
J. Austral. Math. Soc. 23 (Series A) (1977), 202-206.

ON DOUBLY TRANSITIVE PERMUTATION GROUPS OF DEGREE
PRIME SQUARED PLUS ONE

DAVID CHILLAG

(Received 22 March 1976; revised 1 June 1976)

Abstract

A doubly transitive permutation group of degree p2 + 1, p a prime, is proved to be doubly
primitive for p ^ 2. We also show that if such a group is not triply transitive then either it is a
normal extension of P S L (2, p2) or the stabilizer of a point is a rank 3 group.

We will show that the groups described in the title are doubly primitive
for p > 2 and sometimes they are even triply transitive.

THEOREM A. Let G be a doubly transitive permutation group of degree
p2 + 1, p a prime. Then either G is doubly primitive or p = 2 and G is the
Frobenius group of order 20.

THEOREM B. Let G be a doubly transitive permutation group of degree
p2 + 1, p an odd prime. Assume that Ga contains two distinct Sylow p-
subgroups. Then either a) G is triply transitive, or b) The stabilizer of a point is
primitive rank 3 group of degree p2 and subdegrees 1, 2(p - 1 ) , (p -1) 2 .
Moreover, the stabilizer of a point is isomorphic to a subgroup of Spf S2, the
wreath product of the symmetric groups of degrees p and 2.

Groups described in b) are discussed in Higman (1970).

COROLLARY: Let G be a doubly transitive permutation group of degree
p2 + 1, p a prime. Then one of the following is true :
(a) G is 3-transitive,
(b) P S L (2,p2) C G C PTL{2,p2) in its natural representation,
(c) G is a Frobenius group of order 20 and p = 2,
(d) The stabilizer of a point is primitive rank 3 group of degree p2 and

subdegrees 1, 2(p — 1), (p — I)2. Moreover, the stabilizer of a point is
isomorphic to a subgroup of Sp f S2, the wreath product of the symmetric
groups of degrees p and 2.
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NOTATIONS. We use notations of Wielandt (1964) for permutation groups
and notations of Ryser (1963) for the parameters of a block design. If G acts
on ft and T C G we define F(T) = {x G tl\xt = x for all t £ T).

We start with the following lemma:

LEMMA. Let G be a doubly transitive permutation group of degree p2 + 1 on
a set ft. Here p is a prime. Then :
a) // | G | = 0(p3) then G contains Api+i.
b) There is no nontrivial block design with A = 1 on ft.
c) If G is sharply doubly transitive then p = 2 and | G | = 20.

PROOF. Part a) is a result of Tsuzuku (1968), and part b) follows from the
incidence equations of a block design and the Fisher inequality (see Ryser
(1963)). In c) G contains a regular normal subgroup and if c) is not true,
p2 + 1 = 2" for some integer JC. This is impossible since p2 + 1 = 2(4).

PROOF OF THEOREM A. Assume that G is not doubly primitive. Let ft be
the set on which G acts and let a £ ft. It follows that Ga has a complete
system of inprimitivity sets on ft — {a}. Let Ao = {Ai,A2, ••-,AP} be such a
system and let A = Ao - {AJ. Let /3 £ Ai. We have that |A0| = p. Let P be a
Sylow p-subgroup of G contained in Ga. By the lemma, | P | = p2. Let K be
the kernel of the action of Ga on Ao and let H be the stabilizer of A, in Ga in
its action on Ao. Let A be the kernel of H on Ai. By the lemma we have that
either Ga^ 1 or we are done. Hence we can assume that GaPf£ 1. It follows
that HB = GafS ^ 1. Clearly H is transitive on Ai and Ga is transitive on Ao. We
can also assume that p>2.

Since Ga/K is transitive permutation group of degree p, \Ga/K\p = p so
that \K\P = p. Let Po be a Sylow p-subgroup of K. We can assume that
Po Q.P. Since | H: Gaf) | = p we get that | A \p = | GaP \p = 1. We use Wielandt
(1964), 11.6, 11.7, without referring to them. First we prove that A = 1.
Suppose A/ 1. The lemma and lemma 1.1 of Praeger (submitted) implies that
A fixes a point in some A,/ A,. Thus A fixes at least two blocks of Ao setwise.
However H is either transitive or semiregular on A, and since its normal
subgroup A fixes a block in A we get A C. K. Since | A \p = 1, A <K and K is
transitive on each Af we conclude that A is trivial on each Af so that A = 1.
This contradicts A^ 1.

We now break the proof into two cases.

CASE 1. We assume that Ga/K is nonsolvable. It follows that Ga is
doubly transitive on A. Since H = GafiK we have that Gafs is transitive on A.
The lemma and lemma 2 of Atkinson (1972/73) imply that Ai - {/3} is not
G(a,p)-invariant. It follows that there exists a G^-orbit To, on A!-{/3} such
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that r o g £ A , for g G G{a.p)-GaP. Set r = T n g and S = {A G A | A D I V 0} .
Since S is a Ga/3-orbit on A we get that |S | = p - 1 so that Fo = A-{j8} and
A n T | = 1 for every A G A. If Kp / 1 then Kp fixes the point in A n V for all

A G A so that \F{KP)\>2. This contradicts our lemma because of Bl of
O'Nan (1972).

Therefore Kp = 1. Since K is transitive on A, we have that K = Po. Since
H — HA< and K < H, H is metacyclic of order dividing p(p - 1), so that H/K
is cyclic of order dividing p — 1. This contradicts the assumption that Ga/K is
nonsolvable. Thus we have:

CASE 2. We assume that Ga/K is solvable. In this case Ga/K is a
Frobenius group so that Gaf)/Kp is semiregular on A. Let t = | GaP :KP\. Then
t\p - 1. Since Po Q K Q H and |A |p = 1 we get that K is transitive on A,
and therefore on each A*.

Assume that K is not faithful on some A G Ao and let M be the kernel of
K on A. Since K is transitive on A,|K :M\p = p so that \M\P = 1. Hence M
cannot be transitive on any A*, 1 g i S p. Since M < K and |A, | = p we get
that M fixes all points of fl. Since this is impossible, K is faithful on each A,.

If Kf> = 1 then | G^ | = t and | / / | = tp. Then H is solvable so that Gaf) is
semiregular on both Ai - {/?} and A. Hence Go/3y = 1 for y G fl - {a,p} and
G is a Zassenhaus group of order t(p2+ l)p2 where f |p — 1. Since p ^ 2, this
contradicts Feit (1960). Therefore AT^ 1.

By B 1 of O'Nan (1972), F(K0) = {a,/3}. It follows that K? fixes no point
of A2 so that K has at least two classes of subgroups of index p. This implies
that K is nonsolvable and consequently K is doubly transitive on each A,. By
Theorem D of O'Nan (1975) we get that G is a normal extension of
PSL (n,q) for some n s 3. This contradicts our lemma part b). Therefore the
assumption that G is not doubly primitive is false and the theorem is proved.

PROOF OF THEOREM B. Assume that G is not triply transitive. By Tsuzuku
(1968), we can assume that \G\P = p2. Let fl be the set on which G acts and
let a, j8 G fl,a ^ /3. By assumption Ga contains two distinct Sylow p-
subgroups. By Theorem A, Ga is primitive on fl - {o} and by assumption it is
not doubly transitive. By Wielandt (1969), there is a subgroup N, of index 2 in
Ga such that N = X x Y,X,Y intransitive on fl - {a}. Since Ga is primitive,
N is transitive so that X and Y have, each, p orbits of size p on fl — {a}. Let
P be a Sylow p-subgroup of G contained in N; then we can write
P = Px x P2, P, c X, P2 C V, | Pi | = | F2| = p- If X is not faithful on one of its
orbits the kernel on this orbit must be transitive on some other orbit or else
the kernel would fix fl. This implies that \X\P g p2 which is impossible. Thus
X is faithful on its orbits. The same is true for V.
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Let A = {A, |1 S i S p} be the set of X-orbits on fl- {a} and let
F = {F, 11 g ( g p} be the set of Y-orbits on ft - {a}. Suppose X is solvable.
Then P, < N. Let t G Ga - N. Then (P,)' < TV and if (P,)' ^ P, then (Pi)'P, is
a normal Sylow p-subgroup of N and therefore of Ga, contradicting the fact
that Go contains at least two Sylow p-subgroups. Thus (Pi)' = P, and Pi < Ga,
contradicting the primitivity of Ga on ft — {a}. We conclude that X is
nonsolvable and therefore doubly transitive on each of its orbits. The same is
true for Y.

Since A is a complete system of imprimitivity sets for the action of N on
ft - {a}, N is transitive on A and therefore Y is transitive on A. If Y has a
kernel, V^ 1, on A then j Y: V\p = p and since V < Y, V is either transitive
or trivial on IY Since Y is faithful on Fi, V is transitive on it so that | V\p = p.
This implies that p2\\ Y\ which is impossible. Hence Y is faithful on A and
since it is unsolvable, Y is doubly transitive on A. Certainly we can assume
that A, = j3x and F, = /3Y. Put W = {y G Y|A,y = A,}. Then Yp C W and
since | Y: Yp | = | Y: W \ = p we get that W = Yp.

Hence Ŷ  is transitive on A - {A,}. Since X is transitive on Ai and
[X, Yp] = 1 we obtain that Yp fixes Ai pointwise. Thus F(Yp) = A, U {a}. By
symmetry X0 is transitive on F - {FJ and F(X3) = Ft U {a}. Now p2 =
| N: Np | = | X : X0 11 Y: Ŷ  | implies that A^ = X^ x Yp. The previous para-
graphs imply that r , -{ )3} . A,-{/3} and (U,- = , A f ) - F, - A, are the
Np-orbits on ft-{a, /3}. Their sizes are p - 1, p - 1, (p - I)2 respectively.
Also, Fi, contains one point from each A,.

Since |G a f j :N p | = 2 we can choose t G. Gaf3 - Np. We have that
GaP=Nfi(t) and Ga = N(t) because t2 E Np. Suppose that t fixes both
Ti - {j3} and A, - {/3} as sets. Then (X^)' acts on each of these sets and (X^)'
fixes F] - {/?} pointwise. Thus (X0)' n Y3 = 1 as Y is faithful on F,. Since
(Xp)' C Np and (X^)' fixes F, pointwise we have that (Xp)' acts trivially on A.
Then (X3)' is contained in the kernel of the action of Np on A, namely Xp.
Hence (Xp)' = Xp.

Let g G Ga and put g = t'h,h G N for some integer /'. Then since
X<N,{X0y n Gal) = (X^)" n Gaf) C X n Ga P = Xp. Thus Xp is a strongly
:losed subgroup of Gafi in Go. We now apply our lemma and B of O'Nan
'1972) to get a contradiction.

Therefore t does not fix F, - {f3} and A, - {/3} and since t normalizes Np,
it must interchange these sets. We conclude that Ga is a rank 3 group on
Q —{a} and the sizes of the Gap-orbits are 1, 2(p — 1), (p — I)2. Using Higman
1970) we are done.

We remark that the proof of Theorem B is also a proof for the following
extension of Wielandt (1969):
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THEOREM C. Let G be a primitive but not doubly transitive permutation
group of degree p2. Assume that Ga contains two distinct Sylow p-subgroups.
Then G is either rank 3 or rank 4 permutation group with sub-degrees 1,
2(p - l),(p - I)2 or \,{p - l),(p - l),(p - I)2.

In fact the rank 4 case does not occur because of Proposition 0.1 of
Iwasaki (1973) that states that we are in case I and proposition 1.1 of Iwasaki
(1973).

PROOF OF THE COROLLARY. By Theorems A and B and the lemma we can
assume that p^2,Ga contains a unique Sylow p-subgroup P and \P\ = p2.
Now P <Ga and since Ga is primitive, P is regular on fl - {a}. By a result of
Hering, Kantor and Seitz (1972) we get that G has a normal subgroup M such
that G C Aut(M), where M is either PSL(2,p2) or sharply 2-transitive,
(because the degree is p2 + 1). If M is sharply 2-transitive, so is G and
\G\ = \M\ = 20 and p = 2. This proves the corollary.
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