a subdirect sum of a finite ring and a commutative ring.
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Proof. A well known theorem of Jacobson says that every J-ring is commutative (see
[5, Theorem 3.1.2]). Hence our assertion follows from the equivalence of the conditions
(3) and (7) of Theorem 2.
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