TYPICALLY-REAL FUNCTIONS
RICHARD K. BROWN
1. Introduction. A function

flz) = 2+ 2‘_: anz",

a, real, is called typically-real of order one in the closed region |z < R if it
satisfies the following conditions (6).

(1) f(2) is regular in |z < R.

(2) #{f(2)} > 0 if and only if #{z} > 0.

The same function is called typically-real of order p, p a positive integer
greater than one, if it satisfies condition (1) above and in addition the follow-
ing condition (4; 5):

(2’) there exists a constant p, 0 < p < R, such that on every circle |z| = 7,
p <r <R, #{f(s)} changes sign exactly 2p times.

We shall denote the class of functions which are typically-real of order p
in the open disc |z] < R by T,*(R) while those which are typically-real of
order p in the closed disc |z] < R will be denoted by 7T,(R).

In the proofs which follow we assume that all functions belong to 7,(1).
The results will remain valid for the larger class 7,*(1) by noting that il
f(z) € T,*(1) then f(rz)/r € T,(1) for all p <7 <1 (2).

The problem to be considered in this paper is that of determining a positive
expresssion R, depending upon the first  coefficients of f(z) with the following
property:

(&) € T,(1) = f(2) € T1(Ry).

In §§ 3 and 4 we will develop a recursion relationship for R,, p = 1, 2,3, ...,
and in § 6 we will show that our definition of R, is sharp for the class ol
functions, \J,7',(1) in the sense that for p = 2 it is the best possible bound.

2. A Representation theorem. We shall first develop an integral repre-
sentation for functions of class 7,(1), p > 1.
THEOREM 2.1. If there exists a function R, (¢», ¢s, - . ., Cpo1) > O with the

property that for any function

g@ =24+ 2 2" € T,a(1)

n=2

we have g(z) € 11(R,_1), then gwen an arbitrary function
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f(Z) =z+ ZQ a"zn € Tr(l)
we can write

@.1) [Rer) = 2 | Pw,v, 6) da(), o] < 1

Wwhere
o’ 4+ (Rp_1by — 2 cos ¢p)o’ + w
(1 —2wcos ¢ + ') (1 — 2R, ywcosv + Ry_yw’)’

bi=as—2cosv#0,0<v<mc1,...,cm1 are given by (2.2), and da(e)
>0for0 <o <.

Proof. Since f(z) ¢ T,(1) we have from (3) that

P(w, v, d)) =

2
— 2zcosv + z
b1Z

(22) g6 =+ f@) — =2+ Y o € ToaD),

1 n=2

where » is chosen subject to the following conditions:

o<y <.

(2) #{f(2)} changes sign at z = ™.

(3) by = as — 2cosv = 0.

4) b1 >0 if p = 2.
It follows then from the hypotheses of Theorem 2.1 that g(z) € T1(R,-1). It
should also be noted that from (2.2) it follows that the R,_; of Theorem 2.1
is a function of as, ..., a, and ».

Let us now compute the coefficients ¢, of g(z) by integrating over the path

C: |zl = R,-,. This yields

2miJ ¢ g
2
(2.3) = 5;71{,,—- g(Ry_1e®)e ™ do where 2 = pe’.
p—1 0
Adding to (2.3) the expression
1 2 ) )
é?ﬁfl.ﬁ, g(Ry—1e®)e™ dg = 0
o
we obtain
. Vo
(2.4) Cn = RJ,—’L; IO g(R,_1e™) sin n¢ d .
p— L}
If we now let g(R,_1e®) = u(R,_1e*) + 1w(R,_1e**) we have, since the ¢,
are real,
1 ¥ 2x )
(2.5) Cy = W; Jo v(R,,_le“”) sin n¢ d¢.
o

Since, however, v(R,_1¢%®) > 0 for all 0 < ¢ < 7 and since v(R,_,e*) =
— 9(R,_1e7 %) we have
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_ 2 (" 8y
Cp = "R Ov(R,,_le )sinngdo
where
2 *0 o .
(2.6) ;r_lé,::_ . v(Ry—1”) sin ¢ dp =1.
Thus
o0 2 T 14) i .
g(a) = 20 | =i W(vale )sin ¢d¢ |z
n=1 TRp—l
_2 J[ “ 519'@_dz< z_>]
= v(R,—1e") sin ¢ ”Z=:l sin ¢ \R, . do
_ 2 Ry 13v(R, _1e Y sin ¢ d¢ ,
- 0 R‘Tz,,] — QRI,,_LZ COSs d) + 22’ Izl < 1(,, 1.
Thus

s T 2
(2.7> A/'(Z) = ‘ZJ 2 blRﬂ—lz da2(¢) 2
mdJdo (Ry-1 — 2R, 12cos ¢ + 2)(1 — 2zcosv + 2°)
z
+ 1 —2zcosv + 2°
where da(¢) = v(R,_1e®)sin¢ > 0 for all 0 < ¢ < 7.
Using (2.6) we can rewrite (2.7) in the form
J [2° + R,_1(R,_1b1 — 2 cos ¢)z° + R, 2]
R,H (R_ 1—2R,,_1zcos¢+z)(1—QZcosv-i—z)
iZI < 1{,, 1.

(28) fla) = da(9),

The translormation of variable z = R, ;0 now gives (2.1).
From (2.1) it follows that

(2.9) P} = 4r3(1 — r2R,_1)? . D72 . sin 0 (cos? + B cos 8 + C)
where w = re®,

(2.10) D?

I

D*(ay, ..., a,;7,v,9)

=[(1 —2wcos ¢ + w?) (1 — 2R, jwcosv + R, *w?)? >0
for all R,y <1, |o| < 1,
(2.11) B = B(as, ..., a,;7,v, ¢)

K(l + A = PRy ) — bir*Ry (1 — Ry )
2r(1 — r* R2)) '

(212) C=Clazy...,a, 1,9, ¢) =

— Ry_y® 4 [KR) by — K’R)_, + 2R)_, + 2b,R)_, cos v + 1]+*

— [KbsR, s — K* 4+ Rp_y + 2b,R)_1cosv + 2]r" + 1
47°(1 — r"R)_y)
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and
(2.13) K =K(as...,ap;7,v,¢) = R, 1by — 2 cos ¢.
3. Definition of R,(as, ..., a,), p > 1. Given any function of the class

T,(1) consider the equation
P

(3.1) 30 = Pl(w) =0 (as, . . ., a, fixed.)
Find all of the real roots wi(v, ¢), w2 (v, @), ..., (v, ¢),1 < &k < Gof (3.1).
We then define
(3.2) R, = R,(as ...,a,) = min |w,(y, ¢)|, i=1,...,k,
)

where the minimum is taken over all », ¢ satisfying 0 < ¢ < 7, 0 < v < 7.
We note here that P’'(0) = 1,

[Ry_1b1 + 2(1 — cos ¢)](Rs_y — 4R, ;cosv + 3)

(3.3) P = 2(1 —cos ¢)(1 — 2R,_;cosv + R2_))>
and
(3.4) P'(=1) [— Ryibi +2(1 — cos ¢)](1 — R, 1)

T 2(1 4 cos @) (1 + 2R, 1cosv + R )

It is clear then that for 0 < R,—1 < 1 if Ryb; > 0 then there exists a ¢
such that P'(— 1) < 0 while if R;b; < 0 then there exists a » and ¢ such
that P’(1) < 0. Thus if 0 < R,.1 < 1

(3.5) R, < 1.

4. The main theorem. From our definition of P in (2.1) and from (2.9)
and (2.10) it is clear that any variation in the sign of #{P} for 0 <0 < =
must result from a variation in the sign of the factor (cos?0 + B cos 8 + C).
Thus, for any 0 = r < 1 the functions P must be members of one of the
three classes 7';(r), 7 = 1,2, 3. It should also be noted here that if for a
particular value of r a function belongs to 7':1(r), then that function belongs
to T1(r) for all smaller values of 7.

Next we note that if for 0 <7 <7, <1 and fixed as, as,...,qa,, v, and ¢
we have P € Ty(rs), P € T1(r1) and P ¢ T'5(r) for any r satislying r; <7 < r,
then there must exist an r satisfying 71 < r < 7, for which either P’'(r) = 0
or P'(— r) = 0. This follows directly from the relation #{P(w)} = #{P(a)},
lw| £ 1, and the analyticity of all the P in || < 1.

From the definition of R, in § 3 and from the preceding paragraph it is

clear that for fixed as a3, ...,a, and » < R,, no function P can change
directly from the class T2 (r) to T1(r).
If, then, we are able to show that for any choice of as, a4, ...,a, v, ¢

there exists no r, 0 <7 < R,, for which we have both B2 —4 < 0 and
B? — 4C > 0 we will have shown that for »r < R, we cannot have P € T(r)
and with the result of paragraph (4.3) will have established the
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MaiN THeorReM. If f(z) € T,(1), p a positive integer greater than 1, then
f(z) € Ti(r) for all r satisfying 0 <r <R, (as,...,a,) = R,_1 R,, where
R, =1 and R, is as defined in § 2.

In the proofs which follow in this section we will assume that f(z) € 7,(1),
p > 2, and that R, ; < 1. The case p = 2 will be treated separately in § 5.
In § 5 we also show that R, < 1. This, then, justifies the assumption R,_; < 1,

p > 2.
The proof of the Main Theorem will depend upon four lemmas. In the
proof of these we will fix as,...,a, v in the expressions B? — 4 = 0 and

B? —4C = 0 and plot r against K. The lemmas will be used to prove that
the general geometric configuration is that of Figure 1.

A

P a2d

"R, b - 0 | R b
p-101 o101 o

V77 3:8%~4<0 8% 4c<0

FI1GUrE 1

The lemmas to be proved are:

LEMMA 4.1. The set of points (r, K) for which B? — 4 < 0and 0 <r < 1,
is convex in the direction of the K-axis and in the direction of the r-axis.

LeEMMA 4.2. The set of points (v, K) for which B2 —4C < 0and 0 < r < 1
1s convex in the direction of the K-axis.

LeEMMA 4.3. The set of points (v, K) for which B* — 4C < 0, B> — 4 < 0,
and 0 < 7 < 1 is convex n the direction of the r-axis.

LEMMA 4.4. If for any fixed as. as, . . ., ap, there exists a K and an r = «,
0 < a < 1, for which both B> —4C = 0 and B> — 4 = 0, then a Z R,.

It should be noted that the continuity of the boundaries of the regions in
Figure 1 follows directly from the continuity of the functions B? — 4C and
B? — 4 in the two variables r and K, where 0 <r < 1,0 < R,_, < 1.

Proof of Lemma 4.1. In the proof of this lemma we assume that &; > 0.
The lemma remains valid for 5, < 0 with obvious modifications in the
argument.
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(a) From (2.11) and (2.13) we note that if K = 0 then
—rcos ¢(1 — Ry y)

B=

a- T2R,,_1)2
and therefore B? — 4 < 0 for all 0 <7 < 1.
(b) For fixed as,...,a,:v,r we have
dB _ 1+
dK = r

From (a) and (b) the convexity in the direction of the K-axis is immediate.
(¢c) If r =1 then B =2 if

2+ p—lbl
and B= —2 i
lbl
K= —24 5t

&

Thus from (b) we have B> — 4 < 0 for all

-2+ ”“b‘<K<2+—L1’—’1 r=1
(d) For K > 0,
ImB = 4+ o,
-0
(e) For fixed aq,...,a,:v, K
dB _ _[K(1 —r)(1 = r"Ry )"+ iR, (1 = Ry 1) (1 + r’Ry )]
dr 2°(1 — r*R:_))°
_Nm
UGN

From (c), (d), and (e) we obtain the convexity in the direction of the
r-axis of the set of points (r, K) for which K > 0, B> —4 <0,0<r < 1.

(f) dB/dr = 0 implies that
(44) N(r) = KRp_yv® — (KRy_y + 2KR:_, + bR}, — byRS_))r*
+ (2KR._y — bR,y + bR, + K)¥' — K = 0.

From (3.4) we have N(0) = K, N(1) = b1R,_1(1 — R%,_1), and the product
of the roots of N(r) is

1

R,

Thus, if K < 0 we see that N (r) has but one root in the interval 0 < » < 1.

> 1.

(g) When K < 0 we also have the following relations: B < 0; dB/dr < 0
for r sufficiently small, dB/dr < 0 for r = 1, and lim, (B = — «.
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From (c). (f), and (g), we obtain the convexity in the direction of the r-axis
of the sets of points (r, K) satisfying K < 0, B2 —4C < 0,0 <r < 1.

Proof of Lemma 4.2. (a) First we note that lim, B> — 4C < 0 if and only
if |[K| <2, while for r = 1, B* — 4C > 0 for all K.

(b) For |[K| =2, B2 —4C>0forall 0 <7 < 1.

(¢) Then, since B* —4C is a quadratic in K it follows that for fixed
@s, ...,y v, 7 there exist at most two values of K for which B2 — 4C = 0.

Proof of Lemma 4.3. This is immediate since if for a particular choice of
sy« ooy Qyy v, ¢, 7, we have B? — 4C < 0 then the P under consideration is
a member of 7(r) and from paragraph (4.2) we see that B? — 4C cannot
be greater than zero for any smaller 7 unless we have B — 4 > 0.

Proof of Lemma 4.4. For fixed as, ..., a,:v, ¢ let P = u(r, 80 + v (r,0).
Then, from the definition of P we have 2(r,0) = 0 and »(r, #) = 0 for all
0 <7 < 1. Thus, v,(r,0) and v,(r,7) = 0 for all 0 < r < 1. Now if we rewrite
(1.9) as Qas,...,ap:7,v,¢,0) (cos’@+ Bcosf+ C) = Q(cos? + Bceos + C),
we have, since C > 0,Q(as, ..., e, t,v,$,0) =0 and Q(as,...,a,:7,v,¢,m) = 0.

Any solution of the system {B* — 4C = 0, B — 4 = 0} is also a solution
of the equivalent system {B> —4 =0, C=1}. Let r =a, 0 <a <1 be a

solution of this system for some particular a., ..., a,: v, . We have
ve(r,0) = (Q)(— Bsinf — 2sin 6 cos ) + (Qs) (cos’d+B cos 0+ C)
v,(r,0) = (Q)(B,cos 8 + C,) + (Q;) (cos®@ + Bcos0+C)
and, therefore, we have
vg(a, 0) = (Qo)(1 + B + C)]o—o v, (a, 0) = 0,
vg(a, ) = (Qo) (1 — B — C)]o=r v (e, ) = 0.

Thus for r = « either v4(e,0) = 0 or ve(a, v) = 0, since B and C are
independent of 6. This, however, implies that either P'(a) = Qor P'(—a) = 0
for this choice of as, ..., a,: v, ¢. Thus a = R, follows from (3.2).

Proof of the Main Theorem. From Lemmas 4.1 through 4.4 it is clear that

for any choice of ay, . . ., @, no function P can belong to 74(r) if » < R,. The
proof then follows directly from the first two paragraphs of § 4, and for-
mula (2.1).

5. The Class 7(1). Because of the discontinuity of the functions (2.11)
and (2.12) at r = 1, R,-1 = 1 the derivation of the R,, p > 2 employed in
§ 4 is not valid for the case p = 2 in which R, ;1 = Ry = 1. We present,
therefore, in this section a rather simple proof of the validity for p = 2 of
the Main Theorem. This proof is a modification of the proof found in the
author’s paper (1).

When p = 2 we must have b, > 0 if statement (2.2) is to be compatible
with Rogosinski’s definition of the class 7':(1), (6).
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_Ka+r
(5.1) B = o )
2
(5.2) C= (1 7’) _Klcos ¢ Fcosv) _ COS ¢ COS ,
2r 2
and
(5.3) K =0 —2cos¢ =ay —2cosv — 2cos ¢.
Equation (3.1) takes the form

2 2 >
(5.4) (9——:*:——1* + E) — (cos ¢ cos v +Iﬁg> =0, 0< | <1.

2w 2 4

Solving (5.4) for w, we obtain

(5.5) w=a+ (=1} w=a— (=1}, wy=b+ (B — 1D} w=b— (B —1)%,

where

- K 1 3
(5.6) a=—5 + (cos ¢ cosv + 1Kas,)
. ‘ - K 1 L
and b= 5 = (cos ¢ cos v + 1Ka,)®.

From (5.5) and (5.6) it is evident that to obtain R,(a:) we need only
minimize the expression |a| — (a®> — 1)}, |a| = 1, since |a| and 5| have the
same maximum value.

The minimum of |a| — (a* — 1)* occurs when |a| is maximum, that is,
when ¢ =v =7, a: > 0o0or ¢ =v =0, a; <0. Thus
(5.7) Rs(as) = (Jaz! + 3) — ((las| + 3)? — lﬁ'

We do not establish the validity of the Lemmas 4.1 to 4.4 for p = 2 since
from (5.1) we have for fixed as, », and ¢ that

dB| _ |§ ( - 1)
(5.8) dr 12 7’ <0
for all 0 <7 < 1 and

o A () (5

for all [Kl <2,0<7r <1
From (5.7) we see that

I'Iﬂa]X Rg(dz) =3 -2 \/§

If =38 —2+4/2 and |B] £2 we have from (5.1) that |K| < 2/3. Then
from (5.8) we see that for |[K| > 2/3 and r < 3 — 24/2 we have |Bl > 2.
Next, from (5.1) and (5.2) we have for » = 3 — 2+4/2,

B? —4C = 8(3K% — 1) 4+ (3K + cos ¢) (3K + cosv)
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which is readily seen to be negative if |K| < 2/3. Then from (5.9) we see
that for » < 3 — 2+/2 and [K| < 2/3 we have B? — 4C < 0.

Thus, as in § 4, it follows that for any fixed a,, v, 0 < v < =, and all
r < Ry(ay) we have P € Ti(r). This establishes the Main Theorem for p = 2.

6. Sharpness. To show that our result is sharp over \U,T,(1) we give a
function of class 7%5*(1) which is typically real of order one for and only for
|2| < Re(az) = R(az) as defined in (5.7).

Consider the function

3 2
(6.1) flz) =% + (gj__f))f st ay >0,z < 1.

This function is a member of 7%*(1) and
(2 — D[z" + (222 + 6)z + 1]
(z+1)° '

From (5.2) it is readily seen that f(z) cannot belong to Ti(r) for any 7
greater than (as + 3) — ((a: + 3)% — D = Ry(as) = R(a»).

(6.2) f'(@) =
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