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Abstract. Let K be anumber field, and let X C HD;’l be a smooth complete intersection defined
over K. Inthis paper, weak approximation is shown to hold for X provided s exceeds some function
of the degree and codimension of X. Thisisacorollary of amore general result about the number of
integral points on certain affine varietiesin homogeneously expanding regions. This general result is
established via a suitable adaptation of the Hardy-Littlewood Circle Method.
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1. Introduction

Let K be an algebraic number field of degreen over Q. Let X C Pi{l be avariety
defined over K. For any extension field L of K, let X (L) denote the L-rational
points on X . Weak approximation is said to hold for X if X(K) # 0 and if the
diagonal embedding X (K) — [[ X (K,) isdense, where v runsthrough all places
of K, and K, isthe completion of K at v. Here, X (K,) has the obvious v-adic
topol ogy.

It is known, for example, that weak approximation holds for smooth quadratic
hypersurfaces of dimension at |least two. However, Colliot—Thelene has remarked
that it is not known whether weak approximation holds for smooth cubic hyper-
surfaces, not even for those of high dimension [M, Section 4, p. 39]. This note
provides an affirmative answer to this problem. In fact, we establish that weak
approximation holds for a large class of smooth complete intersections, provided
that s exceeds some function of the degree and the codimension of X and that
X (K,) # 0 for all v. Thiswill be deduced from a general result about the number
of zeros of certain (not nec. smooth) affine varieties in homogeneously expanding
regions.

Let o bethering of integersof K, andletn beanintegral ideal. PutV = K ®gR.
If wi,...,w,isafixed Z-basisfor n, then the canonical embedding K — V" makes
the w;’s an R-basis for V. For any b € R let B(b) C V* be the box

B(b) :{(7“1,...,7“5) S Vsibij —%STU <bij+%},
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wherer; = rjjwi + - - - + ripwy. Finaly, suppose G = (g1, - . ., g ) iSasystem of
polynomials of total degreed inthevariablesx = (1, ..., zs) having coefficients
ino. For any box B = B(b), we are interested in the quantity

N(G,B,P)=#{xe (PBnn’):g;(x) =0 forall i}.

For asystem G as above, let F = (f1,..., fi,) With f; the homogeneous part
of degreed of ¢g;. Form € C™, let V(m) be the affine variety defined by f; = m;
fori =1,...,m.Let Vgng betheunion of thesingular loci of the 1V(m). Our main
result is the following theorem.

THEOREM. Let G bea systemof m polynomialsin thevariableszy, .. ., z, with
coefficientsin o and having the same total degree d. Suppose that

s — dim(Vaing) > m(m + 1)(d — 1)2*"*.
Then for any box B
N(G, B, P) = MPTL(S—md) + O(Pn(s—md))’

where i = (G, B) isa constant. Furthermore, if

(i) the system G has a non-singular solution in n; for every finite place v of K,
(ii) F hasanon-singular solution over K, for every infinite place v of K, and
(iii) dim(V(0)) = s — m,

then p is positive for some 53, whence the system G has a non-trivial zeroinn®. In
particular, this holds for B(®z,) with z, any non-singular solution over K, of F,
v running over the infinite places.

From this we can deduce the following.

COROLLARY 1. Let X C P5-* be a smooth variety defined by a system F of m
homogeneous forms satisfying the hypotheses of the Theorem. If X (K,) # 0 for
all placesv andif dimX = s —m — 1 (i.e. if X isa complete intersection), then
weak approximation holds for X.

COROLLARY 2. Let X C P} 1 be a smooth hypersurface of odd degree d defined
over K. Thereexistsafunction x(d) suchthatif s > x(d), then weak approximation
holdsfor X.

Our Theorem is ageneralization of the main result of [B1]. Of particular noteis
that the condition on s isindependent of K. Thisisanimprovement over Theorem
3 of [B1], which states aresult for number fields, but with a great dependence on
n=[K:Q].
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Corollary 2 follows immediately from Corollary 1. By a result of Birch [B2]
thereisafunction ¢(d) suchthat if s > ¢(d) then any hypersurface of odd degree
dinPi-t hasa K, -rational point for al v. Thus we may take

x(d) = max($(d), (d — 1)27).

For example, in the case of cubic hypersurfaces, it is well known that ¢(3) = 9
and so x(3) = 16.

For K = Q, our Theorem is essentially a consequence of Theorem Il of [S2],
and one expects that all of [S2] could be generalized to the number field setting.
The only problem seemsto lie in generalizing the results of [S2, Section 12].

Asin [B1] and [S2], we deduce our Theorem via a suitable adaptation of the
Hardy-Littlewood Circle Method. This occupies most of Sections 3 and 4 of this
paper. The final section, Section 5, is devoted to deriving Corollary 1.

2. Notation and conventions

Along with the notation introduced in the introduction, the following will hold:

o1,...,0n, arethedistinct real embeddingsof K, and 0y, 41, ..., 0pn, 42, &€
a complete set of distinct complex embeddings such that ¢, 4, is conjugate to
Oni+i+tng (Z = 17 cee an2)'

K; isthecompletionof K withrespecttotheembeddingo; (i = 1,...,n1+n2).
Thus, K; = Rfori < npand K; = Cfori > nj.

V is the n-dimensional commutative R-algebra @1 K; =~ K ® R. For
an element z € V we write z() for its projection onto the ith summand (i.e.
z = ®z¥). Thereis a canonical embedding of K into V given by o — ®0;(a).
We identify K with itsimage in V. Under this identification n forms a lattice in
V,and wy,...,w, form area basisfor V. Thuswe may consider V' to be the set
{riw1 + -+ + rpwy:r; € R}

R={r=rwi+ - +rw,:0<r; <1l}land Rk = RNK.Abox Bisa
translate of R® by some element of V5.

For vy € K, a, denotesthe integral ideal {« € o:cvy € n}.

In summation, ‘(mod a)’ is abbreviated *(a)’. For example, 3, ,) means sum-
mation over the set of s-tublesx = (z1,...,zs) with z; running over a complete
set of residues modulo a. Also, X € a meansx = (z1,...zs) Withz; € a.

We will often associate to x € V'# the vector X with the ns real entries X =
(11, ...,Zspn), and vice versa.

Whenever used, the implied constants in < and > may, of course, depend on
K, n, and the choice of the w;’s. The actual dependence of the constant will usually
be clear.

f=<gmeansf < gand f > g.
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The trace and norm mapson K extendto V'

—
=
&

I

e 4o+ 20 L 2R () 4 2R (),
Nm(z) = 20 ... gD 205 0+9))2)
Thusé g(:()Tr(-)) is a character on V, which we denote by &(-), where
e(.)\N:eZefinéadistancefunction |-| onV asfollows

|z| = |z1ws + -+ - + Tpwy| = mlax|:rz|

This extends to the nd-dimensional R-space V" in the obvious way: if X =
(1,...,z,) € V", then

| = max |

For z € V we have

mex [z(%)] < ||,
)

where || is the standard absolute value on K;. Also

|x|d—l

INm(z)|*

lz 1 <

For r € R, ||r|| denotes, as usual, the distance to the nearest integer.
We work with the volume form on V

dr =dry---dry,

the standard L ebesgue measure on R¢ from the identification V- = {riwy + - +
Tqwq}-

Toapolynomia Q(X) € V[z1,. .., zs] weassociateanumber of related polyno-
mials: Q*(X) = Tr(Q(x)) considered as apolynomia in RX| = Rlz11,. .., ZTsn],
wherez; = zj1w1 + - - - + zipwy,. SiMilarly, Q; (X) = Tr(w;Q(x)).

For a system of polynomialsQ = (Q1,...,Q.), Q" isthe system comprised
of thepolynomials Q;; (i = 1,...,m;j =1,...,n).

If @ is homogeneous of total degree d, then we write Q(x1|Xz| ... |Xq) for the
associated multilinear form. The associated multilinear form for Q* is therefore
TH(Q(xalXa] ... [Xa))-

A final note about notation: P is a large positive number which we think of
as tending to infinity, and, as usual, ¢ denotes a small positive constant which, in
keeping with common practice, may change from one appearanceto the next. This
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causes no problems as ¢ may be assumed to be as small aswe like. Likewise, d,7
and ¢ generally denote small constants.

3. Some exponential sums

In this section, weinvestigate some exponential sumswhich arisein our application
of the Circle Method.
Let G and F be asin theintroduction. For r € R™, put

m
g:r-G:Zrigi.
=1

We are interested in the sum

S(r)=8(G,B,r) = »_ ®(g(x))

XEPB

= ) elg"(X)).

XePB

Also, let {v;} be the standard basis for the s-dimensional vector space V¢ and
let {E;;} (1 =1,...,s,5 =1,...,n) bethe standard basisfor R°". Following the
conventions of Section 2, E;; = w;v;. For any (d — 1)-tuple (Xg, ..., Xg—1) With
X; € V¥, put

M = (sz) = (fz(xl| s |Xd,1|Vp) s (Z = 1, e,y p = 1, .. ,n).

Let f bethe homogeneous part of ¢ of degreed, and let N*(P¢, P~",r) denote
the number of integral (d — 1)-tuples (X1, ..., Xz—1) such that

Xy € [-PS, PS]™
and
1£7(Xa] -+ [Xag-1|Epg) [| < P77,
for al p and q.
LEMMA 1. LetO < A < 1andlete > 0. 1f S(r) > P, then

]\[*(PA71:)—d-i-(d—l)A7 r) > P(d—l)nsA—Zd_ln—E.

Proof. Thisisjust [B1, Lemma2.4]. O

https://doi.org/10.1023/A:1000129818730 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000129818730

16 C. M. SKINNER
LEMMA 2. Let0 < A < landlete > 0. Either

(i) S(r) < pms=r,
(i) thereexist 0 # a € nand v; € n such that

|a| < Pm(dfl)A and |047ni _Vi| < P*d+m(dfl)A

fori=1,...,m,or
(iii) the number of (d — 1)-tuples of n-points of P2 R for which

rank(M) < m,
is
> PA(d—l)ns—delm—e‘
Proof. If (i) doesnot hold, then by Lemma 1
N*(PA P—d-l—(d—l)A I’) > P(d—l)nsA—Zd_lrc—E.

If (iii) does not hold for all the (d — 1)-tuples counted by N*, then for some
such (d — 1)-tuple we haverank(M ) = m. WLG we may assume that the leading
m X m minor has non-vanishing determinant. Denote this determinant by «’. Note
that o' € n and that

|O/| < |X1|m o |Xd—1|m < Pm(d—l)A‘

Next, put

m
ﬁp = ZTiMip = ﬁplwl +--+ ﬁpnwn-
=1

By assumption

Tr(wyBy) = Tr (Z ijqﬁ,,j) = apq + dpg,

j=1

where a,, € Z and |dyy| < P~ @D forg =1,... n. Let

Bp: (/gplu---wgpn)u Ap = (a’p17"'7apn)7 Dp: (dp17"'7dpn)7
and

0= (Trlwgwy)), (¢=1,...,m35=1...,n).
ThenQB, = A, + D,. Thus

B,=Q 'A,+Q'D,=A] +D,.
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Observethat | det(€2)| = [INm(n)Disc(K)|, whence

|d)| = |dhqw1 + -+ + d),wn| < MaX |dy;| < PTATEDA,
j
Let A betheleading m x m minor. Then

Ar = (lgp)lgpgm-
Let (v)1<p<m bethe solution of the linear equations

An = det(Q)Oé’(a;)lgpgm
Thenv, € nand we have

A(det(Q)a’r —n) = (det Q) (d),)1<p<m-
Put o = det(2)c/. It follows that

|Oé7“i - Vi| < |Xl|m—1 . |Xd71|m_1 man |d;,| < P—d-l—m(d—l)A
and

o] < |of| < P™MATDA,
Thus (ii) holds. O
LEMMA 3. Let U C C° be an affine cone of dimension ¢ defined over K. Then U
contains < P! elements of PR* N n®.

Proof. Let Y = [[[*1"0;(U(K;)) C R™* x C"2*. Clearly, the topological
dimension of Y is at most nt. Thuswe can cover Y N R by < P™ boxes of side
length P~. Then P times any such box contains < 1 elements of n*, whence
Y N PR* = P(Y N R?) contains < P™ elements of n®. O

The final lemma of this section shows that for the appropriate choice of «,
one may eliminate possibility (iii) of Lemma 2 for any system G satisfying the

hypotheses of our Theorem.

LEMMA 4. Let k = n(m(m + 1)(d — 1) + ) A. If Lemma 2(iii) holds, then
s — dim(Vgng) < m(m + 1)(d — 1)2¢7 1

provided 6 > 0O is sufficiently small.
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Proof. Let S denote the algebraic set defined by rank(M) < m. The proof
of [B1, Lemma 3.3] is entirely geometric, so it remains valid in our situation.
Therefore, we have that

dim(Vang) = dim(S) — (d — 2)s.

If Lemma 2(iii) holds, then by Lemma 3 we must have

. 24-1y
dm(S) > (d —1)s — A E
It follows that
241y
s —dim(Vang) < ==+ <m(m+1)(d - 1291 4 ¢ 4+ 6.
Since s — dim(Vsing) is an integer, the lemma follows easily. O

4. Thecirclemethod

In this section, we apply the Circle Method apparatus to our problem and deduce
our Theorem. We now assume that G satisfies the hypotheses of the Theorem,
namely, s — dim(Vang) > m(m +1)(d—1)2¢~! and that x isasin Lemma4. Thus
we can dispense with alternative (iii) of Lemma 2. First note that

N(P)=N(G,B.P)= [ s(r)d.

As expected, we evaluate N (P) by the standard major/minor arc estimates. To
this end, we introduce the following sets. For I' = (y1,...,v,) € R}, put

ar = lem(ay,),
Mr(0) = {r € R™:|r; — | < P41},

mo)=|J (), mO)=R"\Mm0),
Nm(nr\l;<<P9
and

E(A) = {r € R™ such that alternative (ii) of Lemma 2 holds}.

Note that our R is certainly contained in the R of [Sk] expanded by the factor
Nm(n), whence Lemmas 4, 5, and 6 of [Sk] remain valid in our setting. We will
need the following lemma.
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LEMMA 5.

(i) #{T:Nm(ar) = N} < N™+e,
(i) 1fnm(d — 1)A < 0, then £(A) € m(6).

(iii) meas(£(A)) « pr(-mdtm(m+1)(d—1)A)+e
Proof. (i) Observethat

#I:Nm(ap) =N} = Z #{I'ar = a}.

Nm(a)=N
Let 0 # « € asuchthat || < NY/™. Then by Lemma6 of [SK]
#{iap =a} < #H{(a1,...,am) €™y € aRk}
< #{(a1,...,am) € 0™ oy| < ||}
L (Jaf"9)™ < N
whence
#{T:Nm(ar) = N} < N #{a:Nm(a) = N} < N™ e,

(i) If r € £(A), then

< |0471| . |Oé|'i — Vi|

whencer € M (0) with y; = 2.
(iii) For afixed "

meas{r : |7”z' _ 7i| < P—d—l—m(d—l)A} < P(—md-l—m(d—l)Am)n'
For a € ar, put
Ea,r ={r € R™ar; — ay| < pratmd=1ay

Since multiplication by « is alinear map on V'™ with determinant [Nm(«)|™, we
find that
p(-md+m(d—1)Am)n

INm(a)[™

meas(€q,r) K
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By (i) and Lemmas 4 and 6 of [Sk], it follows that

meas(E(A)) < > > meas(&r)

I a€ar
Nm(ap) < PPA=DA | o pm(d—1)A

p(—md+m(d—1)Am)n [ pm(d—1)An Ite
< 2 NM(ar )™ ( Nm(ar) )

r
Nm(“F)<<pnm(d—l)A

P(—md+m2(d—l)A+m(d—l)A)n+E

< Z Z Nm-i—l—i—e

nm(d—1)A r
N<P ( ) Nm(ap)=N

p(—md+m(m+1)(d—1)A)n+e

< > ~

N<<an(d71)A

< p(—md+m(m+1)(d—1)A)n+e O
We now estimate the contribution to theintegral N (P) from the regionsm(6).

LEMMA 6. For A sufficiently small

/ S(r)|dr < prls—md=n,
m(nm(d—1)A)

wheren = n(A) is a positive number.
Proof. Choose E so that E(m + 1)(d — 1) = d. Then meas(R™\E(F)) < 1,
so by our choice of x and Lemma 2(i)

/R o, SO P prls—md—E0) 4.1)
Choose a set of values

A=Ag< A1 <---<Ay=FE.
Put

Fi=E(A)\E(Ai—1), (i=1,....9),

Fyi1 = R™E(E).
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By Lemma5(ii)

g1
1Mmdd—DA)§LJE. 4.2
1=1

Now, for i < g it follows from Lemma 5(iii) that
meas(]-"l) < meas(E(Al)) < P—nmd-l—nm(m—l—l)(d—l)Ai—i—e‘
Thus, fori < g

/ |S(|’)|d|’ < Pn(sfmd)+nm(m+1)(d71)(Ai7Ai_1)7n6Ai_1+5.
Fi

If the A, are chosen sufficiently close, say
A;— A1 < 36A/m(m + 1)(d — 1),
then

1
/ |S(I’)| dr < Pn(s—md)— EnéA + 6. (43)
Fi

The lemma follows upon combining (4.1), (4.2), and (4.3) and recalling that we
may take ¢ arbitrarily small. O

Next, we estimate the contribution to N (P) from 9(6). Put

S(I') = Nm(ap)~* Z o(I'- G(x)),

X(ar)
6(A) = > S(),
Nm(nF)<<Pan(d—1)A
and
3(A) = / ®(t - F(y)) dyd.
AN = [ s Jy 2 FOD DY

LEMMA 7. For A > 0 sufficiently small
/, S(r)dr = &(A)3(A) P 4 o(pris=md=),
m(nm(d—1)A)

for somen = n(A) > 0.
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Proof. First observethat that if r € 9, N M, with Nm(ap,) < PPmd-DA
then

e — vai| < |ri — yai| + i — 2| < Pmmd=DA,

By Lemma 5 of [SK], there exists an € Iem(ar,) such that |a| < PZm(d-DA
whence

|Oé(’)’li _ 72i)| < P—d+2m(d—l)A+nm(d—1)A‘

It follows that if A is sufficiently small, then we must have that v1; = 2; for all
i and therefore I'y = I'p. Thus, if A issmall, the M (nm(d — 1)A) are digoint,
and we have

S(r)ydr = / S(r)dr
") Zr: Mmr(nm(d—1)A) ")

Nm(ap)g Prm(d—1A

/Sm(nm(dl)A)

= > I(T, A). (4.4

r
Nm(ap)g Prm(d—1A

Forr € Mp, putr =z+I'. Put N = Nm(ar). Then

S(r) = Y @((z+1)-G(x))

xePB

= Y Y @((z+1I)-G(a+ Nb))
aN) b

= > ®(I'-G(a) > d(z-G(a+ Nb)), (4.5
a(N) b

where the summation in b is over integral pointsb suchthat a+ Nbisin Pj.
Observethat I' = (v1/N,...,v,/N) wherev; = vjiwi + - -+ + vipwy, € 4,
Put
I' = (v11/N,...,v1n /N, ... ,Umn/N).
Then by (4.5) we see that

Sr) =3 e -G*(A) Y &Z-G*(A + NB)).
A(N) B
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The arguments of [S1, Lemma 9] and [S2, Section 9] give

Sy =N e(I‘*-G*(A))/ e(Z - F*(U)) du

NS PB
+O(NPns—l+nm(d—1)A)

= S(T) | &(z-F(u)du+ O(NPrs—tHnmld=1a), (4.6)
PB
Integrating (4.6) over Mr(nm(d — 1)A) gives

I(',A) = S(I) ®(z-F(u))dudz
mp(nm(d—1)A) JPB

+O(NP”S_1+”m(d_1)Ameas(fmp))

_ S(F)Pn(s—md)/

|t|<<pnm(d—1)A

/(I)(t-F(y))dydt
B
+O(Pn((sfmd)+m(nm+2)(dfl)A)fl)
_ S(F)C((A)Pn(s_md) +O(Pn(s—md)+nm(nm+2)(d—l)A—l). (47)
Substituting (4.7) into (4.4) gives

/ S(I’) dr = G(A):‘(A)Pn(“i*md) + O(‘PTZ(Sfﬂ'Ld)fT])7
m(nm(d—1)A)

by Lemma 5(i) provided A is sufficiently small. O
Now, we make a more detailed investigation of theterm G(A)J(A). Put
S(o)=3, > SO,
N=1 r
Nm(ap)=N

and

3(0) :/m/B@(t-F(y))dydt.
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LEMMA 8. If G and x areasin Lemma 6, then

(i) &(o00) converges absolutely, and
(i) 6(A) — 6(00) < P~¢ for some positive ¢ = ((A).

Proof. Put N = Nm(ar). Choose A = 1/nm(d — 1) — €'. If aternative (i) of
Lemma?2 holdsfor P = N, then

S(C) = N~ > ®(-G(x))
X(N)

K N (i) =(0=98 o N-(mtD-n, (4.8)

for some positive 7 if ¢ is sufficiently small. Alternative (ii) gives an a with
la| < N™4-DA gych that

|Oé")/i - Vi| < N—d-l—m(d—l)A.
Let 0 # 8 € ap suchthat |3| < NY/™. Then
|Bary; — Bri| < N—Hrmld=DAa+/n,

Sincem(d —1)A +1/n < 2 < d for smal ¢, it follows that for large N we must
have

v =2 foralli.
«

But N < |[Nm(a)| < |af* < N™@-DA and nm(d — 1)A < 1, giving a
contradiction for N large. Thus, we may assume that (4.8) holds.

(i) By (4.8) and Lemma5(i)

S(o0) < Y N™HEN I« 5™ N0 <o,
N=1 N=1
since e may be taken smaller than 7.
(ii) Similarly

6(A)-6(0) < Y, N T <« pC
N>>an(d71)A O
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LEMMA 9. With F and x as above,

(i) 3(o0) exists, and
(i) 3(A) — J(o0) < Pmld=DA,

Proof. Thinking of the system F as the rational system F*, the lemma follows
from Lemma 8.1 and Section 3 of [S2]. O

We can now tie everything together to deducethe main part of our Theorem, namely
the formulafor N (F, B, P). Put

p=p(G,B) = &(c0)J(00).

PROPOSITION 1. Suppose G isa systemof polynomials satisfying the hypotheses
of the Theorem. Then for any box 5

N(P) — HPn(sfmd) + O(Pn(sfmd))‘

Proof. Choose A small. By Lemmas6 and 7
N(P) = &(A)3(A)Ps=md) 4 o(prls—md)y,

By Lemmas8 and 9

S(A)3(A) = &(c0)¥(00) +O(P¢3(c0)
+P—nm(d—l)A6(oo) + P—nm(d—l)A—()‘

It follows that

N(P) — MPn(s—md) + O(Pn(s—md))‘ 0
It remains to check that ;> 0 under the conditions stated in the Theorem.
PROPOSITION 2. Suppose G satisfies the hypotheses of the Theorem. Then
(i) &(c0) > 0, if G hasa non-singular solution in n}, for each finite place v, and
(i) J(oco0) > Ofor some B, if F hasa non-singular solutionin K; for each infinite

placev andif dim(V'(0)) = n—m. In particular, thisholdsfor any B centered
at a point ©z;, where each z; isa non-singular solution over K; of F.
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Proof. Both of these results are standard. For a primeidea p, put

W)= 3 SO,
1T

ap=pi

Then we have

Letn, betheidea ino, generated by n. If G hasanon-singular solutionin ny, then
standard arguments (e.g. [DL, Lemma 10]) are easily generalized to our setting,
and they show that x(p) > 0 and (i) is true. Also, again thinking of F as F*,
it is a straight-forward exercise to show that a non-singular solution of F in V*
correspondsto a non-singular solution of F* in R*"™, and vice versa. It is clear that
dim(V*(0)) = ndim(V(0)) and dim(Vgy,g) = ndim(Vsng), whence (ii) follows
from [B1, Section 6]. i

Proof of Theorem. Combine Propositions 1 and 2. i

5. Proof of corollary 1

In this section we deduce Corollary 1 and make some related comments.

Proof of Corollary 1. Let X and F = (f1,..., fin) be asin the statement of
the corollary. We assume that X (K,) # 0 for al places v. To prove that weak
approximation holdsfor X, it sufficesto provethat the following holdsfor X . For
any ¢ > 0, any finite set of places S, and any set of points {X, = (z,1: -+ 1 Zys) €
X(K,):v € S} thereexistsapointx = (z1: --- :z5) € X(K) such that

|z; — Tyily < €,

forevery s andevery v € S.

Let €,.5, and {x,},cs be given. By possibly adjusting e, we may assume
that ord,(z,;) > O for every 7 and every v € S. Write S = S, U Sy, where
S consists of infinite places, and S consists of finite places. By the Chinese
Remainder Theorem, we canfinda = (a1, ...,as) € o® suchthat |a; — x|, < €
for every s and every v € Sy. Let

ry = Min ord, (a; — ),
A

and let p, bethe primeideal corresponding to v. Put

n=ng = H Pl

vESy
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Let

G = (fily +a),..., fm(y + a)).

Then G is asystem of polynomials satisfying the hypotheses of the Theorem and
whose associated homogeneous systemis F.
Let ¢ be apositiveinteger. Let C' = 1 (n') be apositive integer such that

where ¢ = ¢(K,w) isapositive constant such that for any r € V,
r91 < clrl.
For any infinite place v, let
CXy, if v €Sy,
. { any point of X (K,), otherwise.
Since X (K,) isnon-empty by assumption, such anr,, is always possible. Put
ni+no

fo= @ r’U”
=1

where v; is the infinite place corresponding to the embedding o;. Finaly, let
B = B(rp) bethe box centered at the point r .
Applying the Theorem to G, with n and B chosen as above, we have that

N(G, B, P) = (G, B)P"(s=md) 4 o(prls—md)y,

where N (G, B, P) countszerosof G inn® N PB. For afiniteplacev € S, n, = oy,
whenceany pointin X (K,) givesriseto anon-singular zero of G inn,,. For afinite
v € S, the point x, — a is anon-singular zero of G, and certainly, x, — a € nJ.
Thus, all the conditions needed for 14(G, B) to be positive are satisified. It follows
that for any sufficiently largeinteger P = 1 (n'), thereexistsapointy € (n* N PB)
suchthat x =y + aisazero of F. In fact, for P large enough, the number of such
solutionsis greater than one, so we may assumethaty # —a, sox # 0.
For eachv € S, and each i, we have that

|CPxy; — yi| < cP,
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whence
vi CcP zu I Vg CPyzv P
< Cy clail
e cpP
< e (5.1)

for C' P sufficiently large.
For eachv € Sy and each ¢, we have that

Tvi = mpPi . < s — x4, +2
< (@i — @) — (i — i)y + 2
< 2, (5.2
for CP = 1 (n') for sufficiently large t.
It follows from (5.1) and (5.2) that weak approximation holds for X . O

As a particular case of Corollary 1, weak approximation holds for any smooth
cubic hypersurface of dimension at least 15. One could, in fact do better in this
case. For example, essentially following the arguments of Pleasants [P], we could
significantly weaken the hypothesis of non-singularity. Inlight of theresult of [Sk],
one should also be able to show that weak approximation holds for any smooth
cubic hypersurface of dimension at least 11.

A final remark. In [ERS] the asymptotic formulae that result from applying
the Circle Method to non-singular quadratic forms are used to give a new proof
of Siegel’s Mass Formulae over Q. One would hope to do the same for arbitrary
number fields. Indeed, for smooth quadratic hypersurfaces of dimension at least
3, the desired asymptotics follow from our Theorem. Unfortunately, the inductive
arguments of [ERS] require that they also hold in dimension 2. This appears to be
out of reach of the methods of this paper. Over Q, one usesthe Kloosterman variant
of the Circle Method, which makes great use of the Farey dissection of the unit
interval, of which thereis no satisfactory generalization. Thiswas alimiting factor
in [Sk] aswell.
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