
GENERALIZATION OF HOLDER'S THEOREM TO 
ORDERED MODULES 

T. M. VISWANATHAN 

Holder's theorem on archimedean groups states: 

An ordered {abelian) group G is order isomorphic to an ordered subgroup of the 
ordered group R of real numbers if and only if it is archimedean. 

We comprehend this theorem in the following setting: G is a Z-module and 
R is the completion with respect to the open interval topology of the ordered 
field Q] Q itself is the ordered quotient field of the ordered domain Z. 

Rephrasing the situation, we raise the following question: We start with a 
fully ordered domain A, let K be its ordered quotient field. We endow K with 
the open interval topology and consider K, the topological completion of K. 
Is it possible to impose a compatible order structure on K and if this can be 
done, when can we say that an ordered A -module M is order isomorphic to an 
ordered A -submodule of K? In Theorem 3.1, we obtain a set of necessary and 
sufficient conditions for this isomorphism to hold. 

In the case of an ordered abelian group G, there is another condition which 
is equivalent to being archimedean. G is archimedean if and only if it is 
o-simple, i.e., it has no non-trivial convex subgroup. We show by means of 
two examples (4.3, 4.4) that this situation does not generalize in the same way 
to o-simple modules. There exist fully ordered o-simple A -modules which are 
not order isomorphic to ordered A -submodules of K. However, when A is 
archimedean, all these concepts coincide (Theorem 4.2). 

1. The completion field associated with a fully ordered domain. Let 
A be a fully ordered domain and K its ordered quotient field. Let K be given 
the open interval topology, that is, a fundamental system of neighbourhoods of 
the origin 0, is taken to be the family of open intervals ( — a, a) with a > 0 in 
K. It is natural to consider the topological completion of K, when it exists. In 
what follows, our results will hold good for any fully ordered field. We have 
the following well-known proposition. 

PROPOSITION 1.1. With the open interval topology, the additive group (K, + ) 
of a fully ordered field K is a Hausdorff topological group. 
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PROPOSITION 1.2. With the open interval topology, every fully ordered field is 
a Hausdorff topological field. 

Proof. First we prove that multiplication is continuous. Let x, y G K and 
let a given neighbourhood of xy contain the open interval xy + ( — a, a) with 
a > 0. We first prove that there exist b, c > 0 in K such that \x\b < \a, 
\y\c < \a, andôc < \a. lix = 0, choose 6 > 0 arbitrarily. If x ^ 0, |x|a/4|x| = 
\a < \a. Thus, b — a/4\x\ will suffice. Similarly, there exists c > 0 such that 
\y\c < \a. Suppose that be ^ \a\ then by the same argument, there exists 
d > 0 such that bd < \a. Now d < c, if not, c ^ d and be S bd < \a, a 
contradiction. For such an element d, \y\d < \y\c < \a and bd < \a. 

We claim that 

{x + ( — c, c))\y + ( — 6, b)} Ç^xy + (-a, a). 

In fact, if Bi G ( —c, c) and 5 2 € ( — b, 6), then 

| 5 ^ + xB2 + BXB2\ ^ \Biy\ + \xB2\ + \B,B2\ 

< c\y\ + \x\b + cb 

<\a + \a + \a 

= a. 

Hence, B\y + xB2 + BiB2 Ç ( —a, a) so that (x + Bi)(y + B2) G xy 
+ { — a, a), proving our claim. 

Let <t>: K' —> K' be the inverse map x —* x - 1 . A neighbourhood of x~l may 
be taken to be (/, t'), where either 0 < t < x"1 < t' or / < x~l < t' < 0. In 
either case, ( 1 / ^ , 1/t) is a neighbourhood of x and <t>((l/t', 1/0) £ (^ ^'). 
Thus 0 is continuous. By Proposition 1.1, K is a Hausdorff topological field. 

Let K be the uniform completion of the topological field K. As K is Haus­
dorff, it is homeomorphic to a dense subspace of K. Thus we may assume that 
K is embedded in K. We wish to show that K is a Hausdorff topological field. 
For this we observe that the completion of a field, though a ring, need not, in 
general, be a field. The following result from (3) furnishes a criteria to test 
whether the completion K is a topological field or not. 

PROPOSITION 1.3. Let K be a Hausdorff topological field and let K be the 
topological completion of K. For K to be a topological field, it is necessary and 
sufficient that: 

(*) under the inverse map x —» x~l of K' onto K' the image of every Cauchy 
filter in the additive uniform structure of K, for which 0 is not a cluster point, is 
again a Cauchy filter for this additive structure. 

Remark 1.4. If 0 is not a cluster point of a Cauchy filter g (in the uniform 
structure of K), there exists F G g which is disjoint from an open interval 
( — a, a) of 0. Thus, by intersecting each member of a basis 33 of % with F, we 
obtain a basis 33' of $. The image of 33' under the inverse map makes sense. 
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The filter g' generated by this image of 33' is called the image of % under the 
inverse map. 

PROPOSITION 1.5. If K is a fully ordered field, then the condition (*) is 
satisfied for the open interval topology of K. Thus, the topological completion K of 
K with respect to the open interval topology is a Hausdorff topological field. 

Proof. That K is Hausdorff would follow from the fact that K is Hausdorff. 
Now, let % be a Cauchy filter in the additive uniform structure of K such that 
0 is not a cluster point. Let F Ç g, ( — a, a), 33' Ç g, and %' be as in the remark 
above. Let ( — c, c) be an arbitrary neighbourhood of the origin with c > 0. 
Choose b > 0 with 0 < b < a2c (for e.g., b = \a2c). Since g is a Cauchy filter, 
there exists G Ç 33' so that |—x + g| < fr for all x, g £ G. Furthermore, 
|g| > a for every g Ç G. Hence 

- g + X 
< |*| 1*1 <a2<C' xg 

Now 1/x and 1/g are elements of (G) - 1 G $'. Thus, g' contains "small sets". 
Therefore, g ; is a Cauchy filter. 

COROLLARY 1.6. The multiplicative structure over K' is a structure of a 
complete space. 

Proof. K is a (commutative) topological field and the additive uniform 
structure of K is that of a complete, Hausdorff space. The corollary is now a 
consequence of a result of (3, p. 85). 

Definition 1.7. Let A be a fully ordered integral domain. Then the field K 
obtained above is called the completion field associated with A. 

2. The extension of the order to the completion field K. Throughout 
the remainder of this paper, A will denote a fully ordered domain, K its 
ordered quotient field, and K the completion field associated with A. 

We now extend the order of K to K endowing K with the structure of a fully 
ordered field. We recall that K is the space of minimal Cauchy filters of K. If 
% is one such minimal Cauchy filter, call % positive if and only if 

(a) there exists F Ç % consisting entirely of positive elements of K. 
We now have the following theorem. 

THEOREM 2.1. With the above definition, K is a fully ordered field and the 
open interval topology of K is equivalent to the topology of the completion. 

Proof. That K is an ordered field is shown in three steps: (1) K is an ordered 
abelian group; (2) K is fully ordered; (3) K is an ordered ring. In (2), one 
uses the fact that if the minimal filter % is not the neighbourhood system at 
the origin, then 0 is not a cluster point of %. The easy proofs are left to the 
reader. 
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For the second conclusion, we recall that in the topology of the completion, 
a basis at a point % consists of the family {%a: a > 0 in K\, where %a is the set 
of filters sharing with % a small set of order a. Now, given %, there exists 
(a, b) G ^ with a < % < b and (a, b) can be made as small as we please. This 
proves that a basis in K is given by the open intervals (a, b) in K. On the 
other hand, given an open interval in K, there is an infinité number of elements 
of K belonging to this interval. A small enough sub-interval of K gives rise to 
a set $x; thus, the open interval topology of K is weaker than the completion 
topology and this completes the proof. 

Definition 2.2. The field K, endowed with the structure of a fully ordered 
field as in Theorem 2.1, is called the ordered completion field associated with the 
fully ordered domain A. 

3. A structure theorem for fully ordered modules. We are now 
ready to generalize Holder's theorem on archimedean groups. We have the 
following theorem. 

THEOREM 3.1. Let A be a fully ordered domain and K the ordered completion 
field associated with A. A non-zero, fully ordered A-module M is order isomorphic 
to an ordered A-submodule of K if and only if the following two conditions are 
satisfied: 

(i) M is a torsion-free A-module; 
(ii) There exists an element mo ^ 0 in M such that whenever m, n G M with 

m < n, there exist a, b in A with b > 0 such that bm ^ am0 < bn. 

Proof. We will prove the sufficiency first. Fix an element ra0 satisfying 
condition (ii). We may assume that m0 > 0. Given m G M, let n G M be an 
arbitrary element such that —m<n\ then there exists — a, b £ A, b > 0 
such that b( — m) ^ ( — a)m0 < bn; hence am0 ^ bm. Similarly, if n G M is 
such that m < n, there exists ar, b' G A, V > 0, such that b'm ^ a'm0 < b'n. 
Thus there exists 

(**) a quadruple (a, b, a', V) G A with b, b' > 0 so that am0 ^ bm, and 
b'm ^ a'm§. 

Consider all possible quadruples (a, b, a', b') satisfying the condition (**). 
We claim that in the ordered quotient field K of A, a/b S o!/b1 for such a 
quadruple {a, b, a', b'). If not, a/b > ar/bf. Thus, bar < Va. From am0 ^ bm 
and b'm S a'm0, we have that bb'm ^ ba'mo < b'am0 ^ b'bm, a contradiction. 
The inequality in the middle is strict since M is a torsion-free A -module. 

In K, the interval [a/b, a'/b'] = {x G K, a/b S oc S a'/b'} is closed in the 
topology of K. Let 

a a' 
where (a, b, af, V) is a quadruple in A satisfying (**) < 

Our first claim is: $8 is a base of a filter % in K. Clearly, 33 is not empty and 
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the empty set does not belong to 23, as a closed interval contains at least one 
point. Let 

a a ai ai 

M ' &i7J e». 
Then a/b ^ a\ /b\ \ if not, 

a) a ai and a,\b < 

From am0 ^ bm and bi'm S ai mo we have that ai /wo ^ ôi'&m ^ baim0. But 
from (1), ai'bmo < abi'mo (strict inequality, since M is torsion-free), a 
contradiction. Similarly, a\/b\ ^ a'/&'. Thus, the intersection of the two 
closed intervals is the closed interval [c, d], where 

. - ai\ c = max) - , — t 
, . Sa! a! 

and y = mirn 77 , 7-7 

and, evidently, the quadruple which determines c and d satisfies (**). 
Secondly, we claim that 93 contains arbitrarily small sets in the uniform 

structure of K. Let a/b > 0 be given in K and assume that a, b > 0. Hence, 
bm < bm + è a wo. By condition (ii) of the hypothesis, there exist X, JJ, in A, 
X > 0, such that 

(2) pbm ^ Xwo < ju(6m + \am§). 

Similarly, there exist X', \x in ^4, / / > 0, with 

(3) ix'(bm — ^am0) ^ X'ra0 < \x'bm. 

Rewriting (2) and (3) we have that 

(2') fibm ^ Xm0 < M^W + At(ia)m0, 

(3') Mr6w — ju'(|fl)wo ^ X'wo < ju'frm. 

Put s' = ju6, r' = X, r = X', and 5 = //&. We have that s, s' > 0 and the 
quadruple (r, s, r', 5') satisfies the condition (**). 

But 

(2") 

(3") 

= - - K- = -(- - K) 
fxb \xb b\fjL fi, / 

Xmo — fibm < At(fa)w0, 

n'bm — \'mo ^ At/(|a)m0. 

Multiply (2") by // , (3") by /x and adding we obtain (X// — X//z)m0 

< 2/x//(|a)ra0. This implies that (Xjit' — X'/i) < /x//a. Therefore, 

\(\ __ v \ a 
b\jjL IJL'J b ' 
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Thus, 

°<-- r <!-
S S 0 

Now, for any x, y G [r/s, r'/s'] we have that \x — y\ < rf/s' — r/s < a/b. 
Thus, the closed interval [r/s, r'/s'] belongs to 93 and is a small set of order 
Va/b in K, where Vu/b is an entourage determined by ( — a/b, a/b). Therefore, 
93', the filter generated by 93, is a Cauchy filter. Let % be the unique minimal 
Cauchy filter contained in 93'. 

Define 6: M -» K as follows: 
For an arbitrary m £ M, define 6 (m) = g a s above. Thus 0 is a well-defined 

mapping. 
It is a rather simple conclusion that 6 is not only a group, but even a module 

homomorphism preserving order relation. 
To show that 6 is one-to-one, we shall show that 6(m) = % > 0 in K 

implies that m > 0. Since g > 0, there exists F Ç $ consisting entirely of 
positive elements. Since the filter generated by 33 associated with m is finer 
than g, there exists a closed interval [r/s, r'/s'] consisting entirely of positive 
elements. From s > 0, r > 0, rm0 ^ sm, we have that sm > 0 and m > 0. 
Thus, 0 is an o-isomorphism of M into K. 

Proof of necessity. The following short proof is due to the referee. 
Because of the embedding, (^ i /g) < (5V5) i n %•• Between any two 

elements of K, there is an element of K. Let 

(Si /5) < a/b < (g 2 /g) (a, & G 4 , & > 0). 

Then 6gi < ag < 6g2, proving the result. 

COROLLARY 3.2. Le/ 4̂ fre a fully ordered integral domain and K, K as 
described above. Let M be an A-module which is order isomorphic to an A-sub-
module of K. For every triple (mo, mi, ra2) of elements of M with m0 > 0 and 
nti < w2, there exist r, s G A with s > 0 so that sm\ ^ rmo < sm2 in M. Even 
strict inequality holds. 

Proof. This follows immediately from the proof of the necessity. 

4. o-simple modules. A fully ordered abelian group G is order iso­
morphic to an ordered subgroup of the ordered field R of real numbers if and 
only if it has no non-trivial convex subgroup. We generalize this theorem to 
fully ordered modules over archimedean rings and show by means of two 
examples that our result will not be true when the underlying ring is non-
archimedean. 

Definition 4.1. Let A be an ordered ring and M an ordered left A -module. 
M is called o-simple if it has no non-trivial convex A -submodule. The ring A 
is said to be o-simple if it has no non-trivial convex one-sided ideals. 
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THEOREM 4.2. Let A be a fully ordered archimedean ring and M a fully 
ordered A-module. Then the following conditions are equivalent: 

(1) M is archimedean (as an ordered abelian group); 
(2) M is an o-simple A-module; 
(3) M is order isomorphic to an ordered A-submodule of the ordered field of 

real numbers. 

Proof. We prove (1) <=* (2) and (1) <^ (3). 
It is obvious that (1) implies (2). It is easy to see that (2) implies (1) since, 

if 0 < mi < m2 in M, then there exists r Ç A+ such that rm\ ^ m2. But A is 
archimedean. Hence, there exists a positive integer n such that n ^ r. Now 
nm\ ^ rm\ ^ m2. Thus, M is archimedean. 

To prove (1) =» (3). A is archimedean. Thus, A C R and the ordered 
completion field associated with A is R itself. Using Corollary 3.2, it is enough 
to prove that for every triple (m0, mi, m2) of M with m0 > 0 and 0 < mi < m2> 

there exist positive integers n, nf so that wwi ^ w'wo < wm2. Since M is 
archimedean, there exists an integer n > 0 so that «(m2 — mi) > mo in ikf. 

—! 1 — I -
0 nmi nm2 

Since every non-empty set of positive integers has a smallest element, there 
exists a non-negative integer r so that rm0 < nm\ but (r + l)m0 è wmi. Now 
(r + l)m0 < nm2\ if not, nm2 ^ (r + l)m0, and from rm0 < nm\ < nm± 
+ mo < M 2 ^ (r + l)m0, we have that m0 = (V + l)m0 — rm0 > n(m2 

— mi), a contradiction. Thus, if n' = r + 1, we have that «mi S n'mo < nm2. 
(3) =» (1). Let 0 < m. Let mx G M be such that 0 < mx < 2mi. Thus, by 

Corollary 3.2, there exist r, s £ A with rmi ^ sm < 2rmi. We may assume 
that r and 5 are positive. Since A is archimedean, there exists r' G A± with 
rr' ^ 1. Now mi ^ rrrmi ^ r'sm. But there exists a positive integer n so that 
n ^ r's. Thus, «m ^ mi in ikf, and M is archimedean. 

The following two examples show that not every o-simple A -module is order 
isomorphic to an ordered submodule of K, when A is non-archimedean. 

Example 4.3. Let A = Z[X] be the lexically ordered polynomial ring over 
(the ordered ring) Z. A is an o-simple ring. Consider the A -module M = 
Z[X, Y]. Order M as follows. Letf(X, Y) be a non-zero element of M of total 
degree n ^ 0. We collect all the terms of f(X, Y) of total degree n and write 
fn = anX

n + an.1X
n~1Y+ ... + a.X'Y--1 + . . . + a0P>, where a, G Z. We 

point out that in this expression for/n, we write the powers of X in descending 
order. We say t ha t / (X , Y) is positive if the first non-vanishing coefficient at 

in fn is a positive integer. It is easy to check that M is a fully ordered A -module 
and that M is o-simple, but M fails to satisfy condition (ii) of Theorem 3.1. 
We have that F2 < X Y in M and X > 0 but it is impossible to find elements 
r, s in A such that rY2 ^ sX < rXY, for if deg r = n, from the inequality 
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rX2 ^ sX, we obtain deg s ^ n + 1 since sX is a polynomial of degree greater 
than or equal to n + 2. But then r J F < sX. 

Example 4.4. We take the same ordered ring A and the module M. We 
order M in a similar manner, but writing /„ in descending powers of F. It is 
clear that M is an ordered A -module with an order different from that of 
Example 4.3. 

Again, M is o-simple, X > 0, and 0 < XY < Y2, but it is impossible to find 
elements r, s in A such that rXY ^ sX < rY2. Indeed, for every r, s in A+} 

sX < rXY. 
It will be interesting to study o-simple modules and o-simple rings. Here we 

present a useful way of producing o-simple modules. 

THEOREM 4.5. Let A be a fully ordered domain and K the ordered quotient 
field of A. Let K be the ordered completion field associated with A. Then the 
following are equivalent: 

(1) A is an o-simple ring] 
(2) Every A-submodule of K with the induced order is an o-simple A-module; 
(3) K is an o-simple A-module; 
(4) Every A-submodule of K with the induced order is an o-simple A-module; 
(5) K is an o-simple A-module. 

Proof. (1) =» (2). Let M C K be an ordered A -module. Let N be a non­
zero convex A -submodule of M. Let ra0 > 0 in M and let n > 0 in N. Since 
n < 2n, by Corollary 3.2, there exist r, s £ A+ such that sn ^ rm0 < s(2n). 
Since N is convex in M, this means that rm0 G N. But A is an o-simple ring. 
Hence there exists r' G A with 1 ^ rr' in A. Thus 0 < m0 ^ rr'mo and 
m0 Ç iV. Therefore, M+ Q N, which implies that M CI N. Thus, N = M and 
ikf is o-simple. 

It is obvious that (2) implies (3). We shall prove that (3) implies (1). 
Suppose that A is not an o-simple ring. Let / be a non-trivial convex ideal of 
A. Let / be the convex A -submodule of K generated by I in K. I = {x G K: 
there exists X, \x G I with X S oc S lA. Since 1 ^ Z, it is clear that 1 $ / . Then 
I ?£ K, contradicting the fact that K is an o-simple A -module. 

I t is obvious that (2) => (4) => (5). As above, it is easy to prove that 
(5) => (1). This establishes the equivalence of the five conditions. 
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