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Abstract. Let K be a number field, and let X � Ps�1
K be a smooth complete intersection defined

overK. In this paper, weak approximation is shown to hold forX provided s exceeds some function
of the degree and codimension ofX . This is a corollary of a more general result about the number of
integral points on certain affine varieties in homogeneously expanding regions. This general result is
established via a suitable adaptation of the Hardy-Littlewood Circle Method.
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1. Introduction

Let K be an algebraic number field of degree n over Q. Let X � P
s�1
K be a variety

defined over K . For any extension field L of K , let X(L) denote the L-rational
points on X . Weak approximation is said to hold for X if X(K) 6= ; and if the
diagonal embeddingX(K)!

Q
X(Kv) is dense, where v runs through all places

of K , and Kv is the completion of K at v. Here, X(Kv) has the obvious v-adic
topology.

It is known, for example, that weak approximation holds for smooth quadratic
hypersurfaces of dimension at least two. However, Colliot–Thelene has remarked
that it is not known whether weak approximation holds for smooth cubic hyper-
surfaces, not even for those of high dimension [M, Section 4, p. 39]. This note
provides an affirmative answer to this problem. In fact, we establish that weak
approximation holds for a large class of smooth complete intersections, provided
that s exceeds some function of the degree and the codimension of X and that
X(Kv) 6= ; for all v. This will be deduced from a general result about the number
of zeros of certain (not nec. smooth) affine varieties in homogeneously expanding
regions.

Let o be the ring of integers ofK , and let n be an integral ideal. Put V = K
QR.
If !1; : : : ; !n is a fixedZ-basis for n, then the canonical embeddingK ! V makes
the !i’s an R-basis for V . For any b 2 Rns let B(b) � V s be the box

B(b) = f(r1; : : : ; rs) 2 V s : bij � 1
2 6 rij < bij +

1
2g;
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where ri = ri1!1 + � � �+ rin!n. Finally, suppose G = (g1; : : : ; gm) is a system of
polynomials of total degree d in the variables x = (x1; : : : ; xs) having coefficients
in o. For any box B = B(b), we are interested in the quantity

N(G;B; P ) = #fx 2 (PB \ ns) :gi(x) = 0 for all ig:

For a system G as above, let F = (f1; : : : ; fm) with fi the homogeneous part
of degree d of gi. For m 2 Cm , let V (m) be the affine variety defined by fi = mi

for i = 1; : : : ;m. Let Vsing be the union of the singular loci of the V (m). Our main
result is the following theorem.

THEOREM. Let G be a system of m polynomials in the variables x1; : : : ; xs with
coefficients in o and having the same total degree d. Suppose that

s� dim(Vsing) > m(m+ 1)(d� 1)2d�1:

Then for any box B

N(G;B; P ) = �P n(s�md) + o(P n(s�md));

where � = �(G;B) is a constant. Furthermore, if

(i) the system G has a non-singular solution in nsv for every finite place v of K ,
(ii) F has a non-singular solution over Kv for every infinite place v of K , and
(iii) dim(V (0)) = s�m,

then � is positive for some B, whence the system G has a non-trivial zero in ns. In
particular, this holds for B(�zv) with zv any non-singular solution over Kv of F,
v running over the infinite places.

From this we can deduce the following.

COROLLARY 1. Let X � P
s�1
K be a smooth variety defined by a system F of m

homogeneous forms satisfying the hypotheses of the Theorem. If X(Kv) 6= ; for
all places v and if dimX = s�m� 1 (i.e. if X is a complete intersection), then
weak approximation holds for X .

COROLLARY 2. LetX � P
s�1
K be a smooth hypersurface of odd degree d defined

overK . There exists a function�(d) such that if s > �(d), then weak approximation
holds for X .

Our Theorem is a generalization of the main result of [B1]. Of particular note is
that the condition on s is independent of K . This is an improvement over Theorem
3 of [B1], which states a result for number fields, but with a great dependence on
n = [K :Q].
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Corollary 2 follows immediately from Corollary 1. By a result of Birch [B2]
there is a function �(d) such that if s > �(d) then any hypersurface of odd degree
d in Ps�1

K has a Kv-rational point for all v. Thus we may take

�(d) = max(�(d); (d � 1)2d):

For example, in the case of cubic hypersurfaces, it is well known that �(3) = 9
and so �(3) = 16.

For K = Q, our Theorem is essentially a consequence of Theorem II of [S2],
and one expects that all of [S2] could be generalized to the number field setting.
The only problem seems to lie in generalizing the results of [S2, Section 12].

As in [B1] and [S2], we deduce our Theorem via a suitable adaptation of the
Hardy-Littlewood Circle Method. This occupies most of Sections 3 and 4 of this
paper. The final section, Section 5, is devoted to deriving Corollary 1.

2. Notation and conventions

Along with the notation introduced in the introduction, the following will hold:

�1; : : : ; �n1 are the distinct real embeddings of K , and �n1+1; : : : ; �n1+2n2 are
a complete set of distinct complex embeddings such that �n1+i is conjugate to
�n1+i+n2 (i = 1; : : : ; n2).

Ki is the completion ofK with respect to the embedding�i (i = 1; : : : ; n1+n2).
Thus, Ki = R for i 6 n1 and Ki = C for i > n1.

V is the n-dimensional commutative R-algebra �n1+n2
i=1 Ki

�= K 
Q R. For
an element x 2 V we write x(i) for its projection onto the ith summand (i.e.
x = �x(i)). There is a canonical embedding of K into V given by � 7! ��i(�).
We identify K with its image in V . Under this identification n forms a lattice in
V , and !1; : : : ; !n form a real basis for V . Thus we may consider V to be the set
fr1!1 + � � �+ rn!n :ri 2 Rg.

R = fr = r1!1 + � � � + rn!n : 0 6 ri < 1g and RK = R \K . A box B is a
translate of Rs by some element of V s.

For 
 2 K , a
 denotes the integral ideal f� 2 o :�
 2 ng.
In summation, ‘(mod a)’ is abbreviated ‘(a)’. For example,

P
x(a) means sum-

mation over the set of s-tubles x = (x1; : : : ; xs) with xi running over a complete
set of residues modulo a. Also, x 2 a means x = (x1; : : : xs) with xi 2 a.

We will often associate to x 2 V s the vector X with the ns real entries X =
(x11; : : : ; xsn), and vice versa.

Whenever used, the implied constants in � and � may, of course, depend on
K , n, and the choice of the !i’s. The actual dependence of the constant will usually
be clear.

f � g means f � g and f � g.
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The trace and norm maps on K extend to V

Tr(x) = x(1) + � � � + x(r) + 2<(x(r+1)) + � � � + 2<(x(r+s));

Nm(x) = x(1) � � � x(r)jx(r+1)
j
2
� � � jx(r+s)j2:

Thus, e(Tr(�)) is a character on V , which we denote by �(�), where
e(�) = e2�i(�):

We define a distance function j � j on V as follows

jxj = jx1!1 + � � �+ xn!nj = max
i
jxij:

This extends to the nd-dimensional R-space V n in the obvious way: if x =
(x1; : : : ; xn) 2 V n, then

jxj = max
j
jxjj:

For x 2 V we have

max
i
jx(i)j � jxj;

where jx(i)j is the standard absolute value on Ki. Also

jx�1
j �

jxjd�1

jNm(x)j
:

For r 2 R, krk denotes, as usual, the distance to the nearest integer.
We work with the volume form on V

dr = dr1 � � � drd;

the standard Lebesgue measure on Rd from the identification V = fr1!1 + � � � +
rd!dg.

To a polynomialQ(x) 2 V [x1; : : : ; xs]we associate a number of related polyno-
mials: Q�(X) = Tr(Q(x)) considered as a polynomial in R[X] = R[x11 ; : : : ; xsn],
where xi = xi1!1 + � � � + xin!n. Similarly, Q�

j (X) = Tr(!jQ(x)).
For a system of polynomials Q = (Q1; : : : ; Qm), Q� is the system comprised

of the polynomials Q�
ij (i = 1; : : : ;m; j = 1; : : : ; n).

If Q is homogeneous of total degree d, then we write Q(x1jx2j : : : jxd) for the
associated multilinear form. The associated multilinear form for Q� is therefore
Tr(Q(x1jx2j : : : jxd)).

A final note about notation: P is a large positive number which we think of
as tending to infinity, and, as usual, " denotes a small positive constant which, in
keeping with common practice, may change from one appearance to the next. This
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causes no problems as " may be assumed to be as small as we like. Likewise, �; �
and � generally denote small constants.

3. Some exponential sums

In this section, we investigate some exponential sums which arise in our application
of the Circle Method.

Let G and F be as in the introduction. For r 2 Rm, put

g = r �G =
mX
i=1

rigi:

We are interested in the sum

S(r) = S(G;B; r) =
X

x2PB

�(g(x))

=
X

X2PB

e(g�(X)):

Also, let fvig be the standard basis for the s-dimensional vector space V s and
let fEijg (i = 1; : : : ; s; j = 1; : : : ; n) be the standard basis for Rsn . Following the
conventions of Section 2, Eij = !jvi. For any (d � 1)-tuple (x1; : : : ; xd�1) with
xi 2 V s, put

M = (Mip) =
�
fi(x1j � � � jxd�1jvp

�
; (i = 1; : : : ;m; p = 1; : : : ; n):

Let f be the homogeneous part of g of degree d, and let N�(P � ; P��; r) denote
the number of integral (d� 1)-tuples (X1; : : : ;Xd�1) such that

Xk 2 [�P � ; P � ]ns

and

kf�(X1j � � � jXd�1jEpq)k � P��;

for all p and q.

LEMMA 1. Let 0 < � 6 1 and let " > 0. If S(r)� P sn��, then

N�(P�; P�d+(d�1)�; r)� P (d�1)ns��2d�1��":

Proof. This is just [B1, Lemma 2.4]. 2
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16 C. M. SKINNER

LEMMA 2. Let 0 < � 6 1 and let " > 0. Either

(i) S(r)� P ns��,
(ii) there exist 0 6= � 2 n and �i 2 n such that

j�j � Pm(d�1)� and j�ri � �ij � P�d+m(d�1)�

for i = 1; : : : ;m, or
(iii) the number of (d� 1)-tuples of n-points of P�R for which

rank(M) < m;
is

� P�(d�1)ns�2d�1��":

Proof. If (i) does not hold, then by Lemma 1

N�(P�; P�d+(d�1)�; r)� P (d�1)ns��2d�1��":

If (iii) does not hold for all the (d � 1)-tuples counted by N�, then for some
such (d� 1)-tuple we have rank(M) = m. WLG we may assume that the leading
m�m minor has non-vanishing determinant. Denote this determinant by �0. Note
that �0 2 n and that

j�0j � jx1j
m
� � � jxd�1j

m
� Pm(d�1)�:

Next, put

�p =
mX
i=1

riMip = �p1!1 + � � �+ �pn!n:

By assumption

Tr(!q�p) = Tr

0
@ mX
j=1

!j!q�pj

1
A = apq + dpq;

where apq 2 Z and jdpqj � P�d+(d�1)� for q = 1; : : : ; n. Let

Bp = (�p1; : : : ; �pn); Ap = (ap1; : : : ; apn); Dp = (dp1; : : : ; dpn);

and


 = (Tr(!q!j)); (q = 1; : : : ; n; j = 1; : : : ; n):

Then 
Bp = Ap + Dp. Thus

Bp = 
�1Ap +
�1Dp = A0
p + D0

p:
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Observe that j det(
)j = jNm(n)Disc(K)j, whence

jd0pj = jd0p1!1 + � � �+ d0pn!nj � max
j
jdpjj � P�d+(d�1)�:

Let A be the leading m�m minor. Then

Ar = (�p)16p6m:

Let (�p)16p6m be the solution of the linear equations

An = det(
)�0(a0p)16p6m:

Then �p 2 n and we have

A(det(
)�0r� n) = (det
)�0(d0p)16p6m:

Put � = det(
)�0. It follows that

j�ri � �ij � jx1j
m�1

� � � jxd�1j
m�1 max

p
jd0pj � P�d+m(d�1)�

and

j�j � j�0j � Pm(d�1)�:

Thus (ii) holds. 2

LEMMA 3. Let U � C s be an affine cone of dimension t defined over K . Then U
contains� P nt elements of PRs \ ns.

Proof. Let Y =
Qn1+n2

i=1 �i(U(Ki)) � Rn1 s � C n2 s. Clearly, the topological
dimension of Y is at most nt. Thus we can cover Y \Rs by � P nt boxes of side
length P�1. Then P times any such box contains � 1 elements of ns, whence
Y \ PRs = P (Y \Rs) contains � P nt elements of ns. 2

The final lemma of this section shows that for the appropriate choice of �,
one may eliminate possibility (iii) of Lemma 2 for any system G satisfying the
hypotheses of our Theorem.

LEMMA 4. Let � = n(m(m+ 1)(d� 1) + �)�. If Lemma 2(iii) holds, then

s� dim(Vsing) 6m(m+ 1)(d� 1)2d�1;

provided � > 0 is sufficiently small.
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Proof. Let S denote the algebraic set defined by rank(M) < m. The proof
of [B1, Lemma 3.3] is entirely geometric, so it remains valid in our situation.
Therefore, we have that

dim(Vsing) > dim(S)� (d� 2)s:

If Lemma 2(iii) holds, then by Lemma 3 we must have

dim(S) > (d� 1)s�
2d�1�

n�
� ":

It follows that

s� dim(Vsing) 6
2d�1�

n�
+ " 6 m(m+ 1)(d� 1)2d�1 + "+ �:

Since s� dim(Vsing) is an integer, the lemma follows easily. 2

4. The circle method

In this section, we apply the Circle Method apparatus to our problem and deduce
our Theorem. We now assume that G satisfies the hypotheses of the Theorem,
namely, s�dim(Vsing) > m(m+1)(d�1)2d�1 and that � is as in Lemma 4. Thus
we can dispense with alternative (iii) of Lemma 2. First note that

N(P ) = N(G;B; P ) =
Z
Rm

S(r) dr:

As expected, we evaluate N(P ) by the standard major/minor arc estimates. To
this end, we introduce the following sets. For � = (
1; : : : ; 
m) 2 Rm

K , put

a� = lcm(a
i);

M�(�) = fr 2 Rm : jri � 
ij 6 P�d+�
g;

M(�) =
[
�

Nm(a�)�P�

M�(�); m(�) = Rm
nM(�);

and

E(�) = fr 2 Rm such that alternative (ii) of Lemma 2 holdsg:

Note that our R is certainly contained in the R of [Sk] expanded by the factor
Nm(n), whence Lemmas 4, 5, and 6 of [Sk] remain valid in our setting. We will
need the following lemma.
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LEMMA 5.

(i) #f� :Nm(a�) = Ng � Nm+".
(ii) If nm(d� 1)� 6 �, then E(�) �M(�).
(iii) meas(E(�))� P n(�md+m(m+1)(d�1)�)+" .

Proof. (i) Observe that

#f� :Nm(a�) = Ng =
X
a

Nm(a)=N

#f� :a� = ag:

Let 0 6= � 2 a such that j�j � N1=n. Then by Lemma 6 of [Sk]

#f� :a� = ag � #f(�1; : : : ; �m) 2 om :�i 2 �RKg

� #f(�1; : : : ; �m) 2 om : j�ij � j�jg

�
�
j�jn+"

�m
� Nm+";

whence

#f� :Nm(a�) = Ng � Nm+"#fa :Nm(a) = Ng � Nm+":

(ii) If r 2 E(�), then����ri � �i

�

���� 6 j��1
j � j�ri � �ij

� j�jn�1P�d+m(d�1)�

� P�d+nm(d�1)� � P�d+�;

whence r 2M�(�) with 
i =
�i
� .

(iii) For a fixed �

measfr : jri � 
ij � P�d+m(d�1)�
g � P (�md+m(d�1)�m)n :

For � 2 a�, put

E�;� = fr 2 Rm : j�ri � �
ij � P�d+m(d�1)�
g:

Since multiplication by � is a linear map on V m with determinant jNm(�)jm, we
find that

meas(E�;�)�
P (�md+m(d�1)�m)n

jNm(�)jm
:
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20 C. M. SKINNER

By (i) and Lemmas 4 and 6 of [Sk], it follows that

meas(E(�)) �
X
�

Nm(a�)�Pnm(d�1)�

X
�2a�

j�j�Pm(d�1)�

meas(E�;�)

�
X
�

Nm(a�)�Pnm(d�1)�

P (�md+m(d�1)�m)n

Nm(a�)m

 
Pm(d�1)�n

Nm(a�)

!1+"

�
X

N�Pnm(d�1)�

X
�

Nm(a�)=N

P (�md+m2(d�1)�+m(d�1)�)n+"

Nm+1+"

�
X

N�Pnm(d�1)�

P (�md+m(m+1)(d�1)�)n+"

N

� P (�md+m(m+1)(d�1)�)n+": 2

We now estimate the contribution to the integral N(P ) from the regions m(�).

LEMMA 6. For � sufficiently small

Z
m(nm(d�1)�)

jS(r)j dr � P n(s�md)��;

where � = �(�) is a positive number.
Proof. Choose E so that E(m + 1)(d � 1) = d. Then meas(RmnE(E)) 6 1,

so by our choice of � and Lemma 2(i)

Z
RmnE(E)

jS(r)j dr � P ns��
� P n(s�md�E�): (4.1)

Choose a set of values

� = �0 < �1 < � � � < �g = E:

Put

Fi = E(�i)nE(�i�1); (i = 1; : : : ; g);

Fg+1 = Rm
nE(E):
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By Lemma 5(ii)

m(nm(d� 1)�) �
g+1[
i=1

Fi: (4.2)

Now, for i 6 g it follows from Lemma 5(iii) that

meas(Fi) 6 meas(E(�i))� P�nmd+nm(m+1)(d�1)�i+":

Thus, for i 6 gZ
Fi

jS(r)j dr � P n(s�md)+nm(m+1)(d�1)(�i��i�1)�n��i�1+":

If the �i are chosen sufficiently close, say

�i ��i�1 <
1
2��=m(m + 1)(d� 1);

then Z
Fi

jS(r)j dr � P n(s�md)�
1
2n��+ ": (4.3)

The lemma follows upon combining (4.1), (4.2), and (4.3) and recalling that we
may take " arbitrarily small. 2

Next, we estimate the contribution to N(P ) from M(�). Put

S(�) = Nm(a�)�s
X

x(a�)

�(� �G(x));

S(�) =
X
�

Nm(a�)�Pnm(d�1)�

S(�);

and

J(�) =

Z
jtj6Pnm(d�1)�

Z
B

�(t � F(y)) dy dt:

LEMMA 7. For � > 0 sufficiently small

Z
M(nm(d�1)�)

S(r) dr = S(�)J(�)P n(s�md) +O(P n(s�md)��);

for some � = �(�) > 0.
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Proof. First observe that that if r 2M�1 \M�2 with Nm(a�i)� P nm(d�1)�,
then

j
1i � 
2ij 6 jri � 
1ij+ jri � 
2ij � P�d+nm(d�1)�:

By Lemma 5 of [Sk], there exists an � 2 lcm(a�i) such that j�j � P 2m(d�1)�,
whence

j�(
1i � 
2i)j � P�d+2m(d�1)�+nm(d�1)�:

It follows that if � is sufficiently small, then we must have that 
1i = 
2i for all
i and therefore �1 = �2. Thus, if � is small, the M�(nm(d � 1)�) are disjoint,
and we haveZ

M(nm(d�1)�)
S(r) dr =

X
�

Nm(a�)�Pnm(d�1)�

Z
M�(nm(d�1)�)

S(r) dr

=
X
�

Nm(a�)�Pnm(d�1)�

I(�;�): (4.4)

For r 2M�, put r = z + �. Put N = Nm(a�). Then

S(r) =
X

x2PB

�((z + �) �G(x))

=
X
a(N)

X
b
�((z + �) �G(a +Nb))

=
X
a(N)

�(� �G(a))
X

b

�(z �G(a +Nb)); (4.5)

where the summation in b is over integral points b such that a +Nb is in PB.
Observe that � = (�1=N; : : : ; �m=N) where �i = �i1!1 + � � � + �in!n 2 nmd .

Put

�� = (�11=N; : : : ; �1n=N; : : : ; �mn=N):

Then by (4.5) we see that

S(r) =
X

A(N)

e(�� �G�(A))
X

B

e(Z �G�(A +NB)):
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The arguments of [S1, Lemma 9] and [S2, Section 9] give

S(r) = N�sn
X

A (N)

e(�� �G�(A))
Z
PB

e(Z � F�(U)) dU

+O(NP ns�1+nm(d�1)�)

= S(�)

Z
PB

�(z � F(u) du +O(NP ns�1+nm(d�1)�): (4.6)

Integrating (4.6) over M�(nm(d� 1)�) gives

I(�;�) = S(�)

Z
M�(nm(d�1)�)

Z
PB

�(z � F(u)) du dz

+O(NP ns�1+nm(d�1)�meas(M�))

= S(�)P n(s�md)
Z
jtj�Pnm(d�1)�

Z
B

�(t � F(y)) dy dt

+O(P n((s�md)+m(nm+2)(d�1)�)�1)

= S(�)J(�)P n(s�md) +O(P n(s�md)+nm(nm+2)(d�1)��1): (4.7)

Substituting (4.7) into (4.4) gives

Z
M(nm(d�1)�)

S(r) dr = S(�)J(�)P n(s�md) +O(P n(s�md)��);

by Lemma 5(i) provided � is sufficiently small. 2

Now, we make a more detailed investigation of the term S(�)J(�). Put

S(1) =
1X

N=1

X
�

Nm(a�)=N

S(�);

and

J(1) =

Z
Vm

Z
B

�(t � F(y)) dy dt:

https://doi.org/10.1023/A:1000129818730 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000129818730


24 C. M. SKINNER

LEMMA 8. If G and � are as in Lemma 6, then

(i) S(1) converges absolutely, and
(ii) S(�)�S(1)� P�� for some positive � = �(�):

Proof. Put N = Nm(a�). Choose � = 1=nm(d� 1)� "0. If alternative (i) of
Lemma 2 holds for P = N , then

S(�) = N�sn
X
x(N)

�(� �G(x))

� N�snN sn�(m+1)�(��")�
� N�(m+1)�� ; (4.8)

for some positive � if " is sufficiently small. Alternative (ii) gives an � with
j�j � Nm(d�1)� such that

j�
i � �ij � N�d+m(d�1)�:

Let 0 6= � 2 a� such that j�j � N 1=n. Then

j��
i � ��ij � N�d+m(d�1)�+1=n:

Since m(d� 1)� + 1=n < 2 6 d for small ", it follows that for large N we must
have


i =
�i

�
for all i:

But N � jNm(�)j � j�jn � Nnm(d�1)� and nm(d � 1)� < 1, giving a
contradiction for N large. Thus, we may assume that (4.8) holds.

(i) By (4.8) and Lemma 5(i)

S(1)�
1X

N=1

Nm+"N�m�1��
�

1X
N=1

N�1�(��") <1;

since " may be taken smaller than �.
(ii) Similarly

S(�)�S(1)�
X

N�Pnm(d�1)�

N�1�(��")
� P�� :

2
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LEMMA 9. With F and � as above,

(i) J(1) exists, and
(ii) J(�)� J(1)� P�nm(d�1)�.

Proof. Thinking of the system F as the rational system F�, the lemma follows
from Lemma 8.1 and Section 3 of [S2]. 2

We can now tie everything together to deduce the main part of our Theorem, namely
the formula for N(F;B; P ). Put

� = �(G;B) = S(1)J(1):

PROPOSITION 1. Suppose G is a system of polynomials satisfying the hypotheses
of the Theorem. Then for any box B

N(P ) = �P n(s�md) + o(P n(s�md)):

Proof. Choose � small. By Lemmas 6 and 7

N(P ) = S(�)J(�)P n(s�md) + o(P n(s�md)):

By Lemmas 8 and 9

S(�)J(�) = S(1)J(1) +O(P��J(1)

+P�nm(d�1)�S(1) + P�nm(d�1)���):

It follows that

N(P ) = �P n(s�md) + o(P n(s�md)): 2

It remains to check that � > 0 under the conditions stated in the Theorem.

PROPOSITION 2. Suppose G satisfies the hypotheses of the Theorem. Then

(i) S(1) > 0, if G has a non-singular solution in nsv for each finite place v, and
(ii) J(1) > 0 for some B, if F has a non-singular solution in Ks

v for each infinite
place v and if dim(V (0)) = n�m. In particular, this holds for anyB centered
at a point �zi, where each zi is a non-singular solution over Ki of F.

https://doi.org/10.1023/A:1000129818730 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000129818730


26 C. M. SKINNER

Proof. Both of these results are standard. For a prime ideal p, put

�(p) =
1X
j=1

X
�

a�=p
j

S(�):

Then we have

S(1) =
Y
p

�(p):

Let np be the ideal in op generated by n. If G has a non-singular solution in nsp, then
standard arguments (e.g. [DL, Lemma 10]) are easily generalized to our setting,
and they show that �(p) > 0 and (i) is true. Also, again thinking of F as F�,
it is a straight-forward exercise to show that a non-singular solution of F in V s

corresponds to a non-singular solution of F� in Rsn , and vice versa. It is clear that
dim(V �(0)) = n dim(V (0)) and dim(V �

sing) = n dim(Vsing), whence (ii) follows
from [B1, Section 6]. 2

Proof of Theorem. Combine Propositions 1 and 2. 2

5. Proof of corollary 1

In this section we deduce Corollary 1 and make some related comments.

Proof of Corollary 1. Let X and F = (f1; : : : ; fm) be as in the statement of
the corollary. We assume that X(Kv) 6= ; for all places v. To prove that weak
approximation holds for X , it suffices to prove that the following holds for X . For
any " > 0, any finite set of places S, and any set of points fxv = (xv1 : � � � :xvs) 2
X(Kv) :v 2 Sg there exists a point x = (x1 : � � � :xs) 2 X(K) such that

jxi � xvijv < ";

for every i and every v 2 S.
Let "; S; and fxvgv2S be given. By possibly adjusting ", we may assume

that ordv(xvi) > 0 for every i and every v 2 S. Write S = S1 [ Sf , where
S1 consists of infinite places, and Sf consists of finite places. By the Chinese
Remainder Theorem, we can find a = (a1; : : : ; as) 2 os such that jai � xvijv < "
for every i and every v 2 Sf . Let

rv = min
i

ordv(ai � xvi);

and let pv be the prime ideal corresponding to v. Put

n = nS =
Y
v2Sf

p
rv
v :

https://doi.org/10.1023/A:1000129818730 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000129818730


FORMS OVER NUMBER FIELDS AND WEAK APPROXIMATION 27

Let

G = (f1(y + a); :::; fm(y + a)):

Then G is a system of polynomials satisfying the hypotheses of the Theorem and
whose associated homogeneous system is F.

Let t be a positive integer. Let C � 1 (nt) be a positive integer such that

C >
2c
"
;

where c = c(K;!) is a positive constant such that for any r 2 V ,

jr(i)j 6 cjrj:

For any infinite place v, let

rv =

8<
:

Cxv; if v 2 S1;

any point of X(Kv); otherwise:

Since X(Kv) is non-empty by assumption, such an rv is always possible. Put

r0 =
n1+n2M
i=1

rvi ;

where vi is the infinite place corresponding to the embedding �i. Finally, let
B = B(r0) be the box centered at the point r0:

Applying the Theorem to G, with n and B chosen as above, we have that

N(G;B; P ) = �(G;B)P n(s�md) + o(P n(s�md));

whereN(G;B; P ) counts zeros of G in ns\PB. For a finite place v 62 S, nv = ov ,
whence any point in X(Kv) gives rise to a non-singular zero of G in nv . For a finite
v 2 S, the point xv � a is a non-singular zero of G, and certainly, xv � a 2 nsv .
Thus, all the conditions needed for �(G;B) to be positive are satisified. It follows
that for any sufficiently large integerP � 1 (nt), there exists a point y 2 (ns\PB)
such that x = y + a is a zero of F. In fact, for P large enough, the number of such
solutions is greater than one, so we may assume that y 6= �a, so x 6= 0.

For each v 2 S1 and each i, we have that

jCPxvi � yij 6 cP;
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whence����xvi � 1
CP

xi

����
v

6

����xvi � 1
CP

yi

����
v

+
jaijv

CP

6
c

C
+
cjaij

CP

< "; (5.1)

for CP sufficiently large.
For each v 2 Sf and each i, we have that����xvi � 1

CP
xi

����
v

6 jxvi � xijv + 2

6 j(xi � ai)� (xvi � ai)jv + 2

< 2"; (5.2)

for CP � 1 (nt) for sufficiently large t.
It follows from (5.1) and (5.2) that weak approximation holds for X . 2

As a particular case of Corollary 1, weak approximation holds for any smooth
cubic hypersurface of dimension at least 15. One could, in fact do better in this
case. For example, essentially following the arguments of Pleasants [P], we could
significantly weaken the hypothesis of non-singularity. In light of the result of [Sk],
one should also be able to show that weak approximation holds for any smooth
cubic hypersurface of dimension at least 11.

A final remark. In [ERS] the asymptotic formulae that result from applying
the Circle Method to non-singular quadratic forms are used to give a new proof
of Siegel’s Mass Formulae over Q. One would hope to do the same for arbitrary
number fields. Indeed, for smooth quadratic hypersurfaces of dimension at least
3, the desired asymptotics follow from our Theorem. Unfortunately, the inductive
arguments of [ERS] require that they also hold in dimension 2. This appears to be
out of reach of the methods of this paper. Over Q, one uses the Kloosterman variant
of the Circle Method, which makes great use of the Farey dissection of the unit
interval, of which there is no satisfactory generalization. This was a limiting factor
in [Sk] as well.
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