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IN this paper we shall consider integral ideals in finite algebraic extensions 
(S> Si» . . .) °f the field of rational numbers. 

Two ideals a, b in the same field S a r e s a ^ to be equal if and only if they 
contain the same numbers. 

Let %\D S 2 and let 31 be an ideal in S2. The numbers of 21 generate an ideal 
a in Si and it is known that the intersection a Pi 82= 91. (See for instance 
Hecke, Théorie der algebraischen Zahlen, § 37). Also if a C Si a n d & C 82 
generate the same ideal in a field containing Si a n d S2 then they must 
generate the same ideal in S i ^ S 2 a n d thus in every field containing Si and S2. 

We shall therefore call two ideals a and b equal if they generate the same 
ideal in a field containing all the numbers of a and of b. Two such ideals may 
therefore be denoted by the same symbol and we shall speak of an ideal a 
without regard to a particular field. An ideal a will be said to be contained 
in a field S if it may be generated by numbers in S î hi other words, if it has a 
basis in S-

It seems natural to try to characterize those fields which contain a given 
ideal a, and in this paper we shall find such a characterization at least in the 
case that a power of a is a prime ideal in some extension of S-

A necessary and sufficient condition for an ideal a to be contained in a given 
field S will be derived in the case that a is an ideal of order 1, as defined in this 
paper. For prime ideals of order greater than 1 a necessary and sufficient 
condition will also be given. 

From now on we shall consider finite algebraic extensions (Si, • • •) over a 
field Si itself a finite algebraic extension over the field of rational numbers. 
Admissible subfields of Si a r e those containing S- Throughout the paper only 
fields containing S will be considered. 

Consider an ideal a C Si- Either a is not contained in any admissible sub-
field of Si or Si must contain an admissible subfield S2 which has the property 
that a is in S2 but not in any admissible subfield of S2. We therefore define: 

DEFINITION 1. If a is in Si but not in any proper admissible subfield of Si 
then a is said to originate in Si over S-

Consider Si ^ 8 2 and let a be an ideal in Si- The numbers of a which lie in 
S2 form an ideal SI in S2. This ideal 21 is said to correspond in S2 to the ideal a. 

The ideal 21 depends only on a but not on SI -

DEFINITION 2. If 31 C S corresponds to a in Si and 

(1) 51 = aec, (a, c) = 1 

then a is said to be of order e with respect to S-
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REMARK. Not every ideal has an order with respect to g ; however, every 
ideal which is a prime ideal in some extension of g does. 

THEOREM 1. If a is an ideal of order 1 with respect to § then a originates in 
a unique subfield %i over %. An extension $' Z)g contains a if and only if it 
contains gi-

Proof. If a does not originate in g', then it must originate in some subfield 
of §' . Hence a originates in at least one field. 

Suppose then that a originates in %i and also in g2. Let %n be a normal 
extension of % containing gi and g2 and ® the Galois group of § n over g. Let 
§1 and §2 be the subgroups of © leaving %i and g2 respectively fixed. Since 
a has a basis in gi and in g2 it follows that a is transformed into itself by the 
union § i U §2 = -£>• To § corresponds the field g = g i O S ^ which cer­
tainly contains %. Let a C $ a n d 2t C 3 correspond to a C Si then 

(2) à = ac' 
% = âb = ac'b. 

Since c'b = c by (1) and since (c, a) = 1 by hypothesis we must have 

(3) (c', a) = 1. 
If _ 

(4) £ = § 1 + £ i ^ 2 + . . H- £ 1 ^ 
then all relative conjugate fields of %i over g are obtained each once by applying 
1, i42, • • • , Ag to gi- Hence since Ai transforms a into itself 

(5) a = aA2= . . . = aA°. 

Thus 

(6) a = acMl' (* = 1, . . . , g), 
c'A* = c'. 

Thus 

(7) a * C S , c ' *Cg . 

Since a a C §> we must have agQ a and 
(8) a9 = âb' = ac'b'. 
Hence c' = (1) since otherwise (a, c ' )^ 1 contradicting (3). Thus_by (2) ct= a 
and since by hypothesis a originates in gi and g2 it follows that g = §1= g2. 

If now a is in g' then g' must contain a field in which a originates. Hence 
g' must contain gi- Conversely if g O gi then g O a since a C gi-

THEOREM 2. If p is aw idea/ in any field over g and g is the largest integer for 
which pa is a prime ideal in some extension of g then pa originates in a unique 
extension g O g and is a prime ideal in g'. Moreover every field that contains a 
power of p contains g'. 

Proof. Let ^ in g correspond to p. Since p*7 is a prime ideal in some field 
over g, $ must be a prime ideal. That is to say 

(9) $ = Pea, (p, a) = 1. 
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Thus p6 satisfies the conditions of Theorem 1. Let g' be the unique field 
in which pe originates. Let $a be a prime ideal in %". To p*7 corresponds a 
prime ideal in % and since this prime ideal has a common factor with ty it 
must be equal to $ . Thus since (p, a) = 1 

(10) % = (p*)<a, e =- 0(g), (p*7, a) = 1. 

Thus $" contains pe hence must also contain g'. Moreover p° is a prime 
ideal in § ' since it is prime in g" and since g is the largest power of p which is 
prime in any field. Every field that contains a power of p must contain pe 

hence must contain g'. In particular pff cannot be contained in any subfield 
of g ' and therefore originates in g'. 

COROLLARY. If p is an ideal in some extension g ' of g and $° is the highest 
power of p which is a prime ideal in an admissible subfield of g ' then p9 is the 
highest power of p which is a prime ideal in any extension of g. (We may take 
g = Oifno power of p is a prime ideal in any admissible subfield of $'.) 

A simple example is the ideal (\/2)> when/ i s the field of rational numbers. 
Here g = 6 = 2 , / = / ' . 

THEOREM 3. If p is a prime ideal in some extension of g and pg is the largest 
power of p which is a prime ideal of any extension of g and ifph is a prime ideal in 
some extension gi of g then 

(11) g - 0(A). 

Let g' be the unique field in which p*7 originates by Theorem 2. By the same 
theorem we have 

(12) g ' C Si. 

To p/l corresponds a prime ideal in $' which has a common factor with p° 
and therefore must equal p*7 since p*7 is a prime ideal in $'. Thus 

(13) *>' = (**)', g = ht. 

If p is a prime ideal in some extension of g but no power of p is a prime ideal 
in any extension of % then by Theorem 2 there is a unique extension of g in 
which p originates over %. Quite in contrast to this we shall show that if pg 

(g > 1) is a prime ideal in some extension of % then there are infinitely many 
extensions of % in which p originates and is a prime ideal. We show this by 
proving 

THEOREM 4. If p is a prime ideal in % then for every g > 1 there exists an 
ideal $ such that tya = p. The ideal *5J3 originates as a prime ideal in infinitely 
many fields over %. 

Proof. Let p =(ai , 02), ai, CL2C §• We may choose 

(14) (a2)=pc, (P,C) = 1. 
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Choose q prime to ai, a2, p and to the absolute différente of 5(f), where f is a 
primitive gth root of unity, and square free. In g( v #a2) the ideal p is the gth 
power of the ideal $ = (ai, V g a 2 ) , for ai and V g a 2 can have only a divisor 
ty of p in common. Thus 

ax = p3t 

V ^ = ^35 (p, 8 ) = 1 

_qa2 = $ ' » ' = peg, (p, c)= 1, $ ' = p. 

Hence tyd = (au V g a 2 ) ' = $* = p. 
We shall show now that %(dVq^2)^ %(°Vq^2) if (q)^(qf). The numbers 

qcL2 and g'a2 are square free in g(f) by assumption. Hence the polynomials 
qcL2t x°— q'd2 are irreducible in g(f) by Eisenstein's criterion. Thus 1, 

qa,2, • . • , (° v ga2)a_1 are independent over g(f). If V g ' a 2 C g ( V g a 2 ) t h e n 

°Vq'a2 = a0+ a1
9\fqa2+- . . + aff_1(gV/ga2)a~1 

applying the automorphism V g a 2 <-» f *v ga2 we get 

r V ^ ~ 2 = a 0 + flifV^+. . . + a.-xf '-K V ^ ) * " 1 

Because of the independence of 1, V g a 2 , . . . , ( vga2)!?~I over g(f) we must 
have 

fffly= fay, a,- = 0 for j ^ i. 
Hence 

g'a2= ai°(qa2)\ 

Our choice of g and q', together with equation 14, imply that i— 1 and ai must 
be a unit. Hence (q) = (g')-

Clearly we can choose infinitely many (q) which are square free and prime 
to ai, a2, p and the absolute différente of 5(f)- For instance all but a finite 
number of rational primes fulfill this condition. 

The ideal (ai, ° v ga2) is moreover a prime ideal since it lies in a field of degree 
g over g and its gth power is a prime ideal in g. For the same reason it also 
originates in g since it cannot lie in any field of degree less than g over g. 

Theorem 4 shows among other things: If p \ h > 1, is a prime ideal in g ' 
over g then p originates in infinitely many fields over g. For let p° be the 
highest power of p which is a prime ideal in some extension of g. Let g " be 
the unique field over g in which p*7 originates and let p originate in some field 
gi over g". By Theorem 4 there are infinitely many such fields. We must 
show that p originates in gi over g. If p lies in g2 over g where giZ> g2, then 
g 2 3 g" by Theorem 2 and hence g i = g2 since p originates in gi over g". 
Thus p also originates in gi over g. 
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Theorem 2 characterizes completely the fields over ft which contain a given 
prime ideal p if no power of p is a prime ideal in a field over ft. However in the 
case that some p^ (h > 1) is a prime ideal in a field over ft we obtain only the 
necessary condition that every field containing p must contain the field in which 
pg originates where pa is defined in Theorem 2. A stronger necessary but still 
not sufficient condition is as follows : 

THEOREM 5. If p originates in ft' over ft, pa = $ is the highest power of$ which 
is a prime ideal in some subfield of ft' and if$° originates in ft" then ft' = ft" (a), 
where a satisfies an irreducible equation 

(13) xm+ aixn-l + . . . + am= 0 
of degree m = gr{r integral) with coefficients in ft" such that 

(14) al0+k s 0($ '+ 1) , k > 0, 

aro ^ 0 ( r + 1 ) . 

Proof. From Theorem 2 we have ft" G ft'. L e t a C P» <* non C P2, a C ft'* 
Since p originates in ft' and since in every field between ft" and § ' the ideal p 
corresponds to a power of p we must have ft' = 5"( a)- Let (§ ' / § " ) = w and 
observe that the conjugates of a over ft" are all exactly divisible by p. Hence 
the (Ig + &)th, (& > 0), symmetric function of these conjugates is divisible 
by p*0+fc and since it is in ft" it must be divisible by ^ z + 1 . Moreover the last 
coefficient is exactly divisible by pm. If p = pi*1. . . ps

e« is the prime decom­
position of p in ft' and / , the degree of p; then p; is of multiplicity gei with 
respect to $ and hence 

(15) m = geifi+. . . + gesfs= gr (r integral). 
This proves Theorem 5. 

THEOREM 6. Let p°= ^ and let g and ft" be defined as in Theorem 5. The 
ideal p lies in ft' over ft if and only if ft' D a where a° = P satisfies an irreducible 
equation 

(16) pr+ M r - 1 + . . . + ar= 0, a ;= O($0. a r ^ 0(^5r+1), over ft". 

First let p lie in ft', then there exists in ft' an a such that a = 0(p), a ^ 0(p2). 
By Theorem 2 we have a C S ' C S " - Clearly a° = P and all its conjugates over 
g " are exactly divisible by ty and the necessity of the condition 16 follows. 

On the other hand consider ft"(a) where ag = P satisfies an irreducible 
equation 16. Let 7 be a number with ideal denominator Ĵ5. Then yP satisfies 
an equation 

(17) (yP)r+ yai(y^)r-1 + . . . + yrar = 0 
with integral coefficients. Hence p = 0 ^ ) . Moreover since ar?£ 0(^5r+1) it 
follows that P = $b, 0P,b) = 1. Consider the ideal (a, $ ) . If 

(18) $ = W 1 . . . %es 

a = %A..%hsC, (Pi, C) = 1 
it follows that a= gh. Hence (a, $ )* = $ . 
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Thus §"(a) contains p and so does every field over $"(a). 
Suppose an ideal p a power of which is a prime ideal in some field over % is 

given in any field %i over % and we are required to find all extensions of % 
which contain p. We proceed as follows. We first find the largest power say 
pg = <$ of p which is a prime ideal in any admissible subfield of %i. Next we 
determine the smallest admissible subfield containing $ . Let this field be $". 
We then obtain all fields which contain p as all extensions of all 3"(a) where 
ag satisfies an equation of the form 16. 
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