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Abstract. Wedevelop a* higher genus' anal ogue of operads, which we call modular operads, inwhich
graphs replace trees in the definition. We study a functor F on the category of modular operads, the
Feynman transform, which generalizes Kontsevich's graph complexes and also the bar construction
for operads. We calculate the Euler characteristic of the Feynman transform, using the theory of
symmetric functions: our formulais modelled on Wick’s theorem. We give applications to the theory
of moduli spaces of pointed algebraic curves.
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0. Introduction

Recently, there hasbeenincreased interest in applicationsof operads outside homo-
topy theory, much of it due to the relation between operads and moduli spaces of
algebraic curves.

The formalism of operadsis closely related to the combinatorics of trees [11],
[13]. However, in dealing with moduli spaces of curves, one encounters general
graphs, the case of trees corresponding to curves of genusO.

This suggests considering a ‘higher genus' analogue of the theory of operads,
in which graphs replace trees. We call the resulting objects modular operads: their
systematic study is the purpose of this paper.

The cobar functor B [13] is an involution on the category of differential graded
(dg) operads. We will construct an analogous functor F on the category of dg-
modular operads, the Feynman transform. This functor generalizes Kontsevich's
graph complexes[24].

The behaviour of F is more mysterious than that of the cobar construction.
For example, for such a simple operad as Com, describing commutative algebras,
BCom is a resolution of the Lie operad. On the other hand, knowledge of the
homology of FCom implies complete information on the dimensions of the spaces
of Vassiliev invariants of knots (by atheorem of Kontsevich and Bar-Natan [2]; see
(5.120)).
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Our main result about the Feynman transform is the calculation of its Euler
characteristic; to do this, we use the theory of symmetric functions. As a model
for this calculation, take the formula for the enumeration of graphs known in
mathematical physics as Wick’s Theorem [3]. Consider the asymptotic expansion
of theintegral

1 z2 agnh9x™ dz
W(fa h) - Iog/ Expﬁ <$§ - 7 + 2(g_§n>o n! ) \/ﬁ’ (01)

considered as apower seriesin £ and i. (The asymptotic expansion is independent
of the domain of integration, provided it contains 0.) Let T'((g,n)) be the set of
isomorphism classes of connected graphs G, with a map v — g(v) from the
vertices Vert(G) of G t0{0,1,2,...} and having exactly n legs numbered from 1

to n, such that
g= > g(v)+b(q),
veVert(G)

where b1(G) isthefirst Betti number of the graph. If v isavertex of G, denote by
n(v) itsvalence, and let |Aut(G)| be the cardinality of the automorphism group of
G. Wick's Theorem states that

1(¢? RIE™ 1
W~E<§+ > X Aut(G)] H(G)agw),n(v))- 02)

n:
2(9—1)+n>0 GeT'(g,n) | veVert

The calculation of the Euler characteristic of F is a natural generalization of
this, in which the coefficients a, ,, are replaced by representations V((g, n)) of the
symmetric groups S,,, sums and products are replaced by the operations ¢ and
®, and the weight |Aut(G)| 1 is replaced by taking the coinvariants with respect
to a natural action of Aut(G). Up to isomorphism, a sequence V = {V((g,n)) |
2(9g — 1) + n > 0} of S,-modules is determined by its Frobenius characteristic,
which is a symmetric function f (1, 2, ...) ininfinitely many variables. In Sec-
tions 7 and 8, we define analogues of the Legendre and Fourier transforms for
symmetric functions, which give formulas for the characteristics of B.A and F A,
where A isacyclic, respectively modular, operad.

Thereis an Euler characteristic associated to orbifolds, called the virtual Euler
characteristic. This is the invariant obtained by giving each cell o a coefficient
(—1)9m() /|Aut(o)|, very much likein (0.2). Harer and Zagier [16] calculated the
virtual Euler characteristics of the moduli spaces M., ,, and M, /S, (see aso
Penner [31]), and more recently, Kontsevich has given avery simple proof of their
result using Wick'’s Theorem [23].

Let |[M, | be the coarse moduli space of smooth algebraic curves of genus
v with v labelled marked points, and | M, ,|/S, that of smooth algebraic curves
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of genusy with v unlabelled marked points. Let e(| M, |) and e(| M., |/S,) be
their Euler characteristics; clearly, these coincidefor v = 1. Harer and Zagier were
ableto calculate (| M., 1]); however, for higher values of v, little is known about
Euler characteristicse(|. M., |) ande(| M., |/S,). By applying our formulasto the
modular operad Ass corresponding to associative algebras, we obtain in Section 9
aclosed formulafor the sum

> eIMyul/s.),

2(1—y)-v=x

where y is a fixed integer, representing the Euler characteristic of the punctured
Riemann surfaces contributing to the sum.

The use of symmetric functions in enumeration of graphs goes back to Polya
[32]. Our approachis dlightly different: while he associates symmetric functionsto
permutations of vertices of the graph, we associate them to permutations of flags of
the graph (pairs consisting of avertex and an incident edge). The idea of attaching
arbitrary representations of symmetric groups to vertices of a tree appears (under
the name ‘lumps’) in Hanlon—Robinson [15]; they obtain formulas resembling our
formula for the characteristic of BA (in Polya's setting). The introduction of the
Legendre transform in this problem leads to a new perspective on this class of
problemsby bringing out ahidden involutive symmetry, which is very natural from
the point of view of operads.

Our analogue of Wick’'s Theorem may be viewed as a synthesis of the methods
of graphical enumeration of quantum field theory with Polya'sideas. Our formula
for the character of F.A has another link to quantum field theory, since the space
of symmetric functions is the Hilbert space for the basic representation of
GLres(co) (Kac-Raina [21]); in this direction, we present a formal repre-
sentation of the characteristic of the free modular operad MV as a functional
integral (8.18).

We now describe the contents of this paper. In Section 1, werecall the definition
of cyclic operadsfrom [12]; roughly speaking, these are operadsin which theinputs
and output may be permuted. In Section 2, we define modular operads as algebras
over a certain triple, constructed by summing over graphs. Modular operads are
actually a special sort of cyclic operad, in which there is an additional operation
(which we call contraction) which reducesthe number of inputs by two. In Section
3, we explain the axioms which must be imposed on such a contraction in order
that it determines a modular operad structure; this may be viewed as a coherence
theorem for modular operads.

In Section 4, weintroduce a generalization of modular operads, in which certain
signs are introduced into the structure maps, which we call cocycles. A cocycle
is a certain functor from graphs to the Picard category of invertible graded vector
spaces. The most important cocycle for us will be the determinant of the first
cohomology of the graph, which is obviously trivial when restricted to trees; this
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explains why this twist is not needed in the theory of operads. In Section 5, we
construct the Feynman transform F, which maps from the category of dg-modular
operads to the category of dg-modular operads for this cocycle.

Another example of a Feynman transform is given in Section 6: roughly speak-
ing, the complexes of currents on the moduli spaces of stable curves M, ,, form
a modular operad, and the Feynman transform of this modular operad may be
identified with the differential forms on the open strata M, ,,; these form atwisted
modular operad, in the sense of Section 4, by a construction involving residues
taken around divisors at infinity.

In Sections 7 and 8, we define anal ogues of the L egendre and Fourier transforms
for symmetric functions. In this way, we obtain formulas for the characteristics of
B.A and F A, where A isacyclic, respectively modular, operad.

One of the pioneers of the use of Wick's Theorem as a tool in topology was
Claude Itzykson, and he was an influence on us and many of our colleagues, in
innumerable ways. We humbly offer this article in his memory.

1. Cyclic operads

In this section, we recall the definition of a cyclic operad —thiswill be useful later,
since one way of looking at modular operadsis as a special kind of cyclic operad.

Our presentation of the theory of cyclic operads is a little different from our
previous account [12]; we need a hon-unital version of the theory, due to Markl
[27]. One advantage of thisformulation isthat the basic operationsin an operad are
bilinear. In any case, if one simply took the original definition of an operad (May
[28]), and omitted the axioms involving the unit, one would not obtain the same
notion.

(1.1) S-modules. Throughout this paper, we work over afixed field k of character-
istic 0.

A chain complex (dg-vector space) is a graded vector space V, together with a
differential 6: V; — V;_1, such that 6 = 0. A map of chain complexes s called
awesk equivalenceif it induces isomorphismsin homology. We denote by V# the
graded vector space underlying V', with vanishing differential.

The suspension XV, of a chain complex V, has components (XV),, = V,,_1,
and differential equal to minus that of V,. By X"V,, n € Z, we denote the n-fold
iterated suspension of V.

If V' isachain complex and G is a finite group, we denote by Vi; the chain
complex of G-coinvariants of V'

V

Vo = .
“ " {gv-vlveV,geGy

By V", we denote the linear dual of V,, with V;* = (V_;)* and with differential
0* 1 V¥ — Vi, theadjointof §: V_;; 1 — V_;. All chain complexes which we
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consider in this article have finite dimensional homology.

Denote by S,, thegroup Aut{1,...,n} andby S, thegroup Aut{0, 1, ... ,n}.
(This was denoted by S,,;1 in [12]; we have changed the notation in order to
distinguish between the (isomorphic) groups S, = Aut{0,...,n} and S, 11 =
Aut{1,...,n + 1}.) An S-moduleis a sequence of chain complexesV = {V(n) |
n > 0}, together with an action of S,, on V(n) for each n.

A map of S-modulesis called aweak equivalenceif it isaweak equivalencefor
eachn.

(1.2) Operads. An operad is an S-module P together with bilinear operations
0j: P(m)®@P(n) = Pim+n-1), 1<i<m,

satisfying the following axioms.

(1.21). If 7 € Sy, p € Sp,a € P(m) and b € P(n), then
(ma) or(iy (pb) = (m 0; p)(a o; b),

where w o; p € Sp4n-1 is defined as follows: it permutes the interval {i, ...,
i+ n — 1} according to the permutation p, and then reorders the m intervals

{1,....{i -1} {i,...,i+n—-1}, {i+n},...,{m+n—1},

which partition {1, ..., m + n — 1}, according to the permutation =. Explicitly,

(), j <iandn(j) < (),
w(j) +n—1, Jj <iandn(j) > m(i),

(mo;jp)(j) =< 7(j —n+1), j=i+nandn(j) < (i),
m(j—n+1)+n-—1, j=i+nandn(j) > n(i),
(i) +p(j—i+1) -1 i<j<i+n.

(1.22).Fora e P(k),beP(l)andc € P(m),and1<i < j <k,

(aoib)ojii1c=(aojc)o;b.
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(1.23).Fora e P(k),beP(l)andc € P(m),and1<i<k,1<j <,

(a0id)oirj_1c=ao;(bojc).

(1.3) Operads and trees. We think of an element of P(n) as corresponding to a
rooted tree with one vertex, n inputs numbered from 1 up to n (and one output).

The compositions correspond to grafting two such trees together along the input
of the first tree numbered i. Axiom (1.2.1) expresses the equivariance of this
construction.

1 2 n—1 n
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Axioms (1.2.2) and (1.2.3) mean that we can construct unambiguous compositions
corresponding to the following two trees respectively

Infact, the axiomsimply that the productso; giveriseto an unambiguousdefinition
of composition for any rooted tree [11], [13]. This point of view will be explained
in greater detail, in the context of modular operads, in Section 2.

(1.4) Cyclic S-modules. A cyclic S-module ) is a sequence of vector spaceV(n),
with action of S, on V(n). In particular, each vector space V(n) is a module
over the symmetric group S, and over the cyclic group Z,,; generated by 7,, =
(01...n).

If VisacyclicS-module,and I isa (k + 1)-element set, define

vih=| & v

bijections
40, k}—I Skt

This makes V into a functor from the category of nonempty finite sets and their
bijections into the category of vector spaces. In the case when £ = n — 1 and
I ={1,...,n}, wewrite V((n)) instead of V((1)). Note that V((n)) = V(n — 1).

(1.5) Cyclic operads. If P isacyclic S-moduleand ¢ € P(n), let a* € P(n) be

the result of applying thecycle (01...n) € S,,;+ toa. (Thus, if n = 1, this operation
exchangestheinput and output of «; for n. > 1, it generalizesthis.) A cyclic operad
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[12] is a cyclic S-module P whose underlying S-module has the structure of an
operad, such that

(aomb)" =b" o1 4™ (1.6)

for any a € P(m), b € P(n). This formula shows that cyclic operads are a
generalization of associative x-algebras, which arethespecial caseinwhichP(n) =
Oforn # 1.

(Cyclic) S-modulesmay be defined, in exactly the same way, in any symmetric
monoidal category. The most important case for us will be the category of chain
complexes, whose operads will be called differential graded operads (abbreviated
to dg-operad). Other examples are the category of topological spaces, giving rise
to topological S-modulesand operads, and the opposite category to the category of
chain complexes, whose operads are called dg-cooperads.

In the remainder of this paper, unless otherwise specified, by an S-module,
operad or cooperad, we mean a dg S-module, operad or cooperad. A map of
operadsis called aweak equivalenceif it is aweak equivalence of the underlying
S-module.

(1.7) Endomorphism operads and cyclic algebras. Let V' be a chain com-
plex such that its homogeneous subspaces V; are finite-dimensional for all k.
An inner product on V is a non-degenerate bilinear form B(xz,y) such that
B(0z,y) + (=1)*B(z, 6y) = 0, where § isthe differential of V. Such a bilinear
form is symmetric (respectively antisymmetric) if B(y,z) = (—1)1#/¥B(z,v)
(resp. B(y,z) = —(—1)I¥I¥WB(z,v)), and has degree k if B(z,y) = 0 unless
|| + |y| = k.

Let V' be a chain complex with symmetric inner product B(z,y) of degree 0.
We define a cyclic S-module £[V] by putting £[V](n) = V&™), with the natural
action of S,,... This may be given the structure of a cyclic operad: if ¢ € V®(m+)
andb € V(1) theproduct ao; b € VE(m+7) jsdefined by contracting a ® b with
the bilinear form B, applied to the ith factor of « and the Oth factor of 5. Using the
isomorphism V®(+1) =~ Hom(V®", V), the operad underlying this cyclic operad
may be identified with the endomorphism operad of [28] and [13].

A cyclic algebraover acyclic operad P isachain complex A with inner product
B, together with amorphism of cyclic operads P — £[A].

(1.8) EXAMPLES

(1.8.1) Sable curves of genus 0. Define atopological cyclic operad M by letting
Mo(n) be the moduli space Mo, of stable curves of genus 0 with embedding
of {0,...,n} [22] (see also [13]). By definition, a point of M, is a System
(C,xo,...,2,), Where C isaprojective curve of arithmetic genus 0, with possibly
nodal singularities, z; are distinct smooth points, and C has no infinitesimal auto-
morphisms preserving the points xz; (this amounts to saying that each component
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of C minus its singularities and marked points has negative Euler characteristic).
The S,-action on Mo, is given by renumbering the punctures. The composition
o; takes two pointed curves (C, zo, . .., z,»,) and (D, yo, . . ., yp) iNt0
<CﬂiD Son . m - . )
(xi NyO)’ 0y« 9Li—1,Y1y - - s Yns Tit1y -+ s T | -
(1.8.2) Sphereswith holes. Defineatopol ogical cyclic operad M by letting /\A/lo(n)

be the moduli space of data (C, fo,..., fr), Where C is a complex manifold
isomorphic to CP*, and f; are biholomorphic maps of the unit disk

A={zeC|lz <1,

into C with digoint images. The composition o; takes (C, fo,..., fn) ad
(D, go,---,gn) into

((C\fi[&]) I (p\wld]),

fi (t) Ngo(t_l) RASIoJAN

fo,---,fz'1,91,---,gn,fz'+1,---,fm>-

Note that by applying the total homology functor H.(—, k) to the topological

operads Mg and Mo, we obtain cyclic operads in the category of graded vector
spaces.

(1.8.3) Commutative operad. This operad, denoted Com, has Com((n)) = k (the
trivial representation of S,,) for all n > 3, with the obvious composition maps.
Cyclic algebras over Com are commutative algebras (possibly without unit) with
an invariant scalar product in the ordinary sense: B(zy, z) = B(z,yz).

(1.8.4) Associative operad. This operad, denoted Ass, has Ass((n)) = Ind3" (k),
wherek isthetrivia representation of the cyclic group Z,,. Thus, thereis anatural
basisfor Ass((n)) labelled by thecyclicordersof theset {1, ..., n}, thatis, thefree
Zn-actionson this set. Note that cyclic orderson {0, 1, . .. ,n} arein bijection with
permutations of {1,...,n}; thus Ass(n+)) = Ass(n) is free as an S,-module,
with generating vector e,, andbasis{oe,, | o € S, }. Thecompositionisdetermined
by the formulas e, o1 €, = ep,+r—1 together with (1.2.1).

A cyclic Ass-algebrais the same as an associative algebra A with an invariant
scalar product. The basis element oe,, € Ass(n) actson A as an n-ary operation
(xl, c. ,(I,‘n) = Lo=1(1) - - - Lo—1(n)- 869[13], [12] for more details.

(1.8.5) Lie operad. Thisoperad, denoted Lie, isdetermined by the requirement that
its cyclic algebras are Lie algebras with invariant scalar product. Thus Lie(n) =
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Lie((n + 1)) can be identified, as a module over S,, C S,,+, with the subspace
in the free Lie algebra on generators z1, ..., z, spanned by all Lie monomials
containing each z; exactly once. The S,,-module Lie(n) is isomorphic to the
induced representation Ind%;l (x), where x is a primitive character of Z, (one
which takes the generator of Z,, into a primitive root of 1).

2. Modular operads

(2.1) Stable s-modules. A stable S-moduleis a collection of chain complexes

{v(g,n) [ n, g >0}

with an action of S,, on V((g, n)), such that V((g,n)) = 0if 29 + n — 2 < 0.

A morphism Y — W of stable S-modulesis a collection of equivariant maps of
chain complexesV((g,n)) — W((g,n)).

We have borrowed theterm ‘ stable’ from the theory of moduli spaces of curves,
since the condition of stability isthe samein the two settings.

Any cyclic S-module V such that V((rn)) = 0for n > 2 may be regarded as a
stable S-modul e by setting

{ V(n), 9 =0,

V(ig;n) = 0 450

(2.2
In the other direction, we have the forgetful functor, which we denote by Cyc.
If V is astable S-module, then Cyc(V) isacyclic S-module, and

Cyc(V)((n)) = V((0,n)). (2.3)
A stableS-moduleV has a natural extension to al finite sets|

VgD =| @D Vign)| - (24)
P 5
(2.5) Graphs. (See [25].) A graph G is afinite set Flag(G) (whose elements are
called flags) together with aninvolution o and apartition \. (By a partition of a set,
we mean a disjoint decomposition into several unordered, possibly empty, subsets,
called blocks.) We say that two flags a, b € Flag(G) meet if they are equivalent
under the partition .

Theverticesof G arethe blocksof the partition A, and the set of them isdenoted
Vert(G). The subset of Flag(G') corresponding to avertex v is denoted Leg(v). Its
cardinality is called the valence of v, and denoted n(v).

The edges of G are the pairs of flags forming a two-cycle of o, and the set of
them is denoted Edge(G). The legs of G are the fixed-points of o, and the set of
themis denoted Leg(G). Since aflag forms either aleg or half an edge, we seethat

Z n(v) = 2|Edge(G)| + n. (2.6)

veVert(G)
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(2.7) Thegeometricrealization of a graph. We may associateto agraph thefinite
one-dimensional cell complex |G|, obtained by taking one copy of [0, %] for each
flag, and imposing the following equivalence relation: the points 0 € [0, %] are
identified for all flags in a block of the partition A, and the points 5 € [0, 3] are
identified for pairs of flags exchanged by the involution o. Thus, two flagsin G
meet if and only if their corresponding loci in |G| intersect in a point.

For example, the following correspondsto the set of flags {1, ... ., 9}, theinvo-
lution o = (46)(57) and the partition {1, 2, 3,4,5} U {6,7, 8, 9}.

1 4 6 8
:2 :: :
3 5 7 9

Let H;(G) betheith homology group of the cell complex |G| with coefficients
in k, and let b;(G) be the dimension of H;(G). Then bp(G) is the number of
components of G, and b1(G) is the number of circuits of G. The graph G is
connected if bo(G) = 1.

(2.8) Stable graphs. A labelled graph is a connected graph G together with amap
g from Vert(G) into the non-negative integers. The value g(v) of this map at a
given vertex v is caled the genus of v. The genus ¢(G) of alabelled graph G is
defined by the formula

9(G)= > g)+bi(G)= > (9(v)-1)+|Edge(G)|+1.  (29)

veVert(G) veVert(G)

Adding twice (2.9) to (2.6), we see that

29— +n= Z (2(g(v) — 1) + n(v)) . (2.10)
veVert(G)

Likewise, adding three times (2.9) to (2.6), we see that

3(g—1)+n=I[Edge(G)|+ > (B(g(v) —1) +n(v)). (2.12)
veVert(G)

Both of these formulas will be needed |ater.

A forest is a (labelled) graph of genus O; a tree is a connected forest. This
definition is slightly different from the definition of treesin [12]: here, we do not
admit the tree with two legs and no vertices.

A connected labelled graph is called stableif 2(g(v) — 1) + n(v) > 0 for each
vertex v.
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If V is a stable S-module and G be a stable graph, let V((G)) be the tensor
product

V(G) = @ V(gv)v). (212)

veVert(G)

(2.13) Morphismsof graphs. Let Go and G1 betwo graphs. A morphism f: Go —
G1isaninjection f*: Flag(G1) — Flag(Gp) such that

(1) opo f* = f* 001, Whereo;, i = 0, 1, are the involutions of Flag(G;);

(2) o acts freely on the complement of the image of f* in Flag(Go) (i.e. G1 is
obtained from G by contracting a subset of its edges);

(3) two flags a and b in G1 meet if and only if there isachain (zo, ..., z) of
flagsin Go such that f*a = xzq, ooz; 1 and z; meet for all 1 < 7 < k, and
f*b = ooxy.

This definition is equivalent to that of Kontsevich-Manin [25].

A morphism f:Go — G1 defines a surjective cellular map |f|: |Go| — |G1]
which is bijective on the legs.

The preimage of avertex v € Vert(G1) under amorphism f, denoted f~1(v), is
the graph consisting of thoseflagsin Go which are connectedtoaflaginLeg(v) by a
chain of edgesin G contracted by themorphism. Notethat Leg(f~1(v)) = Leg(v).

A morphism f: Gy — G of labelled graphs is a morphism of the underlying
graphs such that the genus of a vertex v of GG1 is equal to the genus of itsinverse
image f~1(v) in Go.

Let " be the category of al stable graphs and their morphisms.

(2.14) Contractions of graphs. Let G be a stable graph and let | C Edge(G) is
a subset of its edges. Then there is a unique stable graph G//1 with the following
properties.

(1) Flag(G/1) is obtained from Flag(G) by deleting the flags constituting the
edgesin;
(2) theinclusion Flag(G'/1) — Flag(G) isamorphism of graphs w11 G — G/I.

Thegraph G/I iscalled the contraction of G along the set of edges|. Any morphism
f:G — G’ of stable graphs is isomorphic to a morphism of this form. Note that
the realization |G/I| is obtained from |G| by contracting each edge of | to a point.

If 1 is aset with just one edge e, we will abbreviate G/{e} and 7 (.} to G/e
and TGe-

(2.15) Thecategory I'((g, n)). LetT'((g, n)) bethe category whose objects are pairs
(G, p) where G is a stable graph of genus g and p is a bijection between Leg(G)
and the set {1,...,n}, and whose morphisms are morphisms of stable graphs
preserving the labelling p of the legs. This category has aterminal object x, ,,, the
graph with no edges and one vertex v of genus g and valence n.
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(2.16) LEMMA. ThecategoryT'((g, n)) hasa finite number of isomor phism classes
of objects, the set of which we will denote by [I'((g, n))].

Proof. Sincethe graph G isstable, theinteger 3(g(v) — 1) +n(v) isnon-negative
at each vertex. By (2.11), this gives a bound of 3(¢g — 1) + n for the number of
edges of G, and hence a bound of 6(g — 1) + 2n for the number of flags. Since
there are afinite number of stable graphs of genus g with a given number of flags,
the lemmafollows. |

Denote by Aut(G) the automorphism group of agraph G in I'((g, n)). Observe
that trees have no non-trivial automorphisms, since each vertex is uniquely deter-
mined by its distance from each of the legs (or even any two).

(2.17) Thetripleof stablegraphs. If C isacategory, let IsoC bethe subcategory of
isomorphismsof C. We define an endofunctor M of the category of stableS-modules
by the formula

MV((g,n) = Gel(;(glri(gm)) V(@) = GE[FG((BQ’H))] V(G) auwa)- (2.18)

Thefunctor M is atriple; that is, there are natural transformations i : MMV —
MY and n : V — MV making it into a monoid in the monoidal category of
endofunctors of the category of stable S-modules. Wewill how construct these and
verify the axioms of atriple.

We may associate to any category C asimplicial category 1so,C; the objects of
Iso,C are diagrams

(fla---afk):[GOAGlg...fk—*%kali)Gk]

in C, while the morphisms are isomorphisms of such diagrams. The face maps are
given by the usual formulas

(fZa"'afk)a 1207
ai(fla'-'afk): (fla"'afi+1f’ia-"7fk)a 1<Z<k_17
(fla"'afkfl)a Z:ka

as are the degeneracies

Ui(fla"'afk) = (f17"'7f’iaIdGi’fi+17"'7fk)7 0<Z< k.

In particular, 1sog C = I1soC.

Every object of Iso, IT'((g, n)) isisomorphic to an object made up of a sequence
of contractions [G — G/I1 — --- — G/I;], where G € ObI'((g,n)) is astable
graphandl; C ... C I C Edge(G) isachain of subsets of Edge(G).
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The proof that M is atriple rests on the identity

(M1Y)(g,n) = colim  V(Go)).
f1 fk
[Go—=-— Gyl
€lso,T'((g,n))

Equivalently,

(M1Y)(g,n) = colim P V(@)). (2.19)
Gelsol(gm) ) - 1, CEdge(@)

The multiplication p : MMV — MV of M isinduced by 01 : 1s01I'(g,n)) —
Isool'((g, m)), which mapsthe contraction G — G//I to G. Theunitr : V — MV of
M is the inclusion of the summand V((*,,,)) = V((g,n)) of MV((g, n)) associated
to the graph =, ,, with no edges.

The natural transformations M and My @ (M3V)((g,n)) — (M2V)((g,n)) are
induced by the functors 01,02 : 1s01I'((g,n)) — 1s00'((g, ), which send the
sequence of contractions G — G/lI1 — G/1, respectively to the contractions
G — G/l and G — G/l. Since 0101 = 0102, composing either of these with
1 gives the same natural transformation, proving associativity of multiplication in
thetriple M. It is easy to see that n isaunit.

(2.20) Modular operads. A modular operad A isan algebraover thetriple M inthe
category of stableS-modules. Thismeansthat thereisastructuremap v : MA — A
suchthat p(puA) = pu(Mp) : MA — A, and u(nA) =1d4 : A — A. For example,
for any stableS-module), MV isamodular operad, called the free modular operad
generated by V. Modular operads may be considered in any symmetric monoidal
categories.

(2.21) Coherence for modular operads. By a modular pre-operad, we mean a
stable S-module A together with a structure map 1 : MA — A. We now give a
criterion which determines when a modular pre-operad is a modular operad.

If A isamodular pre-operad and G € ObI'((g,n)), denote by u¢g : A(G)) —
A((g,n)) the S,,-equivariant map obtained by composing the universal map

A(G)) = MA((g;n) = colim A((H)),

Helsol'(g,n)

with the structure map u : MlA((g, n)) — A((g,n)). We call this map composition
alongthegraph G. Wemay usethetechniqueof (2.4) todefinemaps i : A(G)) —
A((9(G),Leg(@))) for any stable graph G (no longer requiring that the legs of G
be numbered).
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Given a morphism f: Go — G of stable graphs, define a morphism A((f)):
A((Go)) — A((G1)) to be the composition

A(Go) = @ A(g(w).Legw) = &Q A(f ()

u€Vert(G0) ’UGVel't(Gl)

Bty @  A(g(v), Leg(v)) = A(G1). (222

UEVeft(Gl)

(2.23) PROPOSITION. A modular pre-operad A is a modular operad if and only
if the morphisms A(( f)) definea functor on the category of stable graphs, that is, if

A((f1fo) = A(f1)A(fo),

for any two composable morphisms.

Proof. The associativity of the functor f — A((f)) impliesthat A isamodular
operad; A is an M-algebra precisely when A((f1fo) = A((f1)A(fo) for all
diagrams of the form

Go L% Gy L2 4y

On the other hand, if A is a modular operad, then given a composable pair of
morphisms Go o, G1 LN G2, we seethat A(( f1)).A(( fo)) isthe composition

A(Go) = @ Alglu),Legw)) = @ A(f'(v)

u€Vert(G0) ’UGVel't(Gl)

Q. 41, N o
—— Q Alg).Leg)) = & A(f2 (w))

’UGVel't(Gl) wGVel't(Gz)

Q=1
T Q) Aglw). Legw)) = A(G2). (229

wGVel't(Gz)
But .4 isamodular operad, so that associativity holdsfor .A applied to the diagram
(flfO)il(w) - fl_l(w) — *gn,

for all w € Vert(G2). Thisalows usto rewrite (2.24) as
A(Go) = @ Alglu),Legw) = @  A((frfo)H(w))

u€Vert(Go) wGVel't(Gz)

Bt e) & 4(g(w), Leg(w)) = A(G2),

wEVeft(Gz)
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whichis A(( f1fo)).

(2.25) Endomor phism operadsand modular algebras. Let V' beachain complex
with symmetric inner product B(z,y) of degree 0. The endomorphism modular
operad £[V] of V has asits underlying stable S-module

EVI(g,n) = Ver.

The composition maps of £[V] are defined as follows: if G is a graph, the vector
space £[V](G)) may be identified with V®F(%) | and the composition map is
obtained by contracting elements of this chain complex with the multlinear form
B®EU(G) which contractswith the factors of V®Fa(V) corresponding to theflags
which are paired up as edges of the graph G.

It is easily seen that the cyclic operad underlying £[V'] is the endomorphism
cyclic operad introduced in (1.7).

An algebra over a modular operad A is a chain complex V' with inner product
B, together with a morphism of modular operads A — E[V].

3. Thestructure of modular operads

In this section, we show that a modular operad is a cyclic operad with additional
structure (a grading by genus and contractions on pairs of legs) satisfying certain
conditions.

(3.1) Cyclic operadsand thetriple of trees. For acyclic S-module we definea
cyclic S-module TV by summing over trees

V()= D V(1)

Ter((0,n)

(In [12], this triple was denoted T.. Since we have no need for T_ in this paper,
we omit the subscript from our notation.) The following result is Theorem (2.2) of
[12].

(3.2) THEOREM. The functor T is a triple and a cyclic operad P with P(0) =
P(1) = Oisthe same as an algebra over T.

In particular, we have free cyclic operads TV, where V is a cyclic S-module.
Note that we have the following commutative diagram of triples

stable S-modules —+ stable S-modules

Cyc Cyc

cyclic S-modules SN cyclic S-modules
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(3.3) Graded cyclic operads. A graded cyclic operad is a cyclic operad P such
that P((n)) hasan S,-invariant decomposition

=D P(g.n)
g=0

andif a € P((g,m)) andb € P((h,m)), thenao; b € P(g + h,n+m — 2)). We
say that P is a stable graded cyclic operad if P((g,n)) = 0for 2(g — 1) +n < 0.

(3.4 LEMMA. If A isamodular operad, then the cyclic S-module
(n) = P Alg,n)
9

is a stable graded cyclic operad.

Proof. If V isastable S-module, the sub-triple of MV induced by summing over
simply connected graphs alone isisomorphic to the triple TV?. It follows that if V
is an M-algebra, then V" is aT-algebra, that is, a cyclic operad. It is clear that it is
stable and graded. O

(3.5) The contraction maps. Given afinite set | and distinct elementsi, k € 1, let
ngj be the stable graph with Flag(G?/,) = |, asingle vertex with genus g, and a
single edge (aloop) joining theflagsZ andg

i
Gy =
J

If A isamodular operad, denote by &;; the composition map
Hes, D AG) = Alg,) = Alg + 11\ {i, 3.

(Here we make use of the notation (2.4).) We call &;; the contraction map. These
maps are equivariant, in the sensethat for any bijectiono : 1 — J of finite setsand
1,7 €1,

fo Yo(7)0 = Ufzga one .A((g, I)) (3.6)

We now determine the coherence relations that the contractions &;; on a stable
graded cyclic operad must satisfy in order for them to define a modular operad
structure.

(3.7) THEOREM. Let A be a stable graded cyclic operad with contraction maps
&ij - Allg, 1) = Allg + L1\ {3, 7})),
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equivariant in the sense of (3.6). These data determine a modular operad if and
only if the following coherence conditions are satisfied:

(1) For any finite set | and distinct elementsi, j, k, [ € 1,

&ij © &kt = ki 0 &ij-

The remaining conditions concern the composition a o, b of a € A(m) and
be A(n):

() &12(a o b) = (§120) oy b;

(3) fm,erl(a Om b) = a oy (leb);

(4) gm—l,m (a Om b) = £m+n—2,m+n—l(a Om—1 b*)

Proof. ‘Only if": Let A be a modular operad. By (2.21), we obtain a functor
f — A((f) from the category T" of stable graphsto C. If e, ¢’ are two edgesin a
stable graph G, the contractions of ¢ and ¢’ commutein T, in the sense that

. /
TGe,e' TG,e = TG /e ,eTGe! = TG {e,e'}: G — G/{e,e'}.

We now obtain relations (91—4) in the statement of the theorem by evaluating the
functor A((f)) on these identities, for all stable graphs with two edges. Indeed, a
graph with two edges has one of the following forms

(b)

(a)

Graphs of type (a) give rise to the relations of type (1) in the statement of the
theorem, graphs of type (b) to the relations of type (2) and (3) and graphs of type
(c) to relations of type (3). (Graphs of type (d) of courseimply that A” isa(graded)
cyclic operad.)

‘If": Let A be a stable graded cyclic operad equipped with contraction maps
&i; asin the statement of the theorem. We will construct a functor, which we still
denoteby A, onthe category I of stable graphs. On objects G of T" (stable graphs),
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we define A(G)) asin (2.12). If ¢: Go — G1 isan isomorphism of stable graphs,
wedefine ¢: A((Go)) — A((G1)) in the evident way: this definition is functorial on
the subcategory IsoT".

Next, we turn to the casewhere f = 7 .. G — G/e isacontraction. There are
two sub-cases:

(1) The edge e has two distinct ends, the vertices v and v’ Let H be the graph
whose flags are the legs of v and v'. Then H is a tree with one edge ¢ and two
verticesv and ', and H/e hasasingle vertex . We have

A(G) = A(H) ® Q) A(g(w),Leg(w))),

wZEv,v’
A(G/e) = A((9(0), Leg(m) © &) A(lg(w),Leg(w)))
wWHV,v
and we define
A(7.e) = pr ® Q) 1da(gw),Legw))-
w#v,v’

where 117 is the composition along H in the graded cyclic operad A°.
(2) The edge e has one end, the vertex v: Let i, j € Leg(v) be the two flags of
e, and let v be the image of the vertex v in G /e. We have

A(G) = A((9(v). Leg(v)) ® Q) A((g(w). Leg(w))),
wH#v

A(G/e) = A((9(m) + 1, Leg(®) \ {i,}) ® &) A((9(w), Leg(w))
WHY

and we defineA((wG,e)) = fz‘j & ®w;év IdA((g(w),Leg(w)))-
Now let f: Go — G1 be agenera morphism of stable graphs, and let | be the
set of edges of G contracted by f. The morphism f decomposes as a composition

Go "o Go/l % Gy,

where ¢: Go/l — G1isanisomorphism. Choosing an ordering {es, .. ., ex } of the
edgesin |, we obtain afactorization

TGy, TGo\{er}, TGo\{eg.e2},
GO 0:€1 G0/€1 0\1€1rs,€2 GO/{617 62} 0\1€1,€2r,€3

TGo\{eq..-

€l _1}.€
G/l B Gy,

where each morphism is a contraction along one edge except the last, which isan
isomorphism. We define

A(S) = A(DDA(TGo\ fer,..es 1} ) - - - AlTGose1)-
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We must prove that this definition of A((f)) is independent of the ordering of
the elementsof |. It sufficesto provethe product does not changeif we interchange
two consecutive edgese; and e; 1. If the two edges do not meet, thisis evident. If
they do meet, then they form a stable graph with two edges, whose topology is one
of the four types (a—d) catalogued above. From conditions (1-4) and equivariance
(3.6), it follows that compoasition iswell-defined along every graph with two edges,
regardless of the numbering of itslegs.

Thus, under the hypotheses of the theorem, we have defined a functor f +—
A((f)) on the category of stable graphs, using the graded cyclic operad structure
A’ and the contractions &j. It remains to show that these functors are related by
(2.22) to the underlying modular pre-operad structure u: MLA — A associated to the
special morphisms of graphs G — *,,,. Thisis evident if we order the vertices of
G'1, and then order | in acompatible fashion; the decomposition of A(( f)) obtained
from this ordering clearly correspondsto (2.22). O

4. Twisted modular operads

In this section, we introduce twisted triples Mg, which will be used in the next
section in the construction of the Feynman transform .

(4.1) Hyperoperads. A hyperoperad ® in a symmetric monoidal category C is a
collection of functors from the categories I1sol'((g, n)), g,n > 0, of stable graphs
and their isomorphismsto C, together with the following data.

(4.1.1). To each morphism f: Go — G1 of I'((g, n)) isassigned amorphism in C

@G e Q& D(fHv)) = D(Go),
UEVel’t(Gl)
natural with respect to isomorphisms.
(4.1.2). If x4, isthegraphinI'((g, n)) with no edges, D (x,,,) = 1, the unit object

of C.
These data are required to satisfy the following conditions.

(4.1.3). Given a sequence of morphisms Go N G1 LN G2 in T'((g,n)), the
following diagram commutes
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Do @ DLwe & DUite) —2DEne X D)

vEVert(Gy) veVert(Gy) veVert(Gy)
5’ Vi1

Do Q @Ulene &K Ditw)
vEVert(Ga) we f; 1 (v)
@(Gz)®®%vm(cz) Vfllfz—l(v)l

DEre Q) D2 f)7)

veVert(Gy)

D(Go).

Vfr-f1

Here, f1|f, *(v) denotesthe restriction of f; to the subgraph f, *(v) of G1.
(4.1.4). If f: Go — G1 isanisomorphism, the following diagram commutes

D(G1) ® Qpevear@)D(f (V) —L D(Go)

2(f)

D(Gy).

(4.2) Modular ®-operads. If © is a hyperoperad, define an endofunctor Mg on
the category of stable S-modulesby the formula

MaV(g:n) = @ D(G)@V(G).
Gelsol'(g,n))

We show that My is a triple by imitating the proof that M is. The unit of the
triple is again defined by theinclusion of the summand associated to the graph *, ,,
with no edgesinI'((g, n)): we may identify V(g, n)) wWith ® (x4 ) ® V((*4,n)), and
D(xgn) = Lby (4.1.2).

We have the identity

(MR V)((g,m)) = . {@(G1)® X @(fll(v))®V((Go))}-
(GG veVert(Gy)

€ls0T'((g,n))

Using the hyperoperad structure maps v, it is easy to define a natural transforma-
tion u from (M2 V) ((g, n)) to (Mg V)((g, n)). By (4.1.4), we see that n isaunit for
this multiplication.

We also have the identity
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(M3 V) ((g,m)

= colim {@(Gz)@ & 2(f31()

[Gogclngl veVert(Ga)
€l ((g,m))

® & @(ffl(v))w((Go))}-

UEVeft(Gl)

By (4.1.3), we see that the multiplication 4 is associative.
A modular ®-operad is an algebra over the triple My, .

(4.3) Cocycles. If C is a symmetric monoidal category, an object L is said to be
invertible if thereis an object L—! and anisomorphism 1L = L @ L~ 1.

A cocycleisahyperoperad ® such that ©(G) isinvertible for all stable graphs
G, and such that the morphisms © ¢ associated to morphisms of stable graphs
f:Go — G1 are isomorphisms. The inverse of a cocycle D is again a cocycle,
which we denote by ©~1,

(4.4) Coboundaries. Let [ be an S-module such that each object [((g, n)) is invert-
ible. Tensoring with [ definesafunctor on S-modules, which we denoteby V +— (V.
Thereisanatural structure of a cocycleon

2(G) =1(g.n)® @ Uglv),n)

veVert(G)

and anatural isomorphism of triples Mg g5, = [oMyg ol L. Wecall thiscocyclethe
coboundary of [. It followsthat if D isacocycle, thefunctor [ inducesan equivalence
between the category of modular ©-operads and the category of modular ® ® ©,-
operads.

Let ©, be the coboundary associated to the invertible stable S-module s given

by
s(g,n) =272 =ng,

where ¢, is the aternating character of S,,. Equation (2.10) shows that D, is
concentrated in degree 0.

The functor V + sV is called suspension. Since ©2 = 11, the double suspen-
sion of a modular operad is a modular operad. Note that the suspension of cyclic
S-modules, considered as stable S-modules, coincideswith the definition of suspen-
sion on cyclic S-modules[12], given by the formula AV(n) = 31 "¢, 1 ®@ V(n).

Twofurther coboundarieswhich will beof interest are associated to theinvertible
stable S-modulesp((g, n)) = £=89-D-2k and %((g, n)) = Zk.
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(4.5) Determinants. For a finite-dimensional vector space V' of dimension n, let
Det(V') be the graded vector space

Det(V) = S "A"V;

thisis the one-dimensional top exterior power of V', concentrated in degree —n. If
Sisafinite set, let Det(S) = Det(k”). Observethat there is anatural isomorphism

Det(5)? = -5k, (4.6)

(4.7) LEMMA.. Given a collection of vector spaces (V; )¢, thereis natural identi-
fication

Det (,V;) ~ Q) Det(V;).
i€l
(4.8) The dualizing cocycle. By (4.7), we see that &(G) = Det(Edge(G)) is a
cocycle, which we call the dualizing cocycle. Given a cocycle ©, we denote the

cocycle 8 ® ®~ 1 by ©V and call it the dual of ©. This duality will beimportant in
the definition of the Feynman transform for modular operads.

(4.9) PROPOSITION. Thereisa natural isomorphism of cocycles 82 = ®,.
Proof. Thereis anatural isomorphism®, (G) = %~%k, where

(=3g-D+n— ¥ (3lgle) 1) +nv)).
veVert(G)

By (2.11), we seethat ¢ = |Edge(G)|, from which the result follows. O

(4.10) The orientation cocycle. Let Or(e) be the orientation line of an edge e
in a graph G, that is, the determinant %:2Det({s,1}), where s and ¢ are the pair
of flags making up the edge e. The orientation cocycle T(G) of agraph G is the
one-dimensional vector space

%(G) = Det ( b Or(e)) .
ecEdge(G)
(4.11) PROPOSITION. Thereisa natural isomorphism& = ¥ ® D,.

Proof. If 2 and y are two independent elements of a vector space V', denote by
¥~z A £~y the corresponding element of Det(Span{z,y}). If s and ¢ are the
two flags making up an edge e, then Or(e) is spanned by =2(Z1s A 1), and
thus (Or(e)) is spanned by a vector (X ~1s A ©71¢). We may identify this with
theelement Ze ® (X715 A ©71¢) of Det({e}) ™! ® Det({s, t}). Tensoring over all
edges of GG, we obtain a natural isomorphism

T(G) = Det(Edge(G)) ! @ Det(Flag(@)) ® Det(Leg(G)) L.
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(Here, we use the fact that Det(Flag(G)) @ Det(Leg(G))~* isthe Det of the set of
internal flags of G, those which are not legs.)
Thus, it remains to show that

9,(G) = Det(Edge(@))? @ Det(Flag(G)) * ® Det(Leg(G)).
Since®, is concentrated in degree 0, we see that
9,(@) = © 2@ Det(Flag(G)) * ® Det(Leg(@)).

The proposition now follows from (4.6), which shows that Det(Edge(G))? =
y1—2|Edge(G)| 0O

Modular T-operads admit a notion of algebra parallel to that for modular oper-
ads, asis shown by the following proposition.

(4.12) PROPOSITION. Let V' be a chain complexwith antisymmetricinner product
B(z,y) of degree —1. Define the stable S-module £[V] of endomor phisms

EVI(g.n) = Ve

Thereisamodular T-operad structure on E[V].

Proof. For a graph G € T'((g,n)), the composition £[V](G)) ® %(G) —
E[V]((g,n)) is defined in the same way as in the untwisted case: we identify
E[V](G)) with V®F(&) and contract with BEI9 ) The resulting map is well-
defined, and invariant under the action of the groups Aut(G) and S,,: the antisym-
metry of B is needed since reversing an edge e € Edge(G) changes the sign of
%(G), while the degree of B must be —1, since supressing an edge e € Edge(G)
changesthe degree of Det(G) by 1. O

(4.13) The determinant of a graph. The determinant of a graph G is defined to
be Det(G) = Det(H1(G)).
(4.14) PROPOSITION. Thereis a natural isomorphism

Det= 5052 s, ' oy

In particular, Det is a cocycle.
Proof. This follows from applying (4.7) to the exact sequence of vector spaces
arising from the complex of cellular chains of the graph G

0— Hi(G) —» P Or(e) » k® Vert(G) — Ho(G) =k — 0. o
ecEdge(G)

Since Det(H1(G)) istrivial when G is atree, we see that a cyclic operad may
be considered as a modular ®-operad for either the trivial cocycle® = 1 or the
determinant cocycle® = Det.
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5. TheFeynman transform of a modular operad

In this section, we define afunctor F5 from the category of dg modular ©-operads
to the category of dg modular ©V-operads, where we recall that ®¥ = 8 @ 71,
and & isthe dualizing cocycle (4.8). We call it the Feynman transform, since F 5.4
isasum over graphs, as is Feynman's expansion for amplitudes in quantum field
theory.

The most important properties of Fy are that it is a homotopy functor, in the
sensethat it mapsweak equivalencesto weak equival ences, and that it hashomotopy
inverse F4v: that is, there is a natural transformation from F4vF5 to the identity
functor such that for any modular operad A, F5vFo.A — A isaweak equivalence.
Inthisway, we seethat the homotopy categoriesof modul ar ©-operadsand modular
D" -operads are equivalent.

In the special case where ® = 1 isthetrivial cocycle, we denote Fy by F, and
Fqv by F~L,

(5.1) Definition of the Feynman transform. As a stable S-module, but ignoring
differentials, F5.4 equals Mgyv A*, the underlying stable S-module of the free
modular ©"-operad generated by the linear dual A* of A. The differential OF A 1S
thesum g _ 4 = 0.4+ + 0, where § 4+ isthe differential on Myv.A* induced by the
differential on A*, and 9 is defined as follows.

If G isastable graph and e is an edge of G, the adjoint of the structure map of
the morphism 7 .. G — G /e isamap

(hre ) D(G/e)* © A(G/e)” = D(G)" @ A(G))",

of degree 0. Thereis natural map e.: R(G/e) — £(G), given by tensoring with the
natural basiselement e of &({e}) = Det({e}). Tensoring these two maps together,
we obtain amap

% €6®(#7I'G’6 )*

R(Gle) ®D(G/e)" ® A(Ge))

R(G)@2(G)" @ A(G)”

DY (G/e) ® A(Ge)" o DY(G) @ A(G)",

of degree —1.
Recall that My v .A((g, n)) isthe sum of complexes

(R(G) @2(G)"® A((G))*)Aut(G)

over isomorphism classes of stable graphs G € ObI'((g,n)). Given two stable
graphs G and H, define the matrix element

9a,H

(R(G) @ A(G))aue) — (R(H) @ A(H))")au(m)»
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to be the sum of the maps ¢ over al edges e of H such that G = H/e; in
particular, O i vanishesif |Edge(G)| # |Edge(H)| — 1. The term 657 . does not
depend on the isomorphism of H/e with G which is used, since any two such
isomorphisms differ by an automorphism of G, and we have taken coinvariants
with respect to Aut(G).

(5.2) THEOREM.

(1) The map o, 4 has square zero.

(2) Thepair (F5.A = Mgv A*, 6, 4) isamodular ®"-operad of chain complexes.

(3) The Feynman transform F5, is a homotopy functor: if f : A — B isaweak
equivalence of modular ©-operads, thensoisF5 f : FoB — Fo A.

Proof. The matrix e ement

(0®)a,x

(R(G) @ A(G))au(c) (R(K) @ A(K)")au(x)»

of 9% isasum over pairs (eg, e) of distinct edgesof K suchthat G = K/{eq, es}.
The exchange (e1, e2) — (e2, e1) isafixed-point free involution on the set of such
pairs. The respective contributions dy/c, ¢,0r.e; 8 65 /e, ¢116k,e, 10 9* cancel,
since the two isomorphisms

A(K) = &(G) ® &({e1, e2}),

in their definition are negatives of each other, showing that 92 = 0.

Itisclear that 9 o § 4« + d 4« 0 & = 0, sincethe differential in A which induces
0 4+ 1s compatible with the structure maps of the modular ©-operad A. Together,
these results show that df _ 4 has square zero, proving part 1.

It is obvious that the internal differential § 4~ is compatible with the modular
©V-operad structure. To prove part (2), it remains to show that the differential 0 is
compatible with the structure maps of the modular ©-operad A

DY(G) ® Mpv A" (G))

= coim DY@ e @ @) @A (F )
[f:G'=G]
€l (g,n)/G veVert(GQ)

=% A((g,m);

recall that I'((g,n))/G is the comma category, whose objects are morphisms f :
G' — G inT((g,n)) with target G. The differential induced by 9 on F5 A((G)) is
a sum index by the vertices v of G, of terms which are themselves a sum, over
the vertices u of the graph f~*(v), of all ways of inserting an edge at u. Thisis
clearly the same as summing over all ways of inserting an edge at al the vertices
of G’. On application of the structure map ¢, this goes into the differential o of
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Fo.A((g,n)), showing that 9 is compatible with the modular ©"-operad structure
onFyA.

Part (3) is proved by considering a spectral sequence associated to the cone
of the map F f: we filter by number of edges, in such a way that the E1-term
of the spectral sequence eguals the cone of the map Fo H..(f), which is zero by
hypothesis. The convergence of the spectral sequence follows from the fact that
Fo5.A((g,n)) and F5B((g, n)) have contributions from afinite number of graphs, so
that the spectral sequenceis uniformly bounded in one direction. O

(5.3) The homotopy inverse of the Feynman transform. Under our hypothesis
that A((g, n)) isfinitedimensional in each degree, there are isomorphisms of stable
S-modules

FovFoA = My (M;gv A*)* = Mp Mg-165A,

which shows that (FovF».A) (g, 7)) is acolimit over [Go EX G1] € I1soI'1((g,n))
of the functor

GohGlmaGne & (8(U7w) eo(fv)) ® A(Go).
veVert(G1)

The summand associated to the object [x,., —= x,.,] is isomorphic to A((g, n).
Let 7:F5vF5A — A be the map induced by projection onto this summand. We
now arrive at the main result of this section.

(5.4) THEOREM. If Aisamodular D-operad, thecanonical map 7:FovFo A — A
is a weak equivalence, that is, induces an isomor phism on homol ogy.

Proof. Fix g and n. We start by analyzing the complex S = (FovF».A4)(g,n)).
The following lemma identifies the underlying graded S,,-module S*.

(5.5) LEMMA. (@) Thereis an isomorphism

S= _colim S(G)= &cer(gnS(G)aua)

Gelsor(g,n)
where
S@= @ SG)
ICEdge(@)
and

s@n=oGMe @ (Amgiw) ()@ A(G).

veVert(G/1)

(b) The hyperoperad structure of © induces a natural isomorphism S(G,1) =
Det()~1 ® 9(G) ® A(G)).
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Proof. The proof of (a) is similar to the formula of (2.19) for M2V, except that
now, the cocyclefactors associated to the two Feynman transforms must beinserted
at the appropriate points.

The proof of (b) is asfollows. The structure maps associated to the morphism
na, for the hyperoperads & and © induce isomorphisms

PEMNe Q D(rgiw) =D(G),
veVert(G/1)

faMe Q Alrgiv) =8(G),
veVert(G/1)

and the ratio of these formulas gives

sGHreaGMe @ (frgiw)ted(rg)w)
veVert(G/1)

=~ R(G) 1o 2(aG).

Multiplying both sidesby &(G/1) and observing that £(G'/1)®/(G) 1 = Det(1) 1,
part b) of the lemmafollows. O

Recall that for any cocycle ¢ and any ¢-operad B, the differential in F: 5 isasum
of two termsd- + 0, where §z- isinduced by the differential of 5, and 9 isinduced
by the modular ¢-operad structure of B, asexplainedin (5.1).

Applying this with ¢ = ©" and B = Fo.A, we find that the differential in
FovFoAisasum of threeterms dg + 91 + 92:

D) 6o = (60)Aut(G): S(G)Aut(G) — S(G)Aut(G) is the map induced on Aut(G)-
coinvariantsby dp: S(G,1) — S(G, 1), where 9y isthe differential induced on
the summand S(G, 1) by the differential of A;

(2) the differential

61: S(G) aua) = @ S(H)au(m)

HE[T (g,n))]
|Edge( H )| =|Edge(G) | +1

isinduced by the differential 0 in Fo.A, which itself isinduced by the modular
D-operad structure of A;

() 52 = (F2)aw(e) S(G)awe) — S(G)auw(e) isthe map induced on Aut(G)-
coinvariants by

92 S(G,1) = P S(G,1\ {e}),

ecl
where 9, comes from the differential 0 on Fov B, and B = F5 A.
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Thus, 6o depends only on theinternal differential of .A, 61 depends on the modular
D-operad structure of A, while §, is purely combinatorial and only dependson the
graded stable S-modul e structure underlying A.

(5.6) LEMMA. The map 7:(S,d1 + d2) — A((g,n)) is a weak equivalence of
complexes.

Let us first show how this lemma implies Theorem (5.4). Observe that §; has
the effect of increasing both |I| and |Edge(G)| by 1, while 4, leaves |Edge(G)|
unchanged, and decreases |I| by 1. Therefore, S is the total complex of a double
complex (See, d0, 91 + 02), Where

Spq = @ @ Sp+q(Ga I) ’

Gel(g,n B
[T(g,n)] [l|=q+2|Edge(G)| Au(G)

where S, ,(G, 1) is the degree p + ¢ subspace of the graded S,,-module S(G, 1).
Since there are a finite number of terms, indexed by G and I, contributing to this
direct sum, this double complex hasp + ¢ > 0 and ¢ bounded below, and thus its
associated spectral sequenceis convergent, yielding the desired implication.

We now turn to the proof of Lemma (5.6). Introduce the decreasing filtration &
of S given by

S = P S(G)auwe)-

Ge[T((g,n))]
|Edge(G)]>q

From the properties of §1 and d, discussed above, we see that
or®(S) = (8, 02).

This reduces the proof to that of the following lemma.

(5.77 LEMMA. For each stable graph G with |Edge(G)| > 0, the complex
(S(@), d-) isacyclic.

Indeed, on taking Aut(G)-coinvariants, thislemmaimplies that the differential
62 = (92) aut(q) ON S(G) awa) 1S acyclic, since the group Aut(G) is finite and we
work over afield of characteristic zero.

The proof of Lemma (5.7) is based on the identification

(5(G), 8,) = C.(Edge(@)) ® D(G) @ A(Q)), (5.8)

where, for any finite set X

Co(X) = €P Det(l)™*

ICX
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is the augmented chain complex of the simplex with vertices X. Of course, this
chain complex is acyclic for X non-empty. The identification (5.8) follows from
Lemma (5.5) (b).

This concluded the proof of Theorem (5.4). O

(5.9) The Feynman transform and the cobar operad of acyclicoperad. Let BA
be the cobar operad the cyclic operad A, introduced in Section 3.2 of [13]. We may
regard A asamodular operad (2.2); then Cyc(F.A) isrelated to B.A by the formula

Cyc(FA) = SsBA.

(5.10) The Feynman transform and Vassiliev invariants. Vassiliev has intro-
duced a filtered space V' = |72 o Vi of knot invariants of finite order (see Theo-
rems 8 and 9 of [2]). The associated graded space W = grV is a commutative
cocommutative Hopf algebra. Let P = @ P, beits space of primitives. One of the
chief results of Kontsevich and Bar-Natan identifies P;, with the lowest homology
groups of certain graph complex. In our language,

Pz @ Hi (s FCom)(g,n)s,,

k=g—14n
n>0

where Com is the commutative operad.

6. Modular operadsand moduli spaces of curves

In this section, we give some basic examples of modular operads, coming from the
theory of moduli spaces of stable algebraic curves. Throughout this section, the
basefield is taken to be the field of complex numbers C.

(6.1) Orbifolds. Let G be a groupoid in the category of varieties over C, with
morphisms Mor(G), objects Ob(G), and source and target maps s, t: Mor(G) —
Ob(G). The groupoid G is called

(1) proper if the morphism s x & Mor(G) — Ob(G) x Ob(G) is proper;
(2) étaleif sandt are étale;
(3) smooth if Mor(G) and Ob(G) are smooth.

An orbifold (smooth algebraic stack) is an equivalence class of smooth proper
étale groupoids: two groupoids G; and G, are equivalent if there is an étale map
f:0b(G1) — Ob(G») and an equivalence of categories G = f*G», or more gener-
aly, if they are joined by a chain of such equivalences. For more on orbifolds, see

[6] and [7].
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A sheaf (S, p) onan orbifold G isasheaf S on Ob(G) together with an isomor-
phism p: s*S = t*S. A global section of such a sheaf is a global section f of S
over Ob(G) suchthat s* f and ¢* f areidentifed by p.

The coarse space |G| of an orbifold G is the quotient of Ob(G) by the action of
G, in ather words, the space of isomorphism classes of objects of G. Note that the
coarse space |G| need not be smooth.

If G isagroup acting on an orbifold G, the quotient G/G is the orbifold with
the same objects as G, and whose morphismsare G x Mor(G). The structure maps
are defined as follows

s(g,2) = s(x),  tg,x) =g(t(x)),  (9,2)(hy) = (gh, h(z)y).
The coarse space of G/G isisomorphic to the quotient |G|/G.

(6.2) Deligne-Mumford moduli spaces. If 2(g — 1) +n > 0, the (large) groupoid
of smooth complex curves of genus g with n marked points, with isomorphisms as
arrows, represents an orbifold M, ,,, of dimension 3(g — 1) +n. Asg and n are
varied, we obtain an S-orbifold, which we denote by M.

Knudsen[22] provesthat the (large) groupoid of stable complex curvesof genus
g with n. marked points, again with isomorphismsas arrows, representsan orbifold
ﬂg,n, of dimension 3(g — 1) + n. Asg and n are varied, we obtain an S-orbifold,
which we denote by M, which contains M as a dense open subset.

Thedual graph G(C, x1, . .., z,) € I'((g,n)) of astablecurve (C, z1,...,z,) €
M((g,n)) isthe labelled graph defined as follows. Its flags are pairs (K, y) where
y iseither anodal point or amarked point z; and K isabranch of thecurve C at y.
(Notethat the curve has one branch at amarked point and two branches at anode.)
Its vertices are the components of C, its edges are the nodes, and its legs are the
points z;. If v € G(C,x1,...,x,) isthe vertex corresponding to the component
K € C, label v by the genus g(v) of the desingularization of K.

Given G € I'((g,n)), denoteby M C M((g,n)) the orbifold of stable curves
whosedual graphisG; notethat M isisomorphictotheorbifold M (G)) /Aut(G).
This gives a stratification of M ((g,n)) whose strata correspond to elements of
I'((g,n)); the open stratum M((g, n)) correspondsto the graph with no edges. The
closure M of M isisomorphic to the orbifold M ((G)) /Aut(G).

The S-orbifold M is amodular operad M, with product defined as follows: if

G € T'((g,n)) isastable graph, the composition map

peM(G) = [ Mg(),v) = M(g,n) (6.3)

veVert(G)
isdefined by gluing the marked points of the curvesfrom M((g(v), v)),v € Vert(g),

according to thegraph G (see[13], 1.4.3). Thismap inducesthe embedding of M
asaclosed stratum of M.
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Taking homol ogy, we obtain amodular operad H, (M ) inthe category of graded
vector spaces. An algebra over this operad is the same as a cohomological field
theory in the sense of Kontsevich-Manin[25].

(6.4) Differential forms with logarithmic singularities and principal values.
Let X be a compact n-dimensional complex manifold and D Cc X a divisor
with normal crossings. Let D* C X be the locus of k-fold self-intersection of
D (so that D° = X and D! = D), with inclusion morphisms i*: D¥ — X and
jk Dk \ D¥1 — X. Let n¥: D¥ — D* c X be the normalization morphism of
D¥. The variety D¥ is smooth, and the preimage

Dk+l — (ﬂ,k)fl(Dk+1)

isadivisor in D* with normal crossings.

Let £% bethe complex of sheavesof C* differential formson X. The complex
€% (log D) of sheaves of C* differential forms with logarithmic singularities is
the sheaf of subalgebras of ij;(\D generated by £% andformsdf/f where f isa
holomorphic equation of D.

Let&*(X) and £°(X, log D) bethe spacesof global sections of the sheaves £y
and £% (log D). Each of the spaces £¢(X,log D) and £(X) are nuclear Fréchet
spaces, since they are spaces of C'* global sections of smooth vector bundles.

Let Cx . be the sheaf of de Rham currents on X. The space of global sections
Ci(X) = I'(X,Cx,) is the topological dual of £¢(X), and the differential J on
Cx,. hasdegree —1 and is adjoint to the exterior differential d on £%.

The principal value (Herrera—Lieberman [17]) is the continuous map of graded
sheaves

pv:Ex (log D) — Cx,2n—e
defined as follows: if U C X is an open set, o € (U, &% (logD)) and w €
To(U.EF)

(pva,w) = lim aAw,
e0/19|>e

where ¢ isaholomorphic definingequationof DNU inU. (Thelimitisindependent
of ¢.)
The Poincaré residue is the map of graded sheaves
Res £% (log D) — mi&s (D2,

which measures the deviation of pv from being a map of complexes (Prop. 5.3 of

[17]):
d(pv(e)) — pv(de) = pv (2riRes(«)) , a € EX(logD). (6.5)
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(6.6) Currentswith logarithmic singularities. Denote the image of the injective
map

ng;)k (Iog ﬁk+1) ﬂ> CX,Z(nfk)foa

by Cx (D, k), and the sum of these spacesas k variesbetweenOand & by Cx o (D).
(Notethat these spaceshave zerointersection, sothesumisdirect.) Wecall elements
of Cx,«(D) currents with logarithmic singularities. By 6.5, the differential § maps
Cx,e(D,k)t0Cx (D, k) ®Cx o(D, k+1); thus,Cx (D) isacomplex of sheaves.
Note that the spaces of global sectionsC;(X, D) are nuclear Fréchet spaces.

(6.7) PROPOSITION. The inclusion Cx (D) — Cx,e is a weak equivalence of
complexes of sheaves.

Proof. We may assume that X = C", with the divisor D is given by the
equation z1 ...z, = 0, m < n; we must prove the weak equivalence for the
stalks of the two complexesof sheavesat 0 € C*. If I C {1,...,n},letC' c C"
be the corresponding coordinate subspace, let D' ¢ C' be the divisor given by
[Liei 2z = 0,and let (C*)' = ' \ D', with embedding j'": (C)! — C". Leti(l)
be the least element of the set I.

The graded sheaf Cc» o (D) decomposes as adirect sum

CouD) = @D M (0gD").
Ic{1,....m}

We write the associated decomposition of acurrent 7" lying in the stalk Cc» (D)o
of Cen i(D) @t Oas

T= > jipvix),

1c{1,...,m}

where o isin the stalk a 0 of £3™ "V ~"(log D"). Define amap h: Ccn ;(D)o —
Cen i+1(D)o by

It is easily seen that this is a contracting homotopy from Ccr o(D)o t0 (Ccn e)o0,
proving the proposition. O

The above constructions generalize to the situation of a divisor D with normal
crossingsinanorbifold X . Theorbifold X may berepresented by agroupoid G, and
the divisor D givesriseto divisor with normal crossingsin Ob(G), invariant under
the action of G (that is, s (D) = t~}(D)). The sheaves £5(log D) and Cg.+ (D)
are defined to be the subsheaves of Edn(g) (log D) and Cop(gy,« (D) invariant under
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the action of G, that is, such that s*w = t*w. (Pullbacks of currents on Ob(G) by
the maps s and ¢ are well-defined, since these maps are étale.)

(6.8) The log-complex of M, . The compactification divisor D,,, = Mg, \
M, isadivisor with normal crossingsin the orbifold M, ,,, which decomposes
into an intersection of smooth divisors, corresponding to the graphsin I'((g, n))
with one edge. Let C, (M, D) and C,(M) be the stable S-modules

Co(M,D)((g,n)) = Ca(Myn, Dgn) and Co(M)((g,n)) = Ca(Mgp).
Theoperation of pushing forward currents along theinclusion of strata makesthese
into modular operads of chain complexes, which are weakly equivalent, and whose

homology is the operad H, (M) of graded vector spaces.

(6.9) Thetopological Feynman transform. Recall [ 14] that nuclear Fréchet spaces
form a symmetric monoidal category A'F, with operation & (projective tensor
product). Furthermore, the opposite symmetric monoidal category N F is iden-
tified, via the operation V' — V' (strong dual) with the category DF of nuclear
DF-spaces, also with the projective tensor product.

Let C(NF) and C(DF) be the symmetric monoidal categories of bounded
chain complexeswith finite-dimensional homology over N F and DF. The strong
dual identifies C'(N F)% with C(DF), and the homology of the dual complex is
naturally dual to the homology of the original complex.

Imitating the construction of the Feynman transform in the topological setting,
substituting the strong dual and projective tensor product for their algebraic ana
logues, we obtain afunctor F'°, the topological Feynman transform, from modular
operadsin C' (N F) to modular &-operadsin C(DF). Thisfunctor has ahomotopy
inverse FP constructed in the anal ogous way.

The stable S-moduleC, (M, D) is an example of amodular operad in C'(N F).
By (6.7), its homology may be identified with H, (M, D), the homology operad
of the topological modular operad M.

(6.10) The gravity operad. Consider the stable S-module Grav, given by
Grav((g,n)) = E*(Mgyn,109 Dy )"

For any graph G € T'((g, n)) with one edge, we have the adjoint of the residue map
Res;, : Grav((@)) ® &(G) 1 — Grav((g, n)).

Iterating these maps, we may define Res;, for any stable graph. The maps
(2n7)|Ed0e(G)IRest, are the composition maps making Grav into a modular & *-
operad in C(D.F), which we call the gravity operad.

Notethat the homology Grav((g, n)) of Grav((g, n)) formamodular 2 ~*-operad
in the category of finite-dimensional graded vector spaces, such that

Grav((g,n)) = He(Mgn)-
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Theresultsof [9] show that the S*-equivariant cohomology of atopological confor-
mal field theory in two dimensionsisamodular algebraover the suspension sGrav.
This paper also gives an explicit presentation for the cyclic operad Cyc(XsGrav).
(Seealso[10].) Thiscyclic operadisformal, in the sensethat thereisaweak equiv-
alence between it and and its homology. (See[13] and [10].) It seems unlikely that
thisistrue for Grav and its homology Grav.

Recall (4.4) the invertible stable S-module p((g,n)) = 2~89-D-2n whose
coboundary satisfies®, = #2. We seethat pGrav isamodular 8-operadin C(DF).

(6.11) PROPOSITION. We have an isomorphism thf"ppGrav =~ Co(M, D).
Proof. We have identifications

C. (mg,na Dg,n) = @ Ce (mg,na Dg,n)
k

~ @ 56(g71)+2n72k70 (Dk IOg Dk+1)
k

g’n’ g7n

IR

@ 56(9—1)+2n—2\Edge(G)|—o (ﬂ((G)), D((G)))A“t(G),
GeT'(g,n)

where D(@)) = M((G)) \ M((G)). The component of the last sum corresponding
toGis

M (51 (M, D)) (@)

and we obtain the sought after identification at the level of stable S-modules. In
fact, thisidentification also respects the compositions of the two modular operads.
It remains to check that the differentials coincide; we leavethisto thereader. O

As with any sort of cobar construction, the equation 2 = 0 in the Feynman
transform ngppGrav is precisely the associativity of the composition in pGrav.
This gives asimple explanation of why Grav isamodular &~ 1-operad.

7. Characteristicsof cyclic operads

If V isastable S-module, we can associateto it asymmetric function Ch(V), called
itscharacteristic. In this section and the next, we giveformulasfor Ch(B.A) interms
of Ch(A), where A isacyclic operad, and for Ch(F.A) in terms of Ch(.A), where
A isamodular operad. The first of these formulas involves a generalization of the
L egendretransform, and the second ageneralization of the Fourier transform, from
power series in one variable to symmetric functions in infinitely many variables.
Here, symmetric functions arise because of well-known correspondence between
the characters of the symmetric group and the ring of symmetric functions. For
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further details on the theory of symmetric functions, see Chapter 1 of Macdonald
[26].

(7.1) Symmetric functions. Consider the ring
A= ULnZ[[xl’ R ,(L‘k]]Sk

of symmetric functions (power series) in infinitely many variables. The following
standard symmetric functions

hn(x;) = Z Tiy - - Tiy, s en(z;) = Z Tiy - - Tiy, s

11< <Kl 11< <l

o
pn() = Z i
=1

arecalled respectively the compl ete symmetric functions, theel ementary symmetric
functions and the power sums. It is abasic fact that

A =Z[h1, ha,...] = Z]ey, ez, .. .],

A ®Q= Q[[plap27' . ']]7

that is, that each of these three series of symmetric functions freely generates
A (in the case of the power sums, over Q). In particular, h1 = e1 = p;, while
ho = 3(p3 + p2) and ez = 3(p? — p2).

Let o bean element of the symmetric group S,,, with cyclesof lengthay > a2 >
-+ > ay;thusn = a1 + - -+ 4+ a4. Thecycleindex of o isthe symmetric function

() = pay - - - Pa, € A.
The characteristic of afinite-dimensional S,,-module V' is the symmetric function

It may be proved that ch,, (V') isin A, athough it isonly evident from its definition
thatitisin A ® Q.
We extend the definition of ch,, to graded S,,-modules by

ch, (V) = D (=1)'chy(V),
where V; is the degree i component of V. Finally, the characteristic of a graded
S-moduleV = {V(n) | n > 0} suchthat V(n) isfinite-dimensional for all n is

o0

ch(V) =) ch,(V(n)).

n=0
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We denote by rk: A — Q[] the ring homomorphism which sends

n

hy — :1:_7
n!
or equivaently, p; — z andp, — 0, n > 1. If V isan S,,-module,
tk(chy (V) = W.

For this reason, we call rk the rank homomorphism.

(7.2) Plethysm. Plethysm is the associative operation on A, denoted f o g, charac-
terized by the formulas

(1) (fi+ fa)og= fiog+ faog,
(@ (fuf2)og=(f1o9)(f209);
(3) Iff = f(p17p25"')lthenpn Of = f(pnap2na)

Note that under the rank homomorphism, plethysmis carried into composition of
power series.
Thereisamonoidal structure on the category of S-modules, with tensor product

oo k
(VoW)(n) =P <V(k) ® D ®W(f1(i))) :

k=0 f4L,...n}—={1,..,k} i=1

(An operad V isjust an S-modulewith an associative compositionV oV — V)
(7.3) PROPOSITION. ch(V o W) = ch(V) o ch(W)

When V and W are ungraded, this is proved in Macdonald [26]. In the general
case, the proof depends on an analysis of the interplay between the minus signs
in the Euler characteristic and the action of symmetric groups on tensor powers of
graded vector spaces.

(7.4) Characteristic of S-modules. If V = {V((n)) | n > 1} isacyclic S-module,
its characteristicis

o
Ch(V) =Y ch,(V((n).
n=1
There is a forgetful functor from cyclic S-modules to S-modules, obtained by
restricting the action of V(n) = V((n + 1)) from S,,+ to the subgroup S,. The
characteristics of V considered as a cyclic S-module and an S-module are related
by

ch(V) = ac;r;(lv).

(7.5
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(7.6) Examples of characteristics. To illustrate the above definitions, let us give
some examples of characteristics of cyclic operads.

(7.6.1) The commutative operad. For the commutative operad Com, Com((n))

is the trivial representation of S,, for all n > 3, see (1.8.3). It follows that
ch,(Com((n))) = hy, for n > 3, and hence that

Ch(Com) = Exp <Z p;) A+ h1+ ho).
n=1

(7.6.2) The associative operad Since (1.8.4) Ass((n)) = Ind;"K,

chy, (Ass((n Z¢ ”/d

d|n

where ¢(d) is the Euler function (the number of units in Z/d). Summing over
n > 3, we see that

Ch(Ass) = Z ¢ Iog 1—pn) — (h1+ hy).

(7.6.3) The Lie operad. In (7.24) below, wewill provethat the characteristic of the
Lieoperadis

Ch(Lie) = (1—p1) Z ) |09 (1 —pn) + p1,

where 1(n) isthe Mobius function.

(7.7) The Legendre transform. Classically, the Legendre transform of a convex
function f : R — R isthefunction

(££)(€) = g(¢) = max (a¢ — f(x)) .

(See Section 3.3 of Arnold [1].) Setting & = f'(x), we seethat

gof' +f=uaf" (7.8)
Suppose that, instead of being a convex function, f(z) isaformal power series of
theform

s a
flz)=7" (7.9)

n=2
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where ap # 0; we denote this set of power series by Q[z].. The equation (7.8)
defines a unique power series (Lf)(€) = g(¢) € Q€]+, which we again call the
Legendre transform.

(7.10) PROPOSITION. If f and g are seriesof theform (7.9), then Lf = ¢ if and
onlyif f/ and ¢’ areinverse under composition, that is,

gof =uz.
Proof. Taking the derivative of (7.8), we see that
(o o )"+ 1 =af"+ 1"

Cancelling f’ from each side and dividing by f”, which is invertible in Q[z] by
hypothesis, wefind that ¢’ o f’ = x. The same reasoning provesthe converse. 0O

As a conseguence of this proposition, we seethat L isinvolutive: L(Lf) = f.

(7.11) £ and trees. Let V be a cyclic S-module with V((n)) = O for n < 2. The
cyclic S-module TV was defined in (3.1).

(7.12) PROPOSITION. Let a,, = x(V((n))) and b, = x(TV((n))) be the Euler
characteristics of the componentsof V and TV. If

f(J?) . :E_Z B i anpx™ and g(x) B x_z + i bpx™
2 n! 2 n! "’
n=3 n=3
theng = Lf.
Proof. It is a corollary of Theorem 3.3.2 of [13] that ¢' o f' = x. The results
follows by (7.10). O

With the notation of the proposition

b= > Il anw- (7.13)

n-treesT veVert(T)

In fact, the proposition remains true for an arbitrary sequence of rational numbers
{as,aaq, ...}, if wedefine {bs, by, ...} by (7.13).

(7.14) The Legendretransform for symmetric functions. Denote by A, the set
of symmetric functions such that rk(f) € Q[z]..

(7.15) THEOREM. (a) If f € A,, thereis a unique element g = Lf € A, such
that

0 0
go —f + f :pl—f. (7.16)
Op1 Op1
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Wecall £: A, — A, the Legendre transform.
(b) The Legendre transform of symmetric functions is compatible with that of
power series, in the sense that the following diagram commutes

L

A, I

rk rk

Qf]. —— Qlz]..
(c) The symmetric functions

O(Lf) of
and ——
Op1 Op1

are plethystic inverses. (Note that, unlike for power series, this equation does not
determine Lf.)

(d) Thetransformation £ isan involution, that is, ££ = Id.

Proof. If f € A, then 0f/0ps is invertible with respect to plethysm. Thus
(7.16) definesg € A, uniquely, proving (a). Part (b) isobvious, sincerk transforms
plethysm into composition.

In proving (c), we need an analogue of the chain rule for 9/9p; acting on A

0 ou ) ov

prto) = (a"” e

This formulais proved by checking that both sides are compatible with the rules
(1-3) defining plethysm (7.2).

Using this, the reasoning needed to prove (c) is formally identical to that in the
proof of (7.10).

To prove (d), we note that (c) implies

8 f ( dg ) 0 f
P oms Yapr) " apy
This shows that
8f ag Jdg < 6f> ag ( 89) 8f ag
o + f o —— = =(p1 .
op1 o1 op1 Yop1)  ap Yop1) " op1 o
Cancellation proves that
Jdg Jdg
+fo— =p1—
g+fo a1~ Paps

and hencethat f = Lg. O
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For example, Lh, = e, and vice versa.
The following theorem is related to results of Otter [29] and Hanlon—Robinson
[15] on the enumeration of unrooted trees.

(7.17) THEOREM. Let V be a cyclic S-modulesuch that V((n)) = O for n < 2and
V((n)) isfinite dimensional for all n. Define the elements of A,

f=e2—Ch(V) and g=hy+ Ch(TV).

Theng = Lf.
Proof. By definition of £, we must prove that

(h2 + Ch(TV)) © (p1 — ch(V)) + (e2 = Ch(V)) = p1 (p1 — ch(V)) ,

sinceby (7.5), f' = p1 — ch(V). A little rearrangement shows that this formulais
equivalent to

Ch(TV) o (p1 — ch(V)) = Ch(V) — ez o ch(V). (7.18)

Indeed, the formulas hp o (a + b) = hpoa+ hpob+abandhyo (—a) = ez 0 a
show that

ho o (pl — Ch(V)) =hy+epo Ch(V) — plch(V).

Equation (7.18) now follows from the formulap? = h, + e».

We prove (7.18) by constructing a differential graded S-moduleC = {C(n)}
such that the left-hand side of (7.18) equals ch(C), and the right-hand side equals
ch(H,.(C)). Define the S-module underlying C to be the plethysm X o W, where
the S-modules X’ and WV are defined by

[0, n < 2,
*n) = { (TV)(n), n>3
0, n =20,

SRes " V(n+1), n>2

(Here, X is the suspension functor on graded S,,-modules.) It follows from (7.3)
that ch(C) egualsthe right-hand side of (7.18).

We now construct a differential 6 on (X o W)(n). We say that a vertex v of a
tree T is aboundary vertex if exactly one of its flags forms part of an edge; denote
by 5(T") C Vert(T') the set of boundary vertices of T'. Then

(XoW)n)= B D < X V((v))®®EV((v)))- (7.19)

n-treesl’ BCB(T) \veVert(T)\B veB
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On the summand of (7.19) associated to (7', B), define the differential

5= 6,

veEB

where é, isthe natural identification, of degree —1, between this summand and the
summand associated to (7', B \ {v}).

Clearly (X oW)(n) splitsinto asum of subcomplexesCy indexed by the n-trees
T. If T has at least one non-boundary vertex, the complex C isisomorphic to the
tensor product of the graded vector spaceV((7")) and the augmented chain complex
of the simplex with vertices 5(T), and is thus contractible. As observed by Jordan
[20], there remain trees with either one vertex or one edge. We consider each of
these cases separately.

(1) Thecharacteristic ch(C;) summed over treesT" with one vertex equals Ch(V).
(2) The characteristic ch(Cr) summed over trees T' with one edge has two con-
tributions: the terms with B empty, which sum to h, o ch()), and the terms
in which |B| = 1, which sum to —ch(V)2. The sum of these two terms is
—ep 0 Ch(V) O

(7.20) The involution @ and the characteristic of the cobar operad. Using
the theorem just proved, we now write aformulafor Ch(B.A), where A isacyclic
operad. Uptodifferential, BA isthecyclicoperad Ts ¥ ~1.4*, andthusCh(B.A) =
Ch(Ts~1x~1A*). Since Ch(X~1A*) = —Ch(A), it sufficesto determinethe effect
of s and ¥ on Ch(V).

Denote by w: A — A the ring homomorphism such that w(h,,) = e,, n > 1. If
V isafinite-dimensional S,,-module,

w(chy (V) = chy(en @ V)

and thus w is an involution. Note also that w(p,,) = (—1)" 1p,.

We also need a modified involution &, defined by @(h,,) = (—1)"e,, or equiv-
dently @(p,) = —pn. Thus, if V is acyclic S-module such that V((n)) is finite-
dimensional for each n,

Ch(sV) = @(Ch(V)). (7.21)

(7.22) COROLLARY. Let A be a cyclic operad such that A((n)) = Ofor n < 2
and A((n)) isfinite-dimensional for each n, and let B.A beits cobar operad. Then

ha + Ch(BA) = Li(hy + Ch(A)).

Recall [13] that BB.A isweakly equivalent to .4, which suggeststhat the transform
L& A, — A, should be an involution. This follows from the next result.
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(7.23) PROPOSITION. If f € A,, then —L&f = L(—f).
Proof. By Example 8.1 of Macdonald [26], if « and v are symmetric functions,
uo (—v) = (ou) owv. If g = L(@f), we seethat the defining equation

N Jdg g
(@f) o % +g= pla o1
is equivalent to
d(—g) d(—g)
_ + (— — _ ,
fo 1 (—9) y 2! op1

that is, —g = L(—f).
(7.24) EXAMPLE: the Lie operad. The Lie operad Lie isweakly equivalent to the

cobar operad BCom of the commutative operad, see [13], and thus k2 + Ch(Lie)
isthe Legendre transform of

@(hy + Ch(Lie)) (Exp (Z pn> -1+ h1)>

=Exp<2 p;) (L-p0).

n=1
The Legendre transform of this symmetric functionis
pu(n
(1-p Z |091 Pn) + p1.

It follows that

o0

n
Ch(Lie) = (1—p1) Z 'ugl log(1— py) + h1 — ho,
aswas promised in (7.6.3).

8. Characteristicsof modular operads

(8.1) Thering A((n)). Consider the ring A((h)) of Laurent series with coefficients
in A. Thisring has a descending filtration

F™A((h {Z fill| f; € F™™ ZZA}

inducing atopology on A((h)). If f € A, theplethysm f o (—): A — A extendsto
A((n)) by retaining axioms (1) and (2) of (7.2) and replacing (3) by

() pn o f(h,p1,p2,...) = f(K",pn, p2n; - - ).
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(8.2) The characteristic of a stable S-module. The characteristic of a stable
S-moduleV is the element of A((%)) given by the formula

chw) = > w0 tch,(V(g,n).
2(g—1)+n>0

The stability condition ensures that Ch(V) € F1A((n)). If V isacyclic S-module,
the characteristic Ch(V) of V considered as a stable S-module, equals i=1Ch(V).
Note that asin the case of cyclic S-modules, we have

Ch(sV) = &(Ch(V)). (8.3)

Our goal inthissectionisto present formulasfor Ch(M.A) and Ch(Mpe (gdge)-A)
in terms of Ch(V). This will also permit us to give formulas for Ch(F.4) and
Ch(F~1A).

(8.4) Plethystic exponential. For f € F1A((R)), let

Exp(f) = (Z hn> o f =Exp <Z %) o f.
n=0 n=1
Note that

Exp(f + g) = Exp(f) Exp(g)

and that under specialization rk: A((r)) — Q[z](h)), the map Exp goes into
exponentiation

f(n,z) — el ),

(8.5) PROPOSITION. If VisastableS-module, let Exp,, (V) bethestableS-module
such that

Bp,W(g:n)=| D Indu) <® v«gi,flu)») ,
fil={1,...,n} =1
91+ +9n=g Sn

where Aut(f) = Aut(f~%(1)) x ... x Aut(f~%(n)). Then

EXp(Ch(V)) = 3 1" Ch(Exp, (V).

n=0

Proof. This follows from (7.3) and the definition of Exp(f), f € A((h).
Informally, the stable S-module Exp,, (V) may be thought of as representing
disconnected graphs with n vertices and no edges: all of its flags are legs.
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The following proposition is essentially due to Cadogan [4], athough he does
not use the notation Exp.

(8.6) PROPOSITION. The map Exp: FXA((h) — 1+ FIA((n)) isinvertible over
Q, with inverse

Log(f Z“(n”log of = Z“ 10g(pa o f)-

Proof.
Log(Exp(/) = 3 ™ tog(p,) o Exp (Z pm) f
n=1 m=1
= i@logﬂp(i p”ﬁ) of
n=1 m=1
_ i Z /U' pn of —f. O
n=1d|n

(8.7) Theinner product on A. To apartition A = (1™2™2...), where m; = 0
for £ > 0, is associated a monomial
Pr=D1 Py%. ...

These monomials form a topological basis of A. Let Azg be the space of finite
linear combinations of the p,. The standard inner product on A4q is determined by
the formula

(e.@)
<p/\7p,u> = 5)\,u H i)
i=1

Note in particular that (p;,p;) = id;;; the inner product on Ayq is the standard
extension of the inner product on a vector space to its symmetric algebra (Fock

space).
(8.8) PROPOSITION. If V and W areS,,-modules,
(ch,(V),ch,(W)) = dimHoms, (V, W).

Proof. This statement is well-known in the theory of symmetric functions: it
follows from the fact that the Schur functions form an orthonormal basis of Agg. O

We extend the inner product on Agg to a Q((%2))-valued inner product on Aag((h))
by Q((n))-bilinearity. If f € Aag((h)), let D(f): A(R)) — A((n)) be the adjoint of
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multiplication by f with respect to thisinner product. The following proposition is
Example. 5.3 of Macdonald [26].

(8.9) PROPOSITION. If f = f(Ii, p1,p2, - -.) € Aag((h), then
0 ,0 50 )

D(f)=f(h —,2—,3—, ...
(/) f( Op1” Op2 Ops

(8.10) PROPOSITION. Let £ < n, V bean S,-module, and W be an S,,-module.
Then

D(chy(V))chy (W) = ch, xHomg, (V,Reslry s ).
Proof. This follows by taking adjoints on both sides of the formula

ch; (U)chy (V) = chyiInd /15, (U @ V). O

(8.11) A Laplacian on A((h)). We now introduce an analogue of the Laplacian on
A((n)), given by the formula

n 92 0
A= n — .
Zﬁ <zap 8p2n>

Note that A is homogeneous of degree zero, and thus preserves the filtration of
A((R)). Under specialization rk: A((h)) — Q[x]((h)), the operator A correspondsto

the Laplacian 4 &, on theline.

(8.12) PROPOSITION. D(Exp(hhz)) = Exp(A).
Proof. By (8.9), it sufficesto substitute nd/dp,, for p,, on theright-hand side of

Exp(fihy) = Exp(Zp") ( p1+pz)>

_ o~ "o
- EXp <7; on (pn +p2n)> . g
(8.13) THEOREM. If V isa stable S-module, then

Ch(MV) = Log (Exp(A) Exp(Ch(V))) .

Proof. We start by neglecting i and explain the appearance of the sum over
graphs on the right-hand side of the formula. Formally, we set A = 1; this is
legitimate if V((g,n)) = 0for g > 0.
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Applying Exp to Ch(V), we obtain the stable S-module representing possibly
disconnected graphs each component of which has one vertex. Applying D(h2) to
Exp(Ch(V)) gives the sum over all ways of joining two legs (or flags) of such a
graph; hy arises because the two ends of an edge are indistinguishable. (If edges
carried a direction, we would replace h by p?, the characteristic of the regular
representation of S».)

Similarly, applying D(Exp(hh2)) to Exp(Ch(V)) gives the sum over al ways
of joining together any number NV of pairs of legs by edges. In this way, we see
(recall that » temporarily equals 1) that

Exp(A) Exp(Ch(V)) = Ch(W),

where )V isthe stable S-module such that

W((g,n) = P V(G)awe), (8.14)
G

where G runs over al possibly disconnected, labelled n-graphs such that each
component is stable. But W = Exp(MV), since MV is defined in a similar way,
but summing only over connected graphs.

To finish the proof, we must account for the powers of 7 in each term of (8.14).
Each term ch,(V((g,n))) in Ch(V) comes with a factor of #9~1. The term of
Exp(Ch(V)) corresponding to a labelled graph G (with each component having
one vertex) comes with a factor of 7 raised to the power

—|Vert(@)|+ > g(v).
veVert(G)

Each new edge introduced by the action of D(Exp(hh2)) contributes a factor of
h. Therefore, the term in (8.14) corresponding to a labelled graph G comes with a
factor of & raised to the power

—x(G)+ Y g).

veVert(G)

Applying Log has the effect of discarding all the disconnected graphs G. If G is
connected, the power of 7 in question equals g(G) — 1, where g(G) is defined in
(2.9). O

Recall that F denotes the Feynman transform F4 associated to the trivial cocycle.
(8.15) COROLLARY. Ch(F.A) = Log (Exp(—A)) Exp(Ch(A)))

Proof. If A is amodular 8-operad, the stable S-modules M.A and F~1A have
the same characteristic, showing that

Ch(F~1A) = Log (Exp(A)) Exp(Ch(A))) -
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Since F is a homotopy inverse of F~1, and characteristics are homotopy invariant,
the result follows.

Note that (8.15) may also be proved by calculating Ch(Mg V); thisis given by the
stated formula, since the effect of twisting by Det(Edge) is to attach a suspension
to each edge, which changes the operator D (Exp(hhz)) into D(Exp(—hhz)) =
exp(—A).

(8.16) Plethystic Fourier transform. Let us give a formal interpretation of the
previous theorem in terms of the Fourier transform on the infinite-dimensional
vector space Spec(Agr) = R>, with coordinates p1, po, . . ., where Ag = Agg ® R.
This space has atrand ation invariant Riemannian metric

(piypj) = i6ij. (8.17)

We denote the function p,, ® 1 € Ar ® Ay by p,,, and the function 1 ® p,, by ¢,,.
Let du be the formal Gaussian measure

du = o~ Ph/2nhk o~ P /2nk" +pn [nh™? n ’
8 nlgd nla_/[m ec(n)/2n\/2rnpn

on Spec(Ar), where ¢(n) = 3((—1)" + 1). We may rewrite this measure as

o0

dpy,
b =82/ 1] i o

it is the translate of the Gaussian measure associated to the metric (8.17) by the
vector (p1, p2,...) = (0,1,0,42,0,53,0,...).

If p* isamonomial inthe variablesp = (p1, p2, - . .), where « is amulti-index
(a1, @, .. .), define apower series

| pdute) € zin]

by the formula

Y * an —p2 /2nn™ dp’fl
Joran =TT | e v s
o0 o0

nodd” ™

o0
x I [ phnemvh/am vt A
o

neven — el/2n\/2xnnn’

This formula makes sense because almost all terms equal 1, and it may be defined
in purely algebraic way by induction on|«|: for « = Oit equals1, and theinduction
stepisperformed by meansof integration by partsin one of thevariablesp,,. Extend
the operation f — [5 f du(p) to amap from A((R)) to Z ((h)) by linearity.
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We may now restate (8.13) in the form of a (Gaussian) Fourier transform. In the
course of the proof, we make use of another formal integral [« f dv(p), whose
definition issimilar to [ f du(p) and is given by the formula

n dp
d / an —p2 /2nh n__
O W
(8.18) THEOREM. As a function of » and ¢ = (q1, g2, - - -)
W the + Ch(Y) = Log | EXp(ipags + Ch(V)) du(p).
ROO
Proof. Using the explicit heat kernel

2 00
o0 (31502 ) 10 = [ et a2 2

we see that, at aformal level

eXp(A)f(ﬁ, q1, 42, - - )

0 8 pn Qn) /Znhn dp
= ex h" f(n I
R P (7;:1 aPZn) P nl_[l v 2mnh™

Using the formal integral [ f du(p), we may rewrite this rigourously as

= ¢ * X . 0 >\ Pudn
(Ll ool ) v

Integrating by parts, we obtain

o0 (-3 5 ) [Lsmen (X s > {2t - 1) ) i

o qn+QZn Pndn
—exp< 2 g >/ fp exp( )d (p)

— Exp(—"ha) | J(0)EXR paay) . 0

Although it is possible that (7.17), the analogue for cyclic operads, can be
obtained from (8.18) by the principle of stationary phase, we do not know how to
do this.

In the next section, we need the following consequence of (8.18).
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(8.19) COROLLARY.

*

—h Ye; + Ch(Fpe A) = —Log - Exp (fflplql - (Ch(.A)) du(p).

Proof. By (4.14), we have Det¥ =~ D, ® ©x. Applying (8.3), we see that
Ch(FpeA) = Ch(ZsMs~ 1071 4%) = —GCh(Ms.A).

Sincew Log = Log®, the result follows from (8.18). O

9. Euler characteristics of moduli spacesof curvesand Ch(Fpet.Ass)

Inthis section, weapply theresultsof Section8to calculate Ch(Fpe.Ass) explicitly.
Using the decompositions of moduli spaces of curves found by Harer, Mumford,
Penner and others, we obtain new information on the Euler characteristics of these
moduli spaces (9.19).

(9.1) DEFINITION. A ribbon graphisagraph GG, each vertex of which hasvalence
at least 3, together with a cyclic order on the set of flags v making up each vertex
v € Vert(G). (Thisiswhat Penner [30] calls afat graph.)

Equivalently, a ribbon structure on a graph G is the same as an isotopy class
of embeddings of the CW complex |G| into a compact oriented Riemann surface
¥(@) with boundary, such that

(1) the intersection of the image of |G| with the boundary 0% (G) is the set of
endpoints of thelegsof |G|;
(2) theimage of |G| is adeformation retract of X(G).

The cyclic orders of the sets v are then induced by the embedding |G| — X(G)
and the orientation of X(G).

Denote by v(G) and v(G) the genus and number of boundary components of
¥(G). Note that 2(y(G) — 1) + v(G) = g(G) — 1, where g(G) = dim Hy(|G|).

Ribbon graphs are related to the operad Ass in the following way. Since
Ass((n)) = Ind;" (k), it hasabasis {e, } |abelled by thecyclicorderson {1,... ,n}
(see (1.8.4)). It follows that F.Ass((g,n)) has a natural basis {eq} |abelled by al
ribbon n-graphs G with g(G) = g.

(9.2) PROPOSITION. If FAss((vy,v,n)) is the subcomplex spanned by ribbon
graphs G withy(G) = v and v(G) = v, thereisa splitting of chain complexes

FAss(g,n) = @  FAss(vy,v.n)).
2(y-D+v=g-1

Proof. If e is an edge of a ribbon graph G, there is a natura ribbon graph
structure on G/e. If e isaloop, the vertex of G /e corresponding to e has genus 1,
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and since Ass((g,n)) = 0for g > 0, we seethat Ass((G/e)) = 0; thus, the term
of the differential on F.Ass associated to this edge vanishes. On the other hand, if
both ends of e are distinct, then v(G/e) = y(G) and v(G/e) = v(G), o that the
corresponding term of the differential preservesthe splitting. O

We may also consider the cyclic operad Ass as a modular Det-operad, where Det
is the cocycle Det(G) = Det(H(G)). (This uses the fact that the cocycle Det is
canonically trivial on trees; see (4.13).) The Feynman transform Fpg.Ass also has
abasislabelled by ribbon graphs, and we have a decomposition of Fpe.Ass into a
sum of subcomplexes FpeAss((7y, v, n)) similar to (9.2).

(9.3) FAss, Fpa.Ass and moduli spaces of curves. In this section, we relate the
complexesF Ass((7y, v,n)) and FpeAss((y, v, n)) to cell decompositions of moduli
spaces of punctured curves (which we learnt about from Penner). These moduli
spaces are differentiable orbifolds, by which we mean, by analogy to the algebraic
case (6.2), a proper étale differentiable groupoid G.

A v-punctured curveisapair (X, A), where ¥ is a smooth projective algebraic
curve over C, and A C X is a finite subset. An isomorphism of two punctured
curves (X1, A1) — (X2, A) is an isomorphism ¥; — ¥, inducing a bijection
A1 — Ay. Aframe )\ of apunctured curve (3, A) isan element of the circle bundle
over A whose fibre at z € A is the quotient of 7,3\ {0} by the dilatation group
R .

+An n-framed punctured curveisan object (2, A, A1, ..., \,), where (X, A) isa
punctured curve, and (A1, . .., \,) aren distinct framesin (3, A). Anisomorphism
of n-framed punctured curvesis defined in the obvious way.

The groupoid of n-framed pointed curves of genus v such that |A| = v, and
their isomorphisms, represents a differentiable orbifold @, .. In fact, using the
method of level structures, thisgroupoid is seen to be equivalent to atransformation
groupoid (the quotient, in the sense of orbifolds, of a space by a group action).
Note that for n = 0,

Q’Y,I/,O = M’Y:V/gl/'

A cellular decomposition of an orbifold G isacellular decomposition of Ob(G)
whose inverse images in Mor(G) under the étale maps s and ¢: Mor(G) — Ob(G)
coincide. Associated to this decomposition is a cochain complex C*(|G|), the
invariants of the action of Mor(G) on the cellular cochain complex of C*(Ob(G)).
This complex may be thought of as the cochain complex associated to the decom-
position of |G| into orbicells: these aretheimagein |G| of cellsin Ob(G), and are
quotients of cells by finite groups.

In the cellular decompositions which we study, the cells will not necessarily
be relatively compact; thus, the cellular cochain complex C*(G) calculates the
cohomology with compact supports H? (G); this isisomorphic to the cohomology
with compact supportsof |G|, aslong aswework over afield of characteristic zero.
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The following result was communicated to us by R. Penner. Only the cases
g = 0andn = Omay befoundintheliterature, anditisonly the casen = Owhich
wewill need.

(9.4) THEOREM. For all v > 1, > Oandn > O, thereisanorbifold P, ,, ,,, fibred
over Q4,,,» With fibresRY, with a natural S,,-equivariant cell decomposition, and
anatural identification C*(|P,,,.n|) = FAss((y,v, n)).

Informally, P, , ,, parametrizes Riemann surfaces of genus -y with » boundary
circles, together with n numbered points on the boundary; the circumferences of
these circles are labelled by pointsin the fibre R, .

(9.4.1) g = 0. Inthis case, only ribbon graphs with the topology of trees contribute
to FAss((0,n)) = FAss((0,1,n)) = XsBAss((n)). Every ribbon n-graph with the
topology of atree can be embedded into the plane, inducing acyclic order onthe set
{1,...,n} of legsof thegraph. Thus, B.Ass((n)) splitsinto asum of subcomplexes
BAss((n)), labelled by cyclic orders o.

On the other hand, Qo,1,, isthe quotient of the configuration space of n distinct
points in St by rotations, and is the union of cells K, corresponding to cyclic
orders o asabove. Each cell K, may beidentified with the interior of the Stasheff
polytope K, 11 [33], and the cellular decomposition K, of (9.4) is (Poincaré) dual
to the face decomposition of K, 1, sincefacesof K, 1 correspond to planar trees.

(9.4.2) n = 0. For this case, we mention the references [30] and [24]. In the first
of these, the orbifold P, , (decorated Teichmuller space) is constructed, and a
cellular decomposition given, whose cells are in bijection with isotopy classes of
so-called ‘ideal cell decompositions’ of afixed Riemann surface X of genus~y with
v punctures. Asremarked on page 40 of Penner [31], the (Poincar€) dual of anideal
cell decompositionisa‘spine’ on %, i.e. agraph G in X together with adeformation
retraction of ¥ to G. This shows that the cells in Penner’s decomposition of P, ,
arein bijection with ribbon graphs G. Asfor the differential on C*(| P, ), weonly
need the following result, which we establish explicitly.

(9.5) PROPOSITION. Hi( M., /S,) =S¥ H_;(FpaAss((y,v,0).

Proof. Let £ = R*p,C be the direct image with proper supports along the fibres
of the projection p: P, , 0 — M, /S,. The graded sheaf £ is an invertible local
system on the orbifold M., ,/S,, concentrated in cohomological degree v. The
Thom isomorphism shows that

Hc.(Q"/,V,O, C) = Hc. (P’Y,I/,O,p*ﬁ_l);
thus, the cohomology with compact supports of Q.0 = M., /S, may be iden-

tified with the homology of the cellular cochainson P, , o with coefficientsin the
graded local system p*£~1.
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Let G be aribbon graph with no legs such that 2(y — 1) + v = g — 1, and let
Cq bethe corresponding cell of P, , 0. We will prove the natural identification

H? (Cap" L) = 5427 (w(G) © Det(G) ™). (96)

which identifies the complex of cellular cochains on P, , o with coefficients in
p* L7 with 21727 FpgAss((y, v, 0), proving the result.

To prove (9.6), let X(G) be the surface with boundary constructed from the
ribbon graph G. In Penner’s theory, apoint z of C¢; is represented by a hyperbolic
metric on X(G). Thefibrep~—(z) is homeomorphic to R™(9>(%)), the coordinates
being logarithms of the lengths of the components of 93 (G). Thus

H(Cg,p*L™) = H?(Cq,C) ® Hy (p (p(2)),0) .
The graded vector space H? (Cg, C) is naturally identified with w(G), while the
graded vector space H? (p~1(z),C) is naturaly identified with Det(mo(9%(G))).
Thus, (9.6) follows from the formula

Det(G)~! ® Det(mo(9%(@))) = 221,

which we now prove.

Let X(G) be the compact surface obtained by gluing a disk D; along each
component .S; of 93(G). Define the determinant of a finite-dimensional graded
vector space V, to be

Det(V) = Det(Vp) ® Det(V1) ' @ Det(12) @ . ...

If M is a closed manifold, Poincaré duality gives a canonical identification
Det(H*(M,C)) = £, where e(M) is the Euler characteristic of M.

Consider the Mayer-Vietoris sequence for the decomposition of ¥(G) as the
union of ¥(G) and [, D; aong [, S;. From the multiplicativity of Det in long
exact sequences, we obtain the identification
Det(H*(2(G), C)) ® Det(H*(I1; D, ©))

Det(H* (LI, 5i; C)) '

By Poincaré duality, the denominator is trivial, while Det(H*(%(G),C)) =
»20-1¢. Sincetheinclusion |G| — ¥(G) isahomotopy equivalence, we see that

Det(H*(2(G), 0)) = Det(H* (|G|, 0)) = T 'Det(G) 4,
completing the proof. O

Det(H*(X(G),0) =

(9.7) Ch(Fpet.Ass): factorization of the integral. By (7.6.2) the characteristic of
the cyclic operad Ass has a special form: it is a sum of terms the nth of which
depends on p,, aone, in the sense that

h1+ ho + Ch(Ass) = — Z @ log(1— py).
n=1
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The formula of (8.19) now gives as

—h Ye; + Ch(FpeAss)

= —LOQ/* EXD% <p1Q1 +y #(n) |09(1—Pn)) du(p). (9.8)
Ree n=1 n

The special form of this formula will allow us to calculate it by a separation of
variables. We will then calculate these integrals separately using the method of

stationary phase.
(9.9) Stationary phase and Wick’s Theorem. Let f € Q[z, h] be apower series
of theform

f=3%+ > Tgnh7a”

|
n:
2(9—1)+n>0

The exponential exp(— f/k) has the form

Z > cuhszexp< > crp € Q. (9.10)

k=—0c0 {20
2k+[>0

(9.11) DEFINITION. Define the formal integral

0g [ exp (1o — 1))~ € n-tafe.n

by the formula

dz
lo ﬁk/ ex.ﬁ/h x?/2n YL )
gkzé:c“ oz N

Thisis well-defined by (9.10).
(9.12) REMARK. The coefficients £, ,, of the power series
dz 1 F, nh9gm
Iog/ exp(h~ (€ — f(x,h) == = —<%£2+ > 97)
Varh Ag-Dinso M
may be calculated by Wick’s formula, mentioned in the introduction

1
Fyn = Z H fg v),n(v

GGF((g,n))| U( )| veVert(G

In particular, they are given by universal polynomias F ,, € Q[fg.n].

https://doi.org/10.1023/A:1000245600345 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000245600345

MODULAR OPERADS 119

We can now state the formula of stationary phase (a special case of Theorem
7.7.7 of Hormander [18]). The proof uses nothing more than Taylor’'s Theorem and
integration by parts.

(9.13) THEOREM. Let ¢ be a differentiable functionof z € (a,b) andh € (—e¢, €),
such that the function =z — ¢(z, 0) has only the single critical point z = 0 in the
interval (a,b). Let f be the Taylor seriesof ¢ around (z, ) = (0, 0), and suppose
that f,,(0,0) = 1. Let u € C¢°(a,b) equal 1 in a neighbourhood of the critical
point 0. Then there is an asymptotic expansion

109 [ ute) expl(at — o, )

~ log / e (at — f(2,1)

Let us give asimple application of Theorem (9.13).
(9.14) PROPOSITION.

dz
2mh

Iog/#exp:—}; (z€ +z +log(l—z))

= E—ﬁL (g—log(1+§) —hlog(l+£)+§:g(11f_gg)h9> )

9=2

Proof. The function z + log(1 — x) has aunique critical point O in the interval
(—o00,1). By the theorem of stationary phase, if u € C°(—o0,1) equals1in a
neighbourhood of 0,

8

Iog/ xf + 2z +log(1l—z)) O:|27r

St

#1 dz
~Iog/ expﬁ(m£+x+log(1—x)) T

In fact, we may take v = 1, since the contribution of the integral away from a
neighbourhood of 0 may be shown to vanishto infinite order by repeated integration
by parts.

Performing the changes of variablesu = (1—z)(1+¢)/hands = h~1, wesee
that

Iog/ exp Lzt + 2+ log(1 - ))) \/%

:Iogs‘s‘1/2(1+f)_s‘les(“rf)/ ute v
0
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=log (2r) Y2757 2(1 4 &)~ 1O (s + 1)
= s(1+ &) +log (2m) Y2575+ 2(1 4 £) 75711 ().

The proposition follows on inserting Stirling’'s formula

logT'(s Z <= ( — %) log(s) — s + 3log(2r), s — +oo0,

and replacing s by 2. O

(9.15) Application of stationary phaseto Ch (Fpe.Ass). For n > 1, introduce the
Laurent polynomial

n/2
Zhn/d_ 1—|—O(h/))
and the formal integral
n(qn, 1 Iog/ exp— ann + pp + nh"ay (B )|Og(l—pn))

dpy,
1
ec(n)/2n\/2enpn’ (9.16)

This power series may be transformed into one of the form which we con-
sidered above, by making the changes of variables p, = n/2a("~1/2; and
qn = nY2p("=D/2¢ which convert it to

I (n?/ 2= /%¢, )

#
= Iog/ exp% (:1:§ 4+~ Y2p=(nt1)/2,, | hw, (1) log(1 — nl/Zh(n—l)/Zx))

dz
ec(n)/Zn\/ﬁ ’

Strictly speaking, we need a slight generalization of the formal integral log [ "
inwhich f (x, h) dependsnot on &, but on 1%/2; this does not present any additional
difficulties.

Using the power series|,,, we may rewrite (9.8) as

X

—htey + Ch(FpetAss)

= Z LOg/ &P (Pngn + pn + nh"ay (R) log(1 — py))
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dp,,

ec(n)/2n\ /2 hn
Z Z #I Zna hg

n=1/=1

(9.17)

The following result resolves a problem left openin [24].

(9.18) THEOREM. Let U,, (1), n > 1, bethe power series
C —k L1 1 c(n)
§ 2)log(ni™ay) — ay + — — ——
(aun 2) og(nh"ay) — « Yo -

(1) Theseries

ZZH hz

n=1/4=1

is convergent; more precisely, ¥,, = O (ﬁWfﬂ)_
(2) We have

—h~Yes + Ch(FpeAss)
=17ty — (1t 4 1) Z 0g(1 + pn) — ¥(h).

Proof. Let 8, = nh"a, — 1. Then 8, = ¢(n)"/? + O(h1?*/31) and 2 =

c(n)a™? + O(nI™/81), so that

(an + %) log(nh"ay,) = %(1—1- Bn + %nhn) (/811 —B5/2+B3/3+ .. )
= —— (B + B2/2+ O(1*/?))

= o, — % + én) +0 (/o).

It follows that
(a )Iog(nﬁna ) —a, + i — @ =0 (ﬁ(n/e])
" " " nhn 2n )

On the other hand, the term proportiona to «;,* in the definition of ¥, has
the form O(r*"), and hence these terms converge to a power series which does
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not contribute to the leading order behaviour of W,,. This completes the proof of
Part (1).
Generalizing (9.14), which isthe specia casen = 1, we seethat

dn

In(Qnaﬁ) = W

— (o + 1) log(1 + gn)

+§3qumf+«m+%ﬂwmﬁbm

k=1 k
1 c(n)
Ot T o

the only difference in the proof is that we make the substitutions u = (1 — p,)
(14 gn)/nh™ and s = «, (). Inserting this formulainto (9.17), we see that

—h~Yes + Ch(FpeAss)

=y > M0 55 O ) tog1+ i)

n=1/=1 n=1/=1
w(l
—ZZ Iog 1+ qen) — ¥ (h).
n=1/=1

The definition of the Mobius function shows that the first term equals

plk/d)ar @1
_ZZ Lhk TR

k=1 dl|k

Inserting the definition of «,, into the second term, we see that it equals

—Zlogl+qk2¢kd Z |091+Q)

dlk e|( k/d
Thethird term equals
— B(k)
—Z log(1+ qx) > _ du(k/d) = ZT'OQ 1+ qp),
d|k k=1
since by Mobiusinversion, g, u(k/d)d = $(k). O

By (9.5), this theorem implies the following purely topological formula. (The
change of sign comes from the fact that H? (M., /S4,, C) isan odd suspension
of He(FpetAss).)

https://doi.org/10.1023/A:1000245600345 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000245600345

MODULAR OPERADS 123

(9.19) COROLLARY. The power series W(h) has the following topological inter-
pretation
o
Y= w7 3 e(|Myu/S.),

g=2 2(y—1)+v=g-1
wheree(| M., ,,/S,|) istheEuler characteristic of thetopological space| M., /S,|.

The first few terms of ¥ (h) are asfollows
() = 2h+ 212 + 413 + 21* + 61° + 61° + 617 + 1 + O(R°).

(9.20) REMARKS. (@) Observe that the coefficients of A", n > 0, in (9.18) are
constant (that is, independent of the power sumsp;). Thisisin agreement with (9.4),
sincethe Euler characteristic of |Q.,,»| vanishesif n > 0, provided 2(y—1) +v >
0. Indeed, thereisacircle action on Q) .., given by the formula

(B, A0, .., 0) = (3,4, €0 ,...,€,).

The isotropy groups of the induced circle action on |Q,,,,,| are finite, since a
punctured Riemann surface (3, A) has finitely many automorphisms fixing the
punctures. Thus, all of the orbits of this circle action are circles, and the Euler
characteristic of |(),,.»| vanishes.
As expected, the coefficient of A=t in Ch(F.Ass) isjust —&Ch(Ass), consistent
with the fact that Cyc(FpeAss) = XsBAss ~ YsAss.
(b) The virtual Euler characteristic x(G) of an orbifold G may defined using a
cellular decomposition of G as the sum
(_1)dim(u)
g) = EYNTT VN
MO o) AT
where Aut(i/) is the group of morphisms of G fixing . In general, the virtual
characteristic is a rational number. It behaves well under quotienting: if G is a
finite group acting on G
x(9)
x(9/6) =5
The virtual Euler characteristic of the orbifolds M, 1 was shown by Harer and
Zagier [16] toequal ¢(1—2y). Sincethevirtual Euler characteristicismultiplicative
for fibrations of orbifolds, the fibrations

M’Y:V - M’Yﬂj—l
(9.21)

M., [S,
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immediately imply formulas for the virtual Euler characteristics of M., , and
M, ., /S,. However, on descent to the coarse moduli spaces, the maps of (9.21) are
not fibrations, so there is no elementary relation between the Euler characteristics
of the topological spaces| M, , | and M, , /S, | for different v. (In fact, the Euler
characteristics of the coarse moduli spaces | M, | and | M., /S, | are unknown
forv > 1)

Harer and Zagier also calculate the Euler characteristic of | M., 1| (page 482,
[16]), obtaining the formula

S el My a2 z"b S 0T (1),
y=1 (=1
where

a 1
h) = Z C(—k:)a;lz + oy g log(nh” o) + o T ane
Here, o, ¢ is the Laurent polynomial

R _bnfd) 4
well) = 234 0) g ey

Thereis astriking formal similarity between our formula (9.19) for ¥ (1) and this
formula, representing the contribution of v = 1.

(c) Theideaof replacing an asymptotic integral (over an arbitrarily small neigh-
borhood of zero) by an equivaent integral over a fixed interval, which is then
explicitly evaluated through I'-function and estimated by Stirling formula, already
arises in the calculation of the virtual Euler characteristics of moduli spaces: see
Harer and Zagier [16], Penner [31], Itzykson and Zuber [19], and Kontsevich [23].
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