Canad. Math. Bull. Vol. 57 (2), 2014 pp. 310-317
http://dx.doi.org/10.4153/CMB-2013-030-2 qu%
(© Canadian Mathematical Society 2013

Left-orderable Fundamental Group and
Dehn Surgery on the Knot 5,

Ryoto Hakamata and Masakazu Teragaito

Abstract. 'We show that the manifold resulting from r-surgery on the knot 5,, which is the two-bridge
knot corresponding to the rational number 3/7, has a left-orderable fundamental group if the slope r
satisfies 0 < r < 4,

1 Introduction

A group G is said to be left-orderable if it admits a strict total ordering that is left
invariant. More precisely, this means that if ¢ < h, then fg < fhforany f,g,h € G.
The fundamental groups of many 3-manifolds are known to be left-orderable. On
the other hand, the fundamental groups of lens spaces are not left-orderable, because
any left-orderable group is torsion-free. The notion of an L-space was introduced
by Ozsvath and Szab6 [12] in terms of Heegaard—Floer homology. Lens spaces and
Seifert fibered manifolds with finite fundamental groups are typical examples of L-
spaces. Although it is an open problem to give a topological characterization of an
L-space, there is a possible connection between L-spaces and left-orderability. More
precisely, Boyer, Gordon, and Watson [3] conjecture that an irreducible rational ho-
mology sphere is an L-space if and only if its fundamental group is not left-orderable.
They give affirmative answers for several classes of 3-manifolds.

It is well known that all knot groups are left-orderable (see [4]), but the result-
ing closed 3-manifold by Dehn surgery on a knot does not necessarily have a left-
orderable fundamental group. For example, there are many knots that admit Dehn
surgery yielding lens spaces. By [12], the figure-eight knot has no Dehn surgery yield-
ing L-spaces. Hence we can expect that any nontrivial surgery on the figure-eight
knot yields a manifold whose fundamental group is left-orderable, if we support the
conjecture above. In fact, Boyer, Gordon, and Watson [3] show that if —4 < r < 4,
then r-surgery on the figure-eight knot yields a manifold whose fundamental group
is left-orderable. In addition, Clay, Lidman, and Watson [6] verified it for r = +4
through a different argument.

In this paper, we follow the argument of [3] for the most part to handle the knot
5, from the knot table in [14]. This knot is the two-bridge knot corresponding to the
rational number 3/7, and is a twist knot. We believe that this is an appropriate target
next to the figure-eight knot. Since 5, is non-fibered, it does not admit Dehn surgery
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yielding an L-space [11]. Hence we can expect that any non-trivial Dehn surgery on
5, will yield a 3-manifold whose fundamental group is left-orderable.

Theorem 1.1 Let K be the knot 5;,. If 0 < r < 4, then r-surgery on K yields a
manifold whose fundamental group is left-orderable.

In fact, 0-surgery on any knot yields a prime manifold whose first Betti number
is 1, and such manifold has left-orderable fundamental group [4, Corollary 3.4]. Fur-
thermore, the same conclusion holds for 4-surgery on twist knots [16]. Hence, in this
paper we will handle the case where 0 < r < 4.

2 Knot Group and Representations

Let K be the knot 5, from the knot table in [14]; see Figure 1. This knot is the two-
bridge knot corresponding to the rational number 3/7. In this diagram, K bounds a
once-punctured Klein bottle, as seen from the checkerboard coloring, whose bound-
ary slope is 4. In fact, 4-surgery on K gives a toroidal manifold, and 1, 2, and 3-
surgeries give small Seifert fibered manifolds ([5]).

OO

Figure 1

Let M be the knot exterior of K. It is well known that the knot group G =
m1(M) has a presentation (x,y | wx = yw), where x and y are meridians and
w = xyx~ 'y~ lxy. Also, a (preferred) longitude \ is given by x*w*w, where w* =
yxy~'x~lyx corresponds to the reverse word of w. (These facts are easily obtained
from Schubert’s normal form of the knot [15].)

Let s > 0 be a real number and let

B 2435+ 22 +V/s2+4

2s

T

Then it is easy to see that T > 4. Also, let t = T4 VZTZ_4. Then, t > 3 and

2435+ 25 + 52+4+\/(2+35+252+\/52+4)2—1652

(2.1) t= "
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Letp =s(t+t7 1) — (2> +3s+2)(t +t7 1) +5° + 35> + 45+ 3. Since t +t ! = T,
¢ = sT?> — (252 + 35+ 2)T + s° + 3s* + 4s + 3. If we solve the equation ¢ = 0 with
respect to T, we obtain the expression of T in terms of s as above. Thus ¢ = 0 holds.

We now examine some limits, which will be necessary later.

Lemma 2.1

(1) lims_ 4ot = 0.

(i) limy_y,qst = 2.

(iii) t —s>2andlim,_, o (t —s) = 2.
(iv) im0 s/t = 1.

(v) lims,os(t—s—2)=0.

(vi) limsyoot(t —s—2)=0.

Proof (i) and (ii) are obvious from (2.1). For (iii),

2+ 3s+ 52+4+(\/(2+3s+252+\/52+4)2716527252)
4s

t—s=

shows us that t — s > 0, since (2 + 35 + 25> + V/s? + 4)> — 1652 > 4s*. The second
conclusion follows from

2435+ 14 . \/(2+3s+252+\/52+4)2—1652—252
lim ——— =1, lim

s—00 4s 5—00 4s

A direct calculation shows (iv).
For (v),

4s(t —s—2)—2 =

(VQ2+3y+b2+vGTIZV-—1&2+ 52+4)-—(mz+59.

Since the right-hand side converges to —2, we have lim,_, o, s(f —s — 2) = 0.
From (iii), an inequality s + 2 < t < s+ 3 holds for sufficiently large s. Then
(s+2)(t—s—2) <t(t—s—2) < (s+3)(t —s—2). Hence (iii) and (v) imply (vi). H

Let p;: G — SLy(R) be the representation defined by the correspondence

t—s—1

tos=l s
P o0 % e Lr
(22) ps(x) = (\0[ 1) 5 Ps(}’) = v 5+\1/—%
Vit - Vi-L

Here, we continue using the variable t to reduce the complexity. By using the fact
that s and ¢ satisfy the equation ¢ = 0, we can check p(wx) = p,(yw) by a direct
calculation. Hence the correspondence on x and y above gives a homomorphism
from G to SL,(R). In addition, ps(xy) # ps(yx), and so p; has the non-abelian
image.
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Remark 2.2 This representation of G comes from that in [9, p. 786]. The polyno-
mial ¢ corresponds to the Riley polynomial in [13].

Lemma 2.3 For alongitude \, p;(\) is diagonal, and its (1, 1)-entry is a positive real
number.

Proof Note that ps(x) is diagonal and ps(x) # +I. The fact that p(x) commutes
with ps(\) easily implies that p,(\) is also diagonal. (This can also be seen from a
direct calculation of p;(\), by using ¢(s,t) = 0.)

A direct calculation gives the (1, 1)-entry

1

(s(l —Q+s)t+) (s—Q2+2s+s)t+ (1 +5)t2)2
+(1+s— t)2t3(s— (1 +5)2t+st2) 2)

of ps(\). Thus it is enough to show that 1 — (2 + s)t + t* > 0. This is equivalent to

24354252 +V/s2+4 u

the inequality T' > 2 + s, which is clear from T = or

Let r = p/qbe arational number and let M(r) denote the manifold resulting from
r-filling on the knot exterior M of K. In other words, M(r) is obtained by attaching
a solid torus V to M along its boundaries so that the loop x” A? bounds a meridian
disk of V.

Clearly, p;: G — SL,(R) induces a homomorphism 7; (M(r)) — SL(R) if and
only if ps(x)? ps(A)? = I. Since both of ps(x) and ps(\) are diagonal, this is equivalent
to the equation

(2.4) APBI =1,

where A, and B; are the (1, 1)-entries of ps(x) and ps(\), respectively. We remark
that since A; = /¢ is a positive real number, so is B; by Lemma 2.3. Furthermore,
equation (2.4) is equivalent to

log B P

ClogA, g

Letg: (0,00) — R be a function defined by

log B;
log A,

g(s) = —

Lemma 2.4 The image of g contains an open interval (0, 4).

Proof First, we show that

lim,g(9)=0
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Since lim_, 9 log A; = o0, it is enough to show that lim,_, o B; = 1. We decompose
B, given in (2.3), as

B — s 1—(2+5)t+t2(5—(2+2$+52)t+(1+s)t2)2
=

t—1 (t— 1t t2

+(1+s—t>2<s—(l+s)2t+st2>2.

r—1 t

From Lemma 2.1, lim,_, 1 t = oo and lim,_, .o st = 2. These give

. s 1=+t +t?
lim —— =0, lim ——— =1,
s—+0t — 1 s—+0 (t— 1t
s — (24 25+ )t + (14 95)t? o l+s—t
lim =1, Iim —— = —1,
s—40 t2 s—+0  F— 1
and
s — (1)t +st?
lim —— = 1.
s—+0 t
Thus we have lim,_, ¢ B, = 1.
Second, we show
Jim g9 =4
Let N be the numerator of B; shown in (2.3). Then
logB;, 2logN  2log(t —1)°¢°
logA,  logt logt '
Claim 2.5 lim,_,.o Nt™> =1.
Proof of Claim 2.5 From Lemma 2.1, lim,_, o, s/t = 1 and lim,_ o (1+s—1) = —1.
We have
1— Q4+t =tt—s—2)+1,
— (1453t +st?
sUePres s o
t t
s— Q425+t +(1+5)t2 1 s—(1+5)%+st? 1+1
12 ot t t
Hence Lemma 2.1 implies
s— (24 25+ )+ (1 +5)t2
lim (1 — 2+ s)t +#?) = lim ( it ( ) =1,
s—00 s—00 t2
— (1 +5)%t +st?
lim SV (1L+3) t_ 0
s—00 t
Combining these, we have lim;_, o, Nt 7> = 1. []
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Thus we have lim,_, . (log N — 5logt) = 0. Then

logN
lim o8N _ 5
s—oo logt
Clearly,
1 _ 2.5
lim o8 =D
t—>00 log t
Hence we have lim,_,  g(s) = 4. [ |

3 The Universal Covering Group of SL,(R)

SU(1,1) = { (g g) ‘ ol — |8 = 1}

be the special unitary group over C of signature (1, 1). It is well known that SU(1, 1)
is conjugate to SL,(R) in GL,(C). The correspondence is given by v: SL,(R) —

SU(1, 1), sending
+d+(b—c)i —d—(b+o)i
a b H a 5 C)1 a 5
c d a—d+(b+o)i a+td—(b—c)i | *
2 2

There is a parametrization of SU(1, 1) by (v, w), where v = f/a and w = arga
defined mod 27 (see [1,10]). Thus SU(1,1) = {(y,w) | |7 < 1,—7 < w < 7}
The group operation is given by (v, w)(y',w’) = (v"/,w’’), where

Let

(3.1) w_ o e
: v= 1_}_,.)/,.)7/672@”
1 1+ o1 ,—2iw’
(3.2) W' =w+w + =log e

2i 1+ gy/etw’
Now the universal covering group m) of SU(1, 1) can be described as

M) ={(y,w) | |7 <1,—00 < w < o0}.
The group operation is given by (3.1) and (3.2) again, but w’’ is no longer mod
2m. Let @: SL(R) — SLy(R) be the covering projection. Then it is obvious that
ker ® = {(0,2mm) | m € 7}.

Lemma 3.1 The subset (—1,1) x {0} ofm) forms a subgroup.

Proof From (3.1) and (3.2), it is straightforward to see that (—1,1) x {0} is closed
under the group operation. For (v,0) € (—1,1) x {0}, its inverse is (—v, 0). [ |
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For the representation p,: G — SL;(R) defined by (2.2),

Wi \t—1 t+1

Thus 1 (ps(x)) corresponds to (v, 0), where v, = %
Also, for a longitude A,

1 (Bi++ B,—+
112(/)5()\)):( B = ?5>, B, >0

Y(psx) = ! (Hl tl)ESU(l,l).

2 BS—E Bs+E

from Lemma 2.3. Thus 1(ps(A)) corresponds to (7, 0), where ) = %:ll.

4 Proof of Theorem

As the knot exterior M satisfies H*(M;Z) = 0, any p;: G — SL,(R) lifts to a repre-
sentation p: G — SL(R) [7]. Moreover, any two lifts p and p’ are related as follows:

p'(g) = h(g)p(g),

where h: G — ker ® C SL,(R). Since ker ® = {(0,2mm) | m € Z} is isomorphic
to Z, the homomorphism # factors through H; (M), so it is determined only by the
value h(x) of a meridian x (see [9]).

The following result, which was originally claimed in [9], is the key in [3] for the
figure-eight knot. Our proof follows that of [3] for the most part, but it is much
simpler, because of the values of 1(ps(x)) and ¥ (ps(A)), which were calculated in
Section 3.

Lemma 4.1 Letp: G — m) be a lift of ps. Then, replacing p by a representation
p' = h-pforsomeh: G — SLy(R), we can suppose that p(m(OM)) is contained in the
subgroup (—1,1) x {0} of SLy(R).

Proof Since ®(p(A\)) = (71,0), v € (—1,1) and p(A) = (ya,2j7) for some j.
On the other hand, X is a commutator, because our knot is genus one. Therefore
[17, (5.5)] implies —37/2 < 2jm < 37/2. Thus we have p(\) = (7»,0).

Similarly, p(x) = (~x, 2¢m) for some ¢, where vy, € (—1, 1). Let us choose h: G —
SLy(R) so that h(x) = (0, —2¢7). Set p’ = h - p. Then a direct calculation shows that
7' (x) = (7x,0) and p’(A) = (7, 0). Since x and \ generate the peripheral subgroup
71 (OM), the conclusion follows from these. [ |

Proof of Theorem 1.1 Let r = p/q € (0,4). By Lemma 2.4, we can fix s so that
g(s) = r. Choose alift p of p, so that p(m;(OM)) C (—1,1)x{0}. Then p(x? A1) =1,
50 D(p(x? A1)) = I. This means that p(x? A1) lies in

ker® = {(0,2mm) |m € Z}.
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Hence p(xA?) = (0, 0). Then p can induce a homomorphism 7 (M(r)) — m)
with non-abelian image. Recall that SL,(R) is left-orderable [2]. Since M(r) is ir-
reducible [8], m;(M(r)) is left-orderable by [4, Theorem 1.1]. This completes the

proof.
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