ON DOUBLY TRANSITIVE PERMUTATION GROUPS OF DEGREE PRIME SQUARED PLUS ONE

DAVID CHILLAG

(Received 22 March 1976; revised 1 June 1976)

Abstract

A doubly transitive permutation group of degree $p^2 + 1$, p a prime, is proved to be doubly primitive for $p \neq 2$. We also show that if such a group is not triply transitive then either it is a normal extension of $P S L (2, p^2)$ or the stabilizer of a point is a rank 3 group.

We will show that the groups described in the title are doubly primitive for p > 2 and sometimes they are even triply transitive.

THEOREM A. Let G be a doubly transitive permutation group of degree $p^2 + 1$, p a prime. Then either G is doubly primitive or p = 2 and G is the Frobenius group of order 20.

THEOREM B. Let G be a doubly transitive permutation group of degree $p^2 + 1$, p an odd prime. Assume that G_{α} contains two distinct Sylow p-subgroups. Then either a) G is triply transitive, or b) The stabilizer of a point is primitive rank 3 group of degree p^2 and subdegrees 1, 2(p-1), $(p-1)^2$. Moreover, the stabilizer of a point is isomorphic to a subgroup of $S_p \int S_2$, the wreath product of the symmetric groups of degrees p and 2.

Groups described in b) are discussed in Higman (1970).

COROLLARY: Let G be a doubly transitive permutation group of degree $p^2 + 1$, p a prime. Then one of the following is true:

- (a) G is 3-transitive,
- (b) $PSL(2, p^2) \subseteq G \subseteq P\Gamma L(2, p^2)$ in its natural representation,
- (c) G is a Frobenius group of order 20 and p = 2,
- (d) The stabilizer of a point is primitive rank 3 group of degree p^2 and subdegrees 1, $2(p-1), (p-1)^2$. Moreover, the stabilizer of a point is isomorphic to a subgroup of $S_p \int S_2$, the wreath product of the symmetric groups of degrees p and p.

NOTATIONS. We use notations of Wielandt (1964) for permutation groups and notations of Ryser (1963) for the parameters of a block design. If G acts on Ω and $T \subseteq G$ we define $F(T) = \{x \in \Omega | xt = x \text{ for all } t \in T\}$.

We start with the following lemma:

LEMMA. Let G be a doubly transitive permutation group of degree $p^2 + 1$ on a set Ω . Here p is a prime. Then:

- a) If $|G| \equiv 0(p^3)$ then G contains A_{p^2+1} .
- b) There is no nontrivial block design with $\lambda = 1$ on Ω .
- c) If G is sharply doubly transitive then p = 2 and |G| = 20.

PROOF. Part a) is a result of Tsuzuku (1968), and part b) follows from the incidence equations of a block design and the Fisher inequality (see Ryser (1963)). In c) G contains a regular normal subgroup and if c) is not true, $p^2 + 1 = 2^x$ for some integer x. This is impossible since $p^2 + 1 = 2(4)$.

PROOF OF THEOREM A. Assume that G is not doubly primitive. Let Ω be the set on which G acts and let $\alpha \in \Omega$. It follows that G_{α} has a complete system of inprimitivity sets on $\Omega - \{\alpha\}$. Let $\Lambda_0 = \{\Delta_1, \Delta_2, \dots, \Delta_p\}$ be such a system and let $\Lambda = \Lambda_0 - \{\Delta_1\}$. Let $\beta \in \Delta_1$. We have that $|\Lambda_0| = p$. Let P be a Sylow p-subgroup of G contained in G_{α} . By the lemma, $|P| = p^2$. Let K be the kernel of the action of G_{α} on Λ_0 and let H be the stabilizer of Δ_1 in G_{α} in its action on Λ_0 . Let A be the kernel of H on Δ_1 . By the lemma we have that either $G_{\alpha\beta} \neq 1$ or we are done. Hence we can assume that $G_{\alpha\beta} \neq 1$. It follows that $H_{\beta} = G_{\alpha\beta} \neq 1$. Clearly H is transitive on Δ_1 and G_{α} is transitive on Λ_0 . We can also assume that p > 2.

Since G_{α}/K is transitive permutation group of degree p, $|G_{\alpha}/K|_p = p$ so that $|K|_p = p$. Let P_0 be a Sylow p-subgroup of K. We can assume that $P_0 \subseteq P$. Since $|H:G_{\alpha\beta}| = p$ we get that $|A|_p = |G_{\alpha\beta}|_p = 1$. We use Wielandt (1964), 11.6, 11.7, without referring to them. First we prove that A = 1. Suppose $A \neq 1$. The lemma and lemma 1.1 of Praeger (submitted) implies that A fixes a point in some $\Delta_i \neq \Delta_1$. Thus A fixes at least two blocks of Λ_0 setwise. However H is either transitive or semiregular on Λ , and since its normal subgroup A fixes a block in Λ we get $A \subseteq K$. Since $|A|_p = 1$, $A \triangleleft K$ and K is transitive on each Δ_i we conclude that A is trivial on each Δ_i so that A = 1. This contradicts $A \neq 1$.

We now break the proof into two cases.

Case 1. We assume that G_{α}/K is nonsolvable. It follows that G_{α} is doubly transitive on Λ . Since $H = G_{\alpha\beta}K$ we have that $G_{\alpha\beta}$ is transitive on Λ . The lemma and lemma 2 of Atkinson (1972/73) imply that $\Delta_1 - \{\beta\}$ is not $G_{(\alpha,\beta)}$ -invariant. It follows that there exists a $G_{\alpha\beta}$ -orbit Γ_0 , on $\Delta_1 - \{\beta\}$ such

that $\Gamma_0 g \not\subset \Delta_1$ for $g \in G_{\langle \alpha, \beta \rangle} - G_{\alpha\beta}$. Set $\Gamma = \Gamma_0 g$ and $\Sigma = \{\Delta \in \Lambda \mid \Delta \cap \Gamma \neq \emptyset\}$. Since Σ is a $G_{\alpha\beta}$ -orbit on Λ we get that $|\Sigma| = p - 1$ so that $\Gamma_0 = \Delta - \{\beta\}$ and $|\Delta \cap \Gamma| = 1$ for every $\Delta \in \Lambda$. If $K_{\beta} \neq 1$ then K_{β} fixes the point in $\Delta \cap \Gamma$ for all $\Delta \in \Lambda$ so that $|F(K_{\beta})| > 2$. This contradicts our lemma because of B1 of O'Nan (1972).

Therefore $K_{\beta} = 1$. Since K is transitive on Δ_1 we have that $K = P_0$. Since $H \simeq H^{\Delta_1}$ and $K \triangleleft H$, H is metacyclic of order dividing p(p-1), so that H/K is cyclic of order dividing p-1. This contradicts the assumption that G_{α}/K is nonsolvable. Thus we have:

Case 2. We assume that G_{α}/K is solvable. In this case G_{α}/K is a Frobenius group so that $G_{\alpha\beta}/K_{\beta}$ is semiregular on Λ . Let $t = |G_{\alpha\beta}:K_{\beta}|$. Then t|p-1. Since $P_0 \subseteq K \subseteq H$ and $|A|_p = 1$ we get that K is transitive on Δ_1 and therefore on each Δ_i .

Assume that K is not faithful on some $\Delta \in \Lambda_0$ and let M be the kernel of K on Δ . Since K is transitive on Δ , $|K:M|_p = p$ so that $|M|_p = 1$. Hence M cannot be transitive on any Δ_i , $1 \le i \le p$. Since $M \triangleleft K$ and $|\Delta_i| = p$ we get that M fixes all points of Ω . Since this is impossible, K is faithful on each Δ_i .

If $K_{\beta} = 1$ then $|G_{\alpha\beta}| = t$ and |H| = tp. Then H is solvable so that $G_{\alpha\beta}$ is semiregular on both $\Delta_1 - \{\beta\}$ and Λ . Hence $G_{\alpha\beta\gamma} = 1$ for $\gamma \in \Omega - \{\alpha,\beta\}$ and G is a Zassenhaus group of order $t(p^2 + 1)p^2$ where $t \mid p - 1$. Since $p \neq 2$, this contradicts Feit (1960). Therefore $K_{\beta} \neq 1$.

By B 1 of O'Nan (1972), $F(K_{\beta}) = \{\alpha, \beta\}$. It follows that K_{β} fixes no point of Δ_2 so that K has at least two classes of subgroups of index p. This implies that K is nonsolvable and consequently K is doubly transitive on each Δ_i . By Theorem D of O'Nan (1975) we get that G is a normal extension of PSL(n,q) for some $n \geq 3$. This contradicts our lemma part b). Therefore the assumption that G is not doubly primitive is false and the theorem is proved.

PROOF OF THEOREM B. Assume that G is not triply transitive. By Tsuzuku (1968), we can assume that $|G|_p = p^2$. Let Ω be the set on which G acts and let $\alpha, \beta \in \Omega, \alpha \neq \beta$. By assumption G_α contains two distinct Sylow p-subgroups. By Theorem A, G_α is primitive on $\Omega - \{\alpha\}$ and by assumption it is not doubly transitive. By Wielandt (1969), there is a subgroup N, of index 2 in G_α such that $N = X \times Y, X, Y$ intransitive on $\Omega - \{\alpha\}$. Since G_α is primitive, N is transitive so that X and Y have, each, p orbits of size p on $\Omega - \{\alpha\}$. Let P be a Sylow p-subgroup of G contained in N; then we can write $P = P_1 \times P_2, P_1 \subseteq X, P_2 \subseteq Y, |P_1| = |P_2| = p$. If X is not faithful on one of its orbits the kernel on this orbit must be transitive on some other orbit or else the kernel would fix Ω . This implies that $|X|_p \ge p^2$ which is impossible. Thus X is faithful on its orbits. The same is true for Y.

Let $\Lambda = \{\Lambda_i | 1 \le i \le p\}$ be the set of X-orbits on $\Omega - \{\alpha\}$ and let $\Gamma = \{\Gamma_i | 1 \le i \le p\}$ be the set of Y-orbits on $\Omega - \{\alpha\}$. Suppose X is solvable. Then $P_1 \triangleleft N$. Let $t \in G_\alpha - N$. Then $(P_1)' \triangleleft N$ and if $(P_1)' \ne P_1$ then $(P_1)'P_1$ is a normal Sylow p-subgroup of N and therefore of G_α , contradicting the fact that G_α contains at least two Sylow p-subgroups. Thus $(P_1)' = P_1$ and $P_1 \triangleleft G_\alpha$, contradicting the primitivity of G_α on $\Omega - \{\alpha\}$. We conclude that X is nonsolvable and therefore doubly transitive on each of its orbits. The same is true for Y.

Since Λ is a complete system of imprimitivity sets for the action of N on $\Omega - \{\alpha\}$, N is transitive on Λ and therefore Y is transitive on Λ . If Y has a kernel, $V \neq 1$, on Λ then $|Y:V|_p = p$ and since $V \triangleleft Y$, V is either transitive or trivial on Γ_1 . Since Y is faithful on Γ_1 , V is transitive on it so that $|V|_p = p$. This implies that $p^2||Y|$ which is impossible. Hence Y is faithful on Λ and since it is unsolvable, Y is doubly transitive on Λ . Certainly we can assume that $\Lambda_1 = \beta^X$ and $\Gamma_1 = \beta^Y$. Put $W = \{y \in Y | \Lambda_1 y = \Lambda_1\}$. Then $Y_\beta \subseteq W$ and since $|Y:Y_\beta| = |Y:W| = p$ we get that $W = Y_\beta$.

Hence Y_{β} is transitive on $\Lambda - \{\Lambda_1\}$. Since X is transitive on Λ_1 and $[X, Y_{\beta}] = 1$ we obtain that Y_{β} fixes Λ_1 pointwise. Thus $F(Y_{\beta}) = \Lambda_1 \cup \{\alpha\}$. By symmetry X_{β} is transitive on $\Gamma - \{\Gamma_1\}$ and $F(X_{\beta}) = \Gamma_1 \cup \{\alpha\}$. Now $p^2 = |N:N_{\beta}| = |X:X_{\beta}| |Y:Y_{\beta}|$ implies that $N_{\beta} = X_{\beta} \times Y_{\beta}$. The previous paragraphs imply that $\Gamma_1 - \{\beta\}$, $\Lambda_1 - \{\beta\}$ and $(\bigcup_{i=1}^{n} \Lambda_i) - \Gamma_1 - \Lambda_1$ are the N_{β} -orbits on $\Omega - \{\alpha, \beta\}$. Their sizes are p-1, p-1, $(p-1)^2$ respectively. Also, Γ_1 , contains one point from each Λ_i .

Since $|G_{\alpha\beta}:N_{\beta}|=2$ we can choose $t\in G_{\alpha\beta}-N_{\beta}$. We have that $G_{\alpha\beta}=N_{\beta}\langle t\rangle$ and $G_{\alpha}=N\langle t\rangle$ because $t^2\in N_{\beta}$. Suppose that t fixes both $\Gamma_1-\{\beta\}$ and $\Lambda_1-\{\beta\}$ as sets. Then $(X_{\beta})'$ acts on each of these sets and $(X_{\beta})'$ fixes $\Gamma_1-\{\beta\}$ pointwise. Thus $(X_{\beta})'\cap Y_{\beta}=1$ as Y is faithful on Γ_1 . Since $(X_{\beta})'\subseteq N_{\beta}$ and $(X_{\beta})'$ fixes Γ_1 pointwise we have that $(X_{\beta})'$ acts trivially on Λ . Then $(X_{\beta})'$ is contained in the kernel of the action of N_{β} on Λ , namely X_{β} . Hence $(X_{\beta})'=X_{\beta}$.

Let $g \in G_{\alpha}$ and put $g = t^i h, h \in N$ for some integer *i*. Then since $X \triangleleft N, (X_{\beta})^g \cap G_{\alpha\beta} = (X_{\beta})^h \cap G_{\alpha\beta} \subseteq X \cap G_{\alpha\beta} = X_{\beta}$. Thus X_{β} is a strongly closed subgroup of $G_{\alpha\beta}$ in G_{α} . We now apply our lemma and B of O'Nan (1972) to get a contradiction.

Therefore t does not fix $\Gamma_1 - \{\beta\}$ and $\Lambda_1 - \{\beta\}$ and since t normalizes N_{β} , it must interchange these sets. We conclude that G_{α} is a rank 3 group on $\Omega - \{\alpha\}$ and the sizes of the $G_{\alpha\beta}$ -orbits are 1, 2(p-1), $(p-1)^2$. Using Higman [1970) we are done.

We remark that the proof of Theorem B is also a proof for the following extension of Wielandt (1969):

THEOREM C. Let G be a primitive but not doubly transitive permutation group of degree p^2 . Assume that G_{α} contains two distinct Sylow p-subgroups. Then G is either rank 3 or rank 4 permutation group with sub-degrees 1, $2(p-1), (p-1)^2$ or $1, (p-1), (p-1)^2$.

In fact the rank 4 case does not occur because of Proposition 0.1 of Iwasaki (1973) that states that we are in case I and proposition 1.1 of Iwasaki (1973).

PROOF OF THE COROLLARY. By Theorems A and B and the lemma we can assume that $p \neq 2$, G_{α} contains a unique Sylow p-subgroup P and $|P| = p^2$. Now $P \triangleleft G_{\alpha}$ and since G_{α} is primitive, P is regular on $\Omega - \{\alpha\}$. By a result of Hering, Kantor and Seitz (1972) we get that G has a normal subgroup M such that $G \subseteq \operatorname{Aut}(M)$, where M is either $PSL(2, p^2)$ or sharply 2-transitive, (because the degree is $p^2 + 1$). If M is sharply 2-transitive, so is G and |G| = |M| = 20 and p = 2. This proves the corollary.

Acknowledgement

I wish to thank Dr. Cheryl E. Praeger for her helpful suggestions.

References

- M. D. Atkinson (1972/73), 'Two theorems on doubly transitive permutation groups', J. London Math. Soc. (2), 6, 269-274.
- Walter Feit (1960), 'On a class of doubly transitive permutation groups', *Illinois J. Math.* 4, 170-186.
- Christoph Hering, William M. Kantor and Gary M. Seitz (1972), 'Finite groups with a split BN—pair of rank 1, I', J. Algebra 20, 435-475.
- D. G. Higman (1970), 'Characterization of families of rank 3 permutation groups by the subdegrees. I', Arch. der Math. 21, 151-156.
- Shiro Iwasaki (1973), 'On finite permutation groups of rank 4', J. Math., Kyoto Univ. 13, 1-20.
- Michael O'Nan (1972), 'A characterization of $L_n(q)$ as a permutation group', *Math. Z.* 127, 301-314.
- Michael O'Nan (1975), 'Normal structure of the one point stabilizer of doubly transitive permutation group II', Trans. Amer. Math. Soc. 214, 43-74.
- Cheryl E. Praeger (submitted), 'Doubly transitive permutation groups which are not doubly primitive'.
- Herbert John Ryser (1963), Combinatorial Mathematics (The Carus Mathematical Monographs, 14. Math. Assoc. Amer., Buffalo, New York; John Wiley & Sons, New York; 1963).
- Tosiro Tsuzuku (1968), 'On doubly transitive permutation groups of degree $1 + p + p^2$ where p is a prime number', J. Algebra 8, 143-147.
- Helmut Wielandt (1964), Finite Permutation Groups (translated by R. Bercov. Academic Press, New York, London, 1964).
- Helmut W. Wielandt (1969), Permutation Groups Through Invariant Relations and Invariant Functions (Lecture Notes. Department of Mathematics, Ohio State University, Columbus, Ohio, 1969).

Technion,

Israel Institute of Technology,

Haifa, Israel.