ON THE FIELD OF ORIGIN OF AN IDEAL
H. B. MANN

IN this paper we shall consider integral ideals in finite algebraic extensions
(%, &1, - . -) of the field of rational numbers.

Two ideals a, b in the same field § are said to be equal if and only if they
contain the same numbers.

Let §10 §2and let A be an ideal in §z. The numbers of ¥ generate an ideal
a in §; and it is known that the intersection a M F2= A. (See for instance
Hecke, Theorie der algebraischen Zahlen, §37). Also if a C §1 and b C Fq
generate the same ideal in a field containing §: and §: then they must
generate the same ideal in ,\JU§. and thus in every field containing §; and .

We shall therefore call two ideals a and b equal if they generate the same
ideal in a field containing all the numbers of a and of b. Two such ideals may
therefore be denoted by the same symbol and we shall speak of an ideal a
without regard to a particular field. An ideal a will be said to be contained
in a field § if it may be generated by numbers in §; in other words, if it has a
basis in §.

It seems natural to try to characterize those fields which contain a given
ideal a, and in this paper we shall find such a characterization at least in the
case that a power of a is a prime ideal in some extension of §.

A necessary and sufficient condition for an ideal a to be contained in a given
field ¥ will be derived in the case that a is an ideal of order 1, as defined in this
paper. For prime ideals of order greater than 1 a necessary and sufficient
condition will also be given.

From now on we shall consider finite algebraic extensions (g1, .. .) over a
field {1 itself a finite algebraic extension over the field of rational numbers.
Admissible subfields of § are those containing §. Throughout the paper only
fields containing § will be considered.

Consider an ideal a C §:. Either a is not contained in any admissible sub-
field of §; or §1 must contain an admissible subfield . which has the property
that a is in . but not in any admissible subfield of .. We therefore define:

DEFINITION 1. If a is in §1 but not in any proper admissible subfield of §1
then o is said to originate in 1 over §.

Consider §1 O §2 and let a be an ideal in §;. The numbers of a which lie in
&2 form an ideal A in F.. This ideal Y is said to correspond in F, to the ideal a.
The ideal A depends only on a but not on 1.

DEerINITION 2. If A C § corresponds to a in F1 and
1) A =a%, (ac) =1
then a is said to be of order e with respect to .
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REMARK. Not every ideal has an order with respect to §; however, every
ideal which is a prime ideal in some extension of § does.

THEOREM 1. If a 2s an ideal of order 1 with respect to T then a originates in
a unique subfield F1 over F. An extension §F' DF contains o if and only if it
contains Fi.

Proof. 1If a does not originate in {’, then it must originate in some subfield
of §’. Hence a originates in at least one field.

Suppose then that a originates in §; and also in .. Let §. be a normal
extension of § containing §: and §» and @ the Galois group of §, over §. Let
$1 and H: be the subgroups of ® leaving §: and - respectively fixed. Since
a has a basis in §; and in §; it follows that a is transformed into itself by the
union ©; U 92 = 9. To § corresponds the field F = F1N F» which cer-
tainly contains §. Let a C § and A C § correspond to a C §: then

(2) a = ac
A = ad = acd.

Since ¢'d = ¢ by (1) and since (¢, a) = 1 by hypothesis we must have
3) (¢, a) = 1.

If
4) 9 = H1+ $1do+. . .+ D14,
then all relative conjugate fields of §, over § are obtained each once by applying
1,4 ..., 4,to . Hence since 4; transforms a into itself
(5) a=a"=... =qa.

Thus
(6) a = ac’d G=1,...,8),

dAi= ¢,

Thus :
(7) a?C §, °C G-

Since a°C §, we must have a?C q and
(8) af= ad’ = ac'd’.

Hence ¢’ = (1) since otherwise (a, ¢')# 1 contradicting (3). Thus by (2) a= q
and since by hypothesis a originates in §; and . it follows that §F = Fi= Fo.

If now a is in § then ¥’ must contain a field in which a originates. Hence
&’ must contain Fi. Conversely if F' D F1 then F D a since a C F1.

THEOREM 2. Ifpis an ideal in any field over § and g is the largest integer for
which 99 is a prime ideal in some extension of T then P9 originates in a unique
extension §' O § and is a prime ideal in F'. Moreover every field that contains a
power of p contains §'.

Proof. Let B in § correspond to p. Since p? is a prime ideal in some field
over §, P must be a prime ideal. That is to say

) P =pa, (Oa =1
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Thus p° satisfies the conditions of Theorem 1. Let §’ be the unique field
in which p® originates. Let p? be a prime ideal in §”’. To p? corresponds a
prime ideal in § and since this prime ideal has a common factor with P it
must be equal to B. Thus since (p, a) = 1

(10) B =0%, e=0(g), (®%a) =

Thus §'’ contains p¢ hence must also contain §’. Moreover p? is a prime
ideal in §' since it is prime in §'’ and since g is the largest power of p which is
prime in any field. Every field that contains a power of p must contain p¢

hence must contain §’. In particular p? cannot be contained in any subfield
of §’ and therefore originates in §'.

COROLLARY. If v is an ideal in some extension F' of § and p? is the highest
power of p which is a prime ideal in an admissible subfield of F' then p? is the
highest power of Y which is a prime ideal in any extenston of §. (We may take
¢ = 01f no power of p is a prime ideal in any admissible subfield of §'.)

A simple example is the ideal (+/2), when f is the field of rational numbers.
Hereg = ¢ =2,f = f'.

TuEOREM 3. If D is a prime ideal in some extension of § and p? is the largest
power of Y which is a prime ideal of any extension of § and if p* is a prime ideal in
some extension 1 of § then

(11) g = 0(h).

Let §' be the unique field in which p?¢ originates by Theorem 2. By the same
theorem we have

(12) FC B

To p" corresponds a prime ideal in §’ which has a common factor with p¢
and therefore must equal p? since p? is a prime ideal in §’. Thus
(13) pe=(")", g = ht.

If p is a prime ideal in some extension of § but no power of p is a prime ideal
in any extension of §§ then by Theorem 2 there is a unique extension of { in
which p originates over §.  Quite in contrast to this we shall show that if p¢
(g > 1) is a prime ideal in some extension of {§ then there are infinitely many

extensions of {§ in which p originates and is a prime ideal. We show this by
proving

THEOREM 4. If p is a prime ideal in § then for every g > 1 there exists an
ideal P such that B2=yp. The ideal P originates as a prime ideal in infinitely
many fields over §.

Proof. Letp =(a1, a2), a1, aaC §F. We may choose
(14) (a)=ype, (n,¢) = 1.
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Choose g prime to a1, az, p and to the absolute differente of F(¢), where ¢ is a
primitive gth root of unity, and square free. In §(°V ga.) the ideal y is the gth

power of the ideal P = (a1, “V gas), for a1 and *V ga, can have only a divisor
P of p in common. Thus
ar = pU
V= 8 (B =1
gaz = P'B?=pcg, M )=1, P’=n.

Hence PB7= (a1, "\/qaz)0= BI=yp.

We shall show now that F(*V qas)#* F("V ¢'az) if (9)#(¢'). The numbers
gas and ¢'a, are square free in {(¢) by assumption. Hence the polynomials
x9— gaz, x9— ¢'ap are irreducible in §(¢) by Eisenstein’s criterion. Thus 1,

”\/gp:, ey (”\/&a_g) 971 are independent over F(¢). If "\/q—’;zc%(”\/q:—g) then
V¢ as=aot 0" Vaast. . 4 api("Vgaz) !
applying the automorphism vV ZJ;; oV @ we get
¢V = ot axk Vet . .+ a7V gas) o
= ¢i(aot 01"V gast. . .+ ag1(*Vga)) 7).
Because of the independence of 1, * Vigas, . .., (°Vgas)9 1 over F(¢) we must

have
$la;= {aj, aj= 0 for j # i.

g\/q_’;;= ai(g V qasz i

q’az = dig(qaz) i.

Hence

Our choice of g and ¢/, together with equation 14, imply that 2= 1 and a; must
be a unit. Hence (q¢) = (¢').

Clearly we can choose infinitely many (g) which are square free and prime
to a1, agz, P and the absolute differente of {(¢). For instance all but a finite
number of rational primes fulfill this condition.

The ideal (a1, °V gas) is moreover a prime ideal since it lies in a field of degree
g over § and its gth power is a prime ideal in §. For the same reason it also
originates in § since it cannot lie in any field of degree less than g over §.

Theorem 4 shows among other things: If p*, & > 1, is a prime ideal in §’
over §§ then p originates in infinitely many fields over §. For let p? be the
highest power of p which is a prime ideal in some extension of §. Let §" be
the unique field over §§ in which p? originates and let p originate in some field
F1 over §’. By Theorem 4 there are infinitely many such fields. We must
show that p originates in {; over §. Ifplies in {2 over § where §1D §», then
F2:2 § by Theorem 2 and hence §:1= T: since p originates in §; over F’’.
Thus p also originates in §; over §.
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Theorem 2 characterizes completely the fields over § which contain a given
prime ideal p if no power of p is a prime ideal in a field over §. However in the
case that some p* (& > 1) is a prime ideal in a field over § we obtain only the
necessary condition that every field containing p must contain the field in which
p? originates where p? is defined in Theorem 2. A stronger necessary but still
not sufficient condition is as follows:

THEOREM 5. Ifporiginates in § over ,p? = P is the highest power of p which
is a prime ideal in some subfield of ' and if p9 originates in §'' then F = §F''(a),
where a satisfies an irreducible equation

(13) ™+ ax™ '+, . .+ an=0
of degree m = gr(r integral) with coefficients in §'' such that
(14) agrx = 0(B1), k>0,

arg = O(P).

Proof. From Theorem 2 we have §F'’"C §'. Leta Cp, anon C ¥y a C g
Since p originates in § and since in every field between §'’ and § the ideal p
corresponds to a power of p we must have §' = §"(a). Let (F'/F"')= m and
observe that the conjugates of a over §’ are all exactly divisible by p. Hence
the (lg + k)th, (k¢ > 0), symmetric function of these conjugates is divisible
by p'?t* and since it is in §’’ it must be divisible by B!, Moreover the last
coefficient is exactly divisible by p™. If p = p;,°l. .. p,® is the prime decom-
position of p in § and f; the degree of p; then p; is of multiplicity ge; with
respect to P and hence
(15) m = geif1+. ..+ gesfs= gr  (r integral).

This proves Theorem 5.

THEOREM 6. Let p?= P and let g and §'' be defined as in Theorem 5. The
ideal p lies in F' over § if and only if F' Da where a? = B satisfies an irreducible
equation
(16) B+ a8 4. . .+ a,= 0, a;= 0(B?), a, = 0(P"™), over F''.

First let p lie in §’, then there exists in §’ an a such that a = 0(p), a & 0(p?).
By Theorem 2 we have a CF CF’. Clearly a?= 8 and all its conjugates over
&'’ are exactly divisible by P and the necessity of the condition 16 follows.

On the other hand consider §’’(a) where o?= 8 satisfies an irreducible
equation 16. Let v be a number with ideal denominator . Then 8 satisfies
an equation
a7 B+ var (vB) ' +. . .+ ¥"a,= 0
with integral coefficients. Hence g8 = 0(B). Moreover since a, 0(PT) it
follows that 8 = Bb, (B,b) = 1. Consider the ideal (a, B). If
(18) GB = 1‘1. .. nges

a = By Pl (P, 0) =1
it follows that e;= gh,. Hence (a, PB)?7= P.
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Thus §'/(a) contains p and so does every field over §'’(a).

Suppose an ideal p a power of which is a prime ideal in some field over § is
given in any field §: over § and we are required to find all extensions of
which contain p. We proceed as follows. We first find the largest power say
p?=9 of p which is a prime ideal in any admissible subfield of . Next we
determine the smallest admissible subfield containing . Let this field be .
We then obtain all fields which contain p as all extensions of all §’/(a) where
a? satisfies an equation of the form 16.
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