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A first-principles method to calculate the critical temperature gradient for the onset of
the ion-temperature-gradient mode (ITG) in linear gyrokinetics is presented. We find that
conventional notions of the connection length previously invoked in tokamak research
should be revised and replaced by a generalized correlation length to explain this onset
in stellarators. Simple numerical experiments and gyrokinetic theory show that localized
‘spikes’ in shear, a hallmark of stellarator geometry, are generally insufficient to constrain
the parallel correlation length of the mode. ITG modes that localize within bad drift
curvature wells that have a critical gradient set by peak drift curvature are also observed.
A case study of near-helical stellarators of increasing field period demonstrates that
the critical gradient can indeed be controlled by manipulating the magnetic geometry,
but underscores the need for a general framework to evaluate the critical gradient. We
conclude that average curvature and global shear set the correlation length of resonant ITG
modes near the absolute critical gradient, the physics of which is included through direct
solution of the gyrokinetic equation. Our method, which handles the general geometry and
is more efficient than conventional gyrokinetic solvers, could be applied to future studies
of stellarator ITG turbulence optimization.
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1. Introduction

Energy transport resulting from small-scale electrostatic fluctuations is a major
impediment to sustaining nuclear fusion in magnetic confinement devices. While one
can scale up the size of a reactor to offset these losses and reach the required fusion
product, smaller designs with better transport properties are more likely to be built and
succeed against economic competition from other energy sources. Thus precise control of
the level of electrostatic fluctuations would be a boon to the fusion program. The problem
of transport resulting from electrostatic turbulence has been tackled aggressively over the
past decades in the context of axisymmetric tokamaks and is receiving increasingly more
attention in the stellarator community. The complex magnetic geometry of stellarators
makes the problem more difficult to study, but also opens the door to possible optimization
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by exploring the large theoretical space of stellarator designs. The current hope is that once
the magnetic field shape is adjusted to confine trapped particle orbits, there will be enough
remaining freedom to optimize for turbulence; see e.g. Mynick (2006) for a review.

The ion-temperature-gradient mode (ITG mode) has been singled out as a leading
cause of transport in magnetic fusion devices. This mode, which is driven by gradients
in ion temperature, causes heat losses that act to reduce the steep gradient imposed by
heating in the core of the device. Several different approaches to modelling the ITG
mode in stellarators have emerged over the past decade, such as incorporating the effect
of zonal flows into quasilinear turbulence saturation (Nunami, Watanabe & Sugama
2013; Toda et al. 2019), which add the contributions of subdominant eigenmodes into
quasilinear saturation estimates (Pueschel et al. 2016) and calculate mode saturation
by energy transfer to damped modes (Terry, Baver & Gupta 2006; Hatch et al. 2011).
Some optimization strategies based on nonlinear modelling have also been identified, e.g.
targeting key geometric quantities associated with ITG intensity (Mynick, Pomphrey &
Xanthopoulos 2010; Xanthopoulos et al. 2014) and increasing the correlation time of
unstable modes with damped modes (Hegna, Terry & Faber 2018). Renewed interest in
near-axis expansions for stellarators (Landreman & Sengupta 2018; Jorge, Sengupta &
Landreman 2020) has also led to calculation of the geometric features that influence the
ITG mode (Jorge & Landreman 2020, 2021) with possible application to optimization
for ITG turbulence. Much of the work just mentioned, as well as current efforts towards
turbulence optimization of which we are aware, involve modelling turbulence itself. This
is a challenging problem to crack, especially at the level of generality needed for stellarator
design. We can solve a simpler problem that applies to any toroidal configuration, however,
by finding the ITG linear critical gradient.

The critical gradient is the threshold gradient for onset of the ITG mode. While some
plasma instabilities are susceptible to sub-critical turbulence that bring this onset below
the linear threshold, it appears that the opposite occurs in the case of the ITG mode, with
the onset occurring at a somewhat larger value of the gradient (Dimits et al. 2000). The
critical gradient is also a valuable reference point because the thermal transport above this
value tends to be ‘stiff” in tokamaks, i.e. it often sharply increases with the gradient. If the
plasma has a radial temperature profile with a constant gradient that matches the critical
gradient,dIn 7 /dr = d1In T /dr.; = const (T is the temperature and r is the radial distance
from the core of the plasma), one can infer from integrating this profile inward in r that
the temperature increases exponentially towards the core. It stands to reason that a modest
improvement in the critical gradient can result in a significant gain in the core temperature.
A specific gradient might be targeted so that modest turbulence is present in the desired
operating regime, which may, in certain cases, help flush out impurities (Garcia-Regaiia
et al. 2021).

1.1. Physics of the ITG mode critical gradient

The critical gradient has a long history in tokamak research. Early analytical works
mapped the stability of the ITG mode in parameter space and calculated threshold
gradients in various limits (e.g. Terry, Anderson & Horton 1982; Dominguez & Waltz
1988; Romanelli 1989; Biglari, Diamond & Rosenbluth 1989; Hahm & Tang 1989;
Dominguez & Rosenbluth 1989; Romanelli & Briguglio 1990; Kadomtsev & Pogutse
1995). For a comprehensive study of the analytical calculations and their validity, the
reader is referred to Zocco et al. (2018), in which the critical gradient is explored in the
more general cases of low-shear tokamaks and stellarators in the so-called local kinetic
limit. The critical gradient has also been studied for the electron-temperature-gradient
(ETG) mode (e.g. Horton, Hong & Tang 1988; Jenko, Dorland & Hammet 2001; Jenko
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& Dorland 2002), whose behaviour mirrors the ITG in certain limits. Although the ITG
critical gradient for the actual onset of turbulence will differ from the linear value, it is
only expected to be greater as a result of an ‘upshift’ owing to zonal flows. That is to say,
the true critical gradient in many devices is, to first approximation, set by linear physics
and is improved to some degree by nonlinear effects.

The physics of the ITG is simpler near the linear threshold. The complexity introduced
by multiple growing modes having the same perpendicular wavenumber is removed, as
only one marginally unstable mode remains, the ‘last mode standing’. More importantly,
the prediction of the linear critical gradient does not require a complete understanding
of turbulence, and is universally relevant in the sense that virtually all configurations of
interest are expected to have a well-defined value. The critical gradient is thus a convenient
metric for comparing how susceptible different configurations are to ITG turbulence.
However, there is no general method for calculating the critical gradient in arbitrary
geometry aside from running a series of linear gyrokinetic simulations essentially as a
root finder, which is a tedious and computationally intensive procedure. This motivates
the development of an efficient and robust method, which is the main result of this paper.
We also try to clarify some outstanding physics questions concerning what controls the
stability of the ITG mode in a general magnetic geometry.

We distinguish here between two linear critical gradients, which correspond to the onset
of the two distinct branches of the ITG mode. For configurations with low global shear, the
threshold of slab-like modes, which are spread broadly along the field line, characterize the
absolute critical gradient, below which no unstable modes are present. Such ‘background’
modes and the dependence of their critical gradient on the temperature ratio of ions and
electrons were studied by Zocco et al. (2018), with further evidence for slab-like modes
in low-shear stellarators discussed in works such as Faber er al. (2018). A sufficiently
large global shear is expected to stabilize the slab-like background and lead to a single
critical gradient, where the onset of resonant modes is related to the toroidal branch of
the ITG mode whose critical gradient is set by drift curvature. These curvature-influenced
modes (that still retain the parallel resonance associated with the slab mode) ‘balloon’
and localize along the field line, where they, at least in part, feed off of regions of bad
curvature along the field line. The onset of these modes defines a second critical gradient,
which is thought to be set by the strength of bad curvature, as well as the extent of regions
of bad curvature along the field line. Both slab-like background and localized toroidal/slab
modes are expected to emerge in low- to moderate-shear devices, which leads to a ‘knee’
in the plot of maximal growth rate versus temperature gradient (see Zocco et al. 2018).
Which of these critical gradients is more important in setting the onset of significant heat
transport remains an open question.

The traditional geometric scale invoked to understand the onset and drive of the ITG
mode has been the connection length, typically the distance along the field line between
the inboard and outboard sides of a tokamak (the distance between regions of ‘good’ and
‘bad’ curvature). If an ITG mode is in the toroidal branch, it will typically balloon in the
centre of the bad curvature well. Near the transition to the slab mode (if one exists as
in the low-shear case), it may be that the mode has to spread out to fill the entire bad
curvature region, i.e. connection length, to be unstable. In the case of a stellarator, one
might attempt to generalize the connection length idea, for example, to be the distance
between sharp features in local shear that are inherent to non-axisymmetric fields that also
tends to correspond to the scale of variation of the normal curvature. We will show that
this is not completely successful in describing the critical gradient. Fortunately, a more
fundamental measure is available, namely the ion correlation length, or the distance over
which ion motion is correlated with the mode. Analysis of the equations will show that this
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is simply a properly defined characteristic frequency divided by the ion thermal velocity.
Thus we find that for stellarators, the traditional notion of connection length (defined for
curvature by local shear, etc.) should generally be replaced by this correlation length. The
ITG mode near marginality may, depending on the size of this length scale, be driven
independently of local features in the geometry and, in such cases, depends on average
properties along a magnetic field line.

The paper is structured as follows. In § 2, we define the linear gyrokinetic equation
and the integral form of the equation that we use to solve for the ITG critical
gradient. We discuss the local, linear theory of the slab I'TG mode critical gradient in
§3.1 and extend the discussion to the effects of field-line-varying geometry in §3.2.
Numerical experiments using a slab geometry model show that it is difficult to constrain
the correlation length of the ITG with localized amplification of the perpendicular
wavenumber in § 3.3. These experiments illustrate an example of a possible conflict
between the concepts of correlation length and connection length. We also provide
evidence for the onset of curvature-driven modes by extending the numerical model to
include a spatially-varying curvature in §3.4. A case study for increasing the critical
gradient in near-helically symmetric toroidal configurations (§ 4) shows that attempts to
reduce the curvature connection length with large toroidal field period numbers leads
to a critical gradient instead set by global shear. We are thus motivated to confront the
first-principles calculation of the critical gradient in § 5, the main result of the paper.
Section 6 concludes the paper.

2. Linear electrostatic gyrokinetic equation
2.1. Definitions

Following Plunk et al. (2014), we let g;(v, v., x, t) be the non-adiabatic part of §f; and
¢ (x) be the electrostatic potential, with x as the gyro-centre position. Here the i subscript
refers to a single ion population and §f; is the gyro-averaged perturbation of the distribution
function from the equilibrium Maxwellian distribution (defined below). The independent
velocity coordinates are parallel (v;) and perpendicular (v, ) to the equilibrium magnetic
field B(x). We use the twisted slicing representation (Roberts & Taylor 1965), (g, ¢) =
(gD, <13(l)) exp(is — iwt), where £ is the magnetic field-line-following coordinate (arc
length variable) defined such that b= B/|B| = dx/d¢. The Fourier-expanded frequency
is w, t is time and s(x) is the eikonal factor containing variation in the spatial directions
perpendicular to B. The factor exp(is) contains fast spatial oscillations with the anisotropy
condition B - Vs = 0 ensured by taking ds/9d/ = 0. Representing the magnetic field in flux
coordinates, B = Vi x Va, we set

Vs=k, =k, Va+k, Vi, (2.1)

where k, and k, are constants and the variation of k, (/) comes from the geometric
quantities Vo and V. Here 1 is a flux surface label and « is a label for a particular field
line on a given surface 1. Thus the gyro-centre position is expressed as x = x(, o, £).
Defining a toroidal angle ¢, and poloidal angle 6., we also write a = Oy — +{ior, With
+ = +() as the rotational transform. These definitions allow us to re-express (2.1) as

d
ki = koz (Vepol - fVCtor - ﬁé‘torVW) + kalﬁ (22)

We associate the term proportional to d+/dyr with global shear, which leads to a secular
increase of |k, | as ¢, or £ are increased. The remaining, non-secular terms proportional
to k, are then considered to be local shear effects.
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From now on, we drop the i subscript and hat notations, retaining electron ‘e’ subscripts
for two subsequent definitions. We then write the linear gyrokinetic equation for the ions
as

0 ! i
V)55 + (@ = Bo)g = plo(@ = &) 23)

with the following definitions: Jy = Jo(k v, /§2) = Jo(kl,o«/ilu/vr); the thermal
velocity is vy = +/2T/m and the thermal ion Larmor radius is p = v7/(§2+/2); n and
T are the background ion density and temperature; ¢ is the ion charge; ¢ = g¢/T is the
normalized electrostatic potential; 2 = gB/m is the cyclotron frequency, with B = | B| the
magnetic field strength. Assuming Boltzmann electrons, the quasineutrality condition is

/ dPvlog = n(1 + 1), (2.4)

where t =T/(ZT,) with the charge ratio defined as Z = g/q.. The equilibrium
distribution is the Maxwellian

Jfo exp(—v*/vr?), 2.5

= (P2
and we introduce the velocity-dependent diamagnetic frequency
23
o, = ol [”—2 - —] 2.6)
Ur 2

where we neglect the background density variation and define w! = (Tk,/q) dInT/dvr.
The magnetic drift frequency is @w; = v, -k, and the magnetic drift velocity is

v, = b x ((vi/2)VlnB+ vﬁlc)/.Q, where k = b - Vb. We take VInB = k (small B
approximation) for simplicity. We then let

oy = Fu b x o [v—ﬁ ¢ } = wu(0) [v—ﬁ b } , @.7)

2 UT2 21)7'2 UT2 21)7'2
where the velocity-independent drift frequency w,(£) generally varies along the field line.

2.2. Integral form of the equation

An integral equation can be derived from (2.3)-(2.4) by assuming ‘outgoing’ boundary
conditions g(v; > 0, = —o0) = g(v; < 0,¢ =00) =0, which are consistent with
ballooning modes that decay as |[¢| — oo (Connor, Hastie & Taylor 1980; Romanelli
1989). To enforce these conditions, we assume the system has non-zero global shear,
d+/dyr # 0, though it is allowed to be small. As shown in Appendix A, one then obtains

U+ e = 2 [~ /Oodx @ — )]
T = — X1 (W — Wy
@ UTﬁ o x Jo 1X1 0
X / de'J) exp(—x* +isgn(t — £YM', £)p (), (2.8)

where x; = v, /vy and x; = v /vy, sgn gives the sign of its argument, Jo = Jo(+/2b(€)x ),
Jo =Jo(J/2b(£')x ), and b(£) = ,ozkzL (€). The physics of the drift resonance is contained
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in the factor
, Co—al")
M, L) = ——dr". (2.9)
e/

'UT.X'H

We neglect particle trapping so x; and x; do not depend on £. Most evidence indicates
that the ITG mode uniformly responds to changes in the parameters t and dn/dy, and is
stabilized by increasing either of them, except for a relatively small region of parameter
space where positive density gradients can destabilize the mode. For simplicity, we thus
sett =1and Vi =0.

3. Physics of marginally unstable ITG modes
3.1. Slab ITG mode

The historical emphasis on connection length can be shown to be motivated by the
local kinetic slab ITG critical gradient from Kadomtsev & Pogutse (1995). In the local
limit, the equilibrium quantities do not vary along £. The Kadomtsev & Pogutse result
can be derived by taking the linear gyrokinetic equation (2.1), assuming d/9! — ik,
and combining it with Poisson’s equation (2.1) to yield the linear dispersion relation.
The physics of marginal stability is here connected to the parallel slab (or Landau)
resonance condition @ — kyv; = 0, the finite Larmor radius (FLR) effects entering the
linear dispersion relation through the k; dependence of the J, factors in (2.1) and (2.1),
and the drive term w! which also depends on k,. As reviewed by Plunk ez al. (2014, (10)),
if one then takes the limit y — 0+, where y is the imaginary part of the mode frequency
w, a threshold gradient for destabilization of the mode can be derived,

o 1 20+ )1+t —T) B
I T R oy 7y [1 * \/1 T TRene Fl/Fo))J,

*

1)
Wy

(3.1)
where the density gradient has been kept, such that n =dInT/dInn, [},(b) =
exp(—b)ly1(b), Ip1(b) is the modified Bessel function of order 0 or 1, b = ki,o2 and
o = kjjvr. Finite k, tends to stabilize ITG modes as it does not enter the drive term .
and can amplify the effect of shear in k. In some cases, finite k,, can be destabilizing for
the ITG mode if this reduces the FLR stabilization by k, along the flux tube. For simplicity,
we set ky, = 0. We then write

r_p LdinTdr_ Keap (vr
g dr o dy 2 \L; /)

(3.2)

with the radial coordinate r defined through v = (1/2)Byr?, B is a constant such that
p = mvr/(gBy), and, in the last step, the poloidal wave number k,, = Bk, (dr/dyr) =
k. /r and temperature gradient length scale L; = (dIn7/dr)~! have been inserted. We let
ki p* = k2 p* = b, again for simplicity, and take the limit w, /w; — 0, solving for @] /o
(note ! = nw,). Letting k; — 27/4, where A, is the parallel wavelength of the mode,

we arrive at

A 212 — I

Al gq ( ) = 47tF(b), (3.3)
Ly bIoy(Iy + 2b(Iy — I1))

with T set equal to 1. The absolute critical temperature gradient is found by minimizing
F(b), which results in b.;, >~ 0.88 and (41':)*1/1H/LTcrit >~ 2.6. When b = 1, F is increased
through FLR effects (i.e. the modified Bessel function factors damp the mode) while for
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b < b, the drive from wf ~ +/b is weakened, which also increases F' and hence the
linear critical gradient.

One can interpret A as not just the mode extent but also the parallel correlation length
Ly, the distance a thermal ion travels in the characteristic time scale 1/w ~ 1/w!. One
could then estimate the damping rate associated with decorrelation as vy /L. The simple
scaling 1/Lyei ¢ 1/L) can also be inferred from (3.3), which implies that shortening
the correlation length could be an effective strategy for increasing the ITG linear critical
gradient.

3.2. Tunnelling of the ITG mode

It is logical to conclude that if the correlation length L; can be imposed by magnetic
field geometry, through e.g. local amplification of k, or the size of a curvature well,
then one could increase the ITG critical gradient to a desired level by controlling the
magnetic field shape. Before testing this idea in slab geometry (§ 3.3), we look at the
integral equation (2.8) to make qualitative arguments about the effect of shear. These
arguments and subsequent numerical tests reveal that equating L; and the traditional
connection length is not generally correct. Waltz & Boozer (1993) have argued that local
shear and curvature in stellarators may play dominant roles in setting the radial extent and
growth rate of the ITG mode. Their analysis was carried out in the cold ion fluid limit.
Although local shear is thus expected to have a stabilizing effect, we find that modes are
not completely confined by large, local amplification factors of k, in the gyrokinetic limit.

For marginally stable modes with y = Im[w] — 0+, the velocity integrals in (2.8)
can be strongly suppressive (i.e. causing the integrand of the ¢’ integral to be small) at
sufficiently large ¢’ — €. Mode suppression by shear occurs when k, (£ or £') becomes large
and different from one another because of the field-line variation of k. We expect this
to occur generally when the so-called shear amplification factor f = k 0 k(L= 0)
reaches values much larger than 1. This leads to a mismatch in the arguments of the
two oscillatory Bessel function factors JoJi, = Jo(v/2k 1 (£)x1)Jo(v/2k1 (€')x1). When the
x, integration is performed, the overall integral (2.8) is then suppressed. In analogy with
quantum mechanics, we picture the ITG mode as a wavefunction that is attempting to
penetrate a steep potential barrier when it encounters a region of large k, (¢). We think
of segments of the field line with large k;, as forbidden regions, through which the
eigenfunction ¢(£) would need to tunnel to access the temperature gradient drive from
further regions along the field line.

Another ingredient in the tunnelling picture is the ion distribution function, which
accumulates phase-space structure as it propagates through the large k, barriers. The
accumulation can be inferred from the equation (A6), in which the Bessel function factors
JoJ;, and phase factor M will rapidly contribute phase-space structure in a manner similar to
phase mixing. However, like in phase mixing, this process is technically reversible and can
be partially undone if &, (£) is of a similar magnitude on both sides of the barrier (which
is exactly what occurs with local shear). That is, ¢(£) may be transiently suppressed in a
narrow region and then recover outside this region, owing to the smoothing or ‘unwinding’
of the phase-space structure of g. As a result, large, fluctuating shear amplification factors
(which one may associate with local shear ‘spikes’ in stellarators) may not be as effective
in localizing the extent and drive of the ITG mode as previously thought. If k, (¢) has a
secularly growing component, however, phase-space structure can continue to accumulate
in g. In this case, the the amplitude of ¢ (£) must inevitably decay at large ¢, along with
the drive of the ITG mode. Global shear (see (2.2)) therefore plays a unique role in the
stability of the ITG mode because it causes a secular increase of k, along the field line.
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We mention here a less-relevant case in which modes have k; < 1 on the entire field
line (which can occur for zero global shear) and for which the Bessel functions cannot
suppress the mode amplitude. If this is the case, then the mode is never confined by shear
and is essentially a free slab mode that violates ballooning boundary conditions. This is
why we require non-zero global shear to capture ballooning modes in (2.8). In the next
section, we study a sheared slab model to explore the local confinement and tunnelling
phenomena in more detail.

3.3. Numerical experiments using GENE

We take the work by Plunk et al. (2014) as a starting point for our numerical experiments.
In that paper, the authors solved the ITG linear dispersion relation of ‘boxed’ modes
in a flux tube geometry with uniform geometric coefficients except at the boundaries,
where they set k; = oo at locations £ = —Ly/2 and £ = Ly/2, with L, the width of a
box in £. We study a similar problem but the modes here are instead confined by &
barriers of finite width and height, where &, (¢) has no secularly growing component,
i.e. we only retain non-global shear terms (see (2.2)). Linear flux-tube simulations are
performed with the GENE gyrokinetic code (Jenko ez al. 2000) to find the ITG critical
gradient in a sheared slab (i.e. with curvature set to 0). Defining the coordinates (x, y, z)
similarly to Faber et al. (2018), we set x = (¥ — ¥.)/(Bor.), y = r.(a¢ — o) and z = £.
Here ¥, and «, are the toroidal flux and field line labels, respectively, at the centre of the
flux-tube simulation domain with small spatial extents perpendicular to the magnetic field
line. These extents are defined as —AY < ¥ — . < AY and —Aa < o — o, < Aca.
The radius corresponding to the centre of the simulation domain is r. = /2¥./By.
The perpendicular wavenumbers (with no field-line dependence included yet) are k, =
mrByr./ Ay and k, = un/(r.Aw), with m and u as integers. The field-line variation of k|
is expressed through k7 (€) = k2g™(£) + k.k,g™ (£) + k}g" (£), with the metric coefficients
defined as g (¢) = (Vx)2(£), g2 (€) = (Vx)(£) - (Vy)(£) and g (£) = (Vy)?(£). Finally,
the perpendicular wavenumbers and coordinates are normalized with respect to p, such
that k, p and the metric coefficients are dimensionless.

By setting the amplification factor f = k% (¢)/k% (¢ = 0), we mimic the effect of
magnetic shear when simulating the growth of the ITG mode, in this case, through a
localized ‘spike’ and bounding walls in the profile of k; . Assuming m = 0 for simplicity
such that k, = 0 and k7 = k}g", we set g” = (Vy)* by hand,

) 1 167 L 167 Lo
w(e) =1 1+ = (Tanh | — (¢ — =2} | = Tanh | — (¢ - =2
=199 (1 (man [ (0= ) [ a3 (- 5)]))
+ He O/, (3.4

The width of the box between the bounding walls is L, while the localized Gaussian spike
has variable amplitude H and width w. In the H = 0 case, the profile is that of a constant &
middle region that smoothly but rapidly transitions to a constant f = g"*(£)/g"”(0) = 100.
When H # 0, the Gaussian spike causes a large change in the derivative of k, near £ = 0,
which quickly reverses sign, causing k, to return to its value in the flat region on the other
side of the spike. This type of rapid but transient increase in k; is what we mean when we
refer to local shear. Electrons are adiabatic, T, = T, there is no density gradient and |B|
is constant. The parallel boundary condition is set by using twist-and-shift (Beer, Cowley
& Hammett 1995) with zero connections such that the electrostatic potential ¢ is 0 at the
boundaries. Here, ¢ is well-behaved near the boundary (has no hints of mode activity)
provided the walls are sufficiently wide and high. We also exclude modes with such low
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20F ] 20f 4 20f ]
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FIGURE 1. The ¢ profiles of gy, (green curves) and |¢| (black curves) of the marginally unstable
slab ITG mode (y — 0+4) for simulations with (a) only bounding walls, (b) walls and a wide
middle spike, and (c) walls with a narrow middle spike. See table 1 for simulation parameters
and critical gradients. Here |¢| is normalized to its maximum value and multiplied by 100 to
match gy,.

Figure 1label ~ H  w/Ly Area=Hw/((99)(0.1)Lo) (4) 'Lo/Lreic  (kyp)eri

(a) 0 0 0 2.67 0.8
b) 99 0.1 1 6.28 0.5
99  0.07 0.7 4.71 0.7

99  0.05 0.5 4.39 0.7

(©) 99 0.025 0.25 4.08 0.8
56.25 0.1 0.75 5.49 0.5

25 0.1 0.5 5.03 0.6

625 0.1 0.25 3.77 0.5

TaBLE 1. Slab ITG simulation results.

values of kyp that they cannot be confined by barriers with shear amplification factors
that lack a secularly growing component (as mentioned in § 3.2) and present results for
kyp > 0.4, which are shown in figure 1 with corresponding data in table 1. The critical
gradient is found by running a series of simulations, starting with large L, /Ly and steadily
reducing the drive until only one unstable k, 0 mode remains which satisfies ¢(£) = 0 at
the boundaries, determining both the critical (k)i and Lo/ Lrer.

In figure 1(a), we show g7 (¢) and |¢(¢)| in the simplest case of only bounding
walls, H =0, for a simulation with (k;0)ui = 0.8 near marginality, y =4m x
10~3¢,/Ly. The critical gradient is (4m)~'Ly/Lyeit = 2.67 in good agreement with the
Kadomtsev—Pogutse formula ((3.3), (47) 'Ly/Lyeq > 2.60), though the simulation result
yields a smaller Dy sim = (ky,o)grit = 0.64 than that of the formula (b.; >~ 0.88). The
difference in b is not surprising in light of the fact that the £-periodic slab solution from
the Kadomtsev—Pogutse result is qualitatively different from mode subject to ballooning
boundary conditions. The parallel connection length inferred by the critical gradient still
agrees decently well between the two cases.

We now vary H and w. For w/Ly = 0.1, figure 1(b) shows the division of L, into two
regions for the new marginal ITG mode, whose critical gradient has more than doubled
(see table 1) and whose amplitude |@(£)| goes to zero within the central spike. One can
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therefore still use (3.3) to estimate the critical gradient with A, = Ly/2, the distance
between the spike and a wall. As we shall soon find, however, this estimate becomes
unreliable for the case of weaker shear features.

If the spike height is maintained while its width is narrowed to w/L, = 0.025 (figure 1¢),
tunnelling becomes significant and the mode can maintain strong correlations across the
spike. Here, ¢ (£) still approaches O for [£|/w < 1 as a result of the large factor f, as in
figure 1(b). The mode amplitude quickly recovers outside the spike and for |€|/w 2 1
closely resembles that of the H = 0 case. The critical gradient is approximately 1.5 times
larger than that of the H = 0 case in contrast with the factor > 2 increase seen in the
w/Ly = 0.1 case. This means the parallel correlation length of the mode is now closer to
the original Ly and the wall-to-spike distance no longer matches this length. To effectively
reduce the ITG mode correlation length, therefore, a localized amplification f must not
only be large in amplitude but also have significant width, i.e. it must have area along the
field line. We can thus interpret the spike as reducing the correlation length by carving out
larger or smaller pieces of the domain in figures 1(b) or 1(c), respectively, which yields
larger or smaller increases in the critical gradient relative to the reference case with H = 0
(figure la). Results of scans in which H and w were gradually reduced (table 1) suggest a
roughly linear scaling of the critical gradient with spike area.

The required shear amplification factors f ~ 100 used in these test cases are fairly large
compared with those of typical low-global-shear stellarators. We refer here to the work of
Jorge & Landreman (2020), who plotted the field-line variation of quantities important
to ITG mode stability such as (Va)? and components of drift curvature w, for many
standard stellarator configurations (figures 4—13 of that paper). Inspection by eye suggests
(Va)?/(Va?)|,— for these flux tubes is in the range of 5 to 40.

We caution that our model does not capture all the features of a consistent equilibrium,
in particular, the modulation of the drift frequency from local shear that can affect the
stability of the ITG mode. The results in this section nonetheless suggest that it is difficult
to significantly increase the critical gradient with localized spikes in & .

3.4. Curvature-driven ITG modes

ITG modes can also be excited by the drift resonance, w! ~ w,, rather than the parallel
resonance w! ~ vr/L; discussed in § 3.1. Although the local ITG linear dispersion relation
including w,; must be solved numerically (see e.g. Plunk et al. (2014) and references
therein), it is well known from analytic theory considerations that damping of the mode
can occur when the effect of curvature is too large (e.g. Sugama 1999). That is, when
wq 2 o, the mode is pulled out of the drift resonance and decorrelation occurs. The

marginal stability criterion becomes 1/Lrq X 1/Retr, Where Rege = ki pvr/ (\/Ea)d) is the
effective radius of curvature and implies a parallel correlation length L ~ vr/w ~ vr/wy
for curvature-driven ITG modes. This shows why larger values of bad curvature will
actually increase the critical gradient. Once the mode ‘balloons’ and localizes to the
curvature well, however, it will be driven more strongly beyond the threshold if curvature is
increased. Therefore, we expect that when the peak bad curvature is increased, the growth
rate should become stiffer (have a larger slope versus gradient) above the second critical
gradient. We confirm these intuitions in the following numerical experiments.

We again take the shear profile (3.4) of just bounding walls in shear (H = 0) and
add a purely oscillatory drift frequency which has four periods within the shear walls,
wyg = (kyp)K cos[81l/Ly]. We run linear simulations in GENE of a slab case K =0, a
weaker curvature case K = 21/Ly and a stronger curvature case K = 4w /Ly. A scan is
done over k,p and the mode with the peak growth rate is chosen. We plot in figure 2(a)
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FIGURE 2. Onset of curvature-driven resonant ITG modes in a simple geometry model using
GENE. The g* profile in (3.4) is used with a drift curvature profile wy/(kyp) = K cos[87¢/Lo]
added. (a) Peak growth rate y versus Lo/Ly for K = 0 (green curve), K = 27 /Lg (blue curve,
weaker curvature) and K = 47 /Lg (red curve, stronger curvature). A strong ‘knee’ is visible in
the growth rate near (47)2Lo/Ly = 1.59 for the red curve. Data points are shown with squares.
Linear extrapolation to an inferred critical gradient set by curvature is shown with a dashed black
line. The two data points used in this extrapolation correspond to the points before (silver square,
(4m)"2Ly/Lr = 1.59, peak growth at kyp = 0.4) and after (black square, (4m)"2Ly/Lr = 1.99,
peak growth at k,p = 0.7) the transition in mode structure and growth rate of the most unstable
modes as Lo/Lt is increased. A weaker knee is visible near (411)_2[@ /L7 = 1.2 on the horizontal
axis for the blue curve, with a dotted black line for its inferred critical gradient. (b) Growth rate
spectra y (kyp) before and after the mode transition for K = 41/Ly discussed above. (c) Mode
profiles |p(£)| for the two cases presented in (b) at peak growth rate, kyp = 0.4 (silver curve)
and kyp = 0.7 (black curve). The orange curve shows the normalized drift frequency profile for
the cases with curvature.

the peak growth rate y in each case as a function of the imposed temperature gradient. For
small values of temperature gradient (47) 2Ly/L; < 0.5, the absolute critical gradient for
slab-like modes is observed. As the gradient increases, a transition occurs to faster growing
modes with higher k, (k,p0 = 0.4 — 0.7), which shows a ‘*knee’ (Zocco et al. 2018) that
is particularly visible for the stronger curvature case K = 41 /Ly. In figure 2(b), we plot
the growth rate over the k,p spectrum for K = 47 /L, at 4n~%Ly/Ly > 1.59 and 1.99,
which shows the two different peaks of the spectrum and the higher k,p peak overtaking
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the low k,p peak. The knee feature thus captures the fact that the curvature-driven mode
branch (k,p >~ 0.7) has higher peak growth rates for these higher temperature gradients.
For this case, we extrapolate the stiffer behaviour of peak y (between 41 —2Ly/L; = 1.99
and 4n2Ly/L; = 1.59) back to an inferred critical gradient relating to the onset of the
curvature-driven mode. The knee seems to nearly disappear when the peak curvature is
reduced by a factor of two (to K = 21/L,), with an extrapolated curvature-induced critical
gradient approximately a factor of two smaller. This is consistent with estimating the
correlation length to be L ¢ Reftmin = vrky0/ («/Ea)dmax), the minimum effective radius
of curvature. We see too that the knee emerges as K is increased in the series of runs,
for which K¢, = 0, /4, and 1/2, where £, is the width of one half-period of the
cosine included in the curvature and is effectively the connection length. Because the
knee starts to become visible in the weaker curvature case, K¢, = t/4 >~ 0.8, we infer
that K¢, = 1 is required to observe the knee. This threshold condition could be related
to the transition between slab-like and toroidal-like regimes of ETG turbulence discussed
by Plunk et al. (2019).

The transition between the fastest-growing-modes in the K = 47 /L, case is made more
explicit in figure 2(c) by plotting the mode structures of the peak growth rate modes
before [(41)2Lo/Lr = 1.59, kyp = 0.4] and after [(47)*Lo/Lr = 1.99, k,p = 0.7] the
knee. The mode structure before looks like a characteristic slab mode above marginality,
with two nodes in the amplitude indicating it is probably a third-harmonic mode (the
fundamental mode at marginality has no interior nodes as in figure 1a). Once the transition
occurs, however, the mode structure lines up neatly with the imposed curvature profile
suggesting the mode is now sitting within bad curvature wells. The physics of an absolute
critical gradient set by shear, and a second, curvature-induced critical gradient with a
stiffer increase in growth rate can thus be modelled with bounding shear walls and an
oscillatory curvature profile of fixed width. We note that our model geometry does not
have consistency between the metrics and the drift curvature w,, as w, should be related
to g through Vy - i, but this feature allows us to study the effect of the terms separately.
We now proceed to a case study demonstrating that the critical gradient can be strongly
affected by manipulating the geometry of actual stellarator magnetic fields.

4. Case study: controlling the critical gradient in a stellarator using field period
number

Conventional wisdom holds that the ITG can be suppressed if the parallel extent
of bad-curvature wells (connection length) is reduced, as this would increase Landau
damping of the modes that are localized to such regions. The inverse connection length is
often approximated as k; ~ 1/(gR) with R as the major radius; this implies a characteristic
damping frequency kjvr for the ITG, as frequently used since the late 1980s in tokamak
research (e.g. Dominguez & Rosenbluth 1989; Kim & Horton 1991). To test this idea
in stellarators, one could manipulate a given equilibrium by increasing the toroidal field
period number at constant aspect ratio so as to shorten all parallel length scales as the field
periods are packed tighter into the torus (Plunk ez al. 2019). We carry out a procedure like
this below. As we shall soon see, however, what sets the ITG critical gradient in this case
is the global shear and not the local connection length as expected.

4.1. Helical magnetic fields

We begin with the helical solutions to Laplace’s equation in cylindrical coordinates
(Thet» @, z) described in Morosov & Solov’ev (1966) and employed by Bhattacharjee
et al. (1983) to create ‘straight’ stellarators. Note ¢ here is not to be confused with the
electrostatic potential ¢ (x) introduced in § 2. The solutions are eventually embedded into
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tori at large aspect ratio to produce the final configurations used to calculate the ITG linear
critical gradient. The pre-embedded helical vacuum fields depend only on the radius and
the helical angle 6 = ¢ — ¢z, where ¢ = 27t/L is the pitch of the field lines. Here, 6 is to
be distinguished from the poloidal angle 6, defined in the introduction. The total height
of the cylindrical solution is L, with ng, = ¢n as the total number of helical field periods.
The helical shapes are chosen in part because this continuous symmetry automatically
implies quasisymmetry, which is only slightly broken during the embedding process. The
solution of V2@ = 0 (B = V@) is written (Morosov & Solov’ev 1966)

® = Byz+ % > bl (ng ) sin(nd), (4.1)

n=1

where By is the constant magnetic field strength of B,, b, are the perturbing magnetic field
amplitudes that provide the rotation of the field lines, I, is a modified Bessel function
and n is the index of the perturbation harmonic. The vector potential A4 is found using
0P /0re = —0A,/0zand (1/ry)0P /3¢ = 0A,,,/0z, setting A, = 0. We choose a single
helical perturbation n = 2 and define the flux function as ¥ = ¢r4A,. The characteristic
radius ry is defined through ¥, = ;réBo /2. Setting ¥ = Y, then leads to

2
Cor, oy by Q) oy, 4.2)
2 By d(2¢ rher)

relating ry, to 6 for a flux surface ¥. Here, n = 2 is chosen because it is the only helical
perturbation that can sustain elliptical surfaces, and hence finite rotational transform, near
the magnetic axis. With this choice, (4.2) produces lens-shaped rotating flux surfaces, with
ellipses at inner radii and cusp edges, as the edge surfaces are bounded by a separatrix
whose radius depends on ¢ and b,/B,. Cross-sections for these shapes are shown in
figure 3(a), which are described in detail in §4.3. The rotational transform and global
shear profiles of these shapes are presented in figure 4.

4.2. Toroidal embedding

To generate an equilibrium, a fixed outer surface ry = r that lies within the separatrix
is chosen. This surface is then used to generate a toroidal field using a mapping,
described as follows. The outer surface of the helical field, denoted by ry(0,z) in
the helical coordinate system, is first found by solving (4.2). The toroidal surface is
then described by )CT(Q, ¢T) = R(¢T)RT(9’ ¢T) + ETZT(Q, ¢T), where RT(Q, ¢T) = R() +
ru(0, ¢7/(21)) cos(0) and Zy (0, ¢pr) = ry(@, ¢r/(2m)) sin(f). The z-axis of the helical
system is thereby mapped to a circle, with ¢ = 27z. Here, ¢r is a geometric toroidal
angle not to be confused with the azimuthal angle ¢ in cylindrical coordinates. Note that
the helical angle 6 has become a geometric poloidal angle in these coordinates (it is a
one-to-one mapping), and the Z; unit vector points vertically, aligned with the axis of the
toroidal surface. We have also defined a major radius-like parameter Ry = L/(27).

The toroidal surface is passed to VMEC (Hirshman & Whitson 1983) as the input. The
inverse aspect ratio of the torus is approximately ¢ = 7/Ry = 1/10, as 7 is effectively the
minor radius of the outer surface of the VMEC solution. Because the inverse aspect ratio
is small, most geometric quantities, such as rotational transform, are well approximated
by the values of the helical solution. As such, we approximate the scaling of important
quantities, such as arc length per field period and rotational transform, in the final toroidal
configurations using the analytic theory in cylindrical coordinates (Appendix C). In
figure 5(a), we show a field line on the surface ry/r = 0.9 for ng = 10. The field line
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FIGURE 3. Scan in helical field period number of the solutions to (4.2). Each row corresponds
to a field period number ng, = n¢ and each lettered column is a different plot. (a) Cross-sections
of each configuration for a variety of flux surfaces. (b) Extrusion of the helical cross-sections into
cylindrical tubes with two field periods shown. (c) The same tubes as in (b) but now embedded
into a toroidal shape.

alternates between regions of ‘good’ (positive) and ‘bad’ (negative) normal curvature
K - VW (figure 5b).

4.3. Scaling up field period

We now increase the field period number of the original helical equilibria by scaling up
¢ but keeping 7 and n = 2 fixed and reducing b,/B, to maintain closed flux surfaces
[b2 =~ 0.3/(¢ dI1(2¢ rhe1) /d(2¢ rier) |7)]- Reducing b, /B,y decreases poloidal derivatives and
keeps edge rotational transform roughly constant, while increasing ¢ at fixed minor radius
scales up the toroidal and radial derivatives as dictated by the vacuum solutions. The
results of the field period scaling are shown in figure 3 for ng, = n¢ = 10, 20 and 40, where
each field period number is a row of the figure. Figure 3(a) shows the cross-sections of
several surfaces in each configuration. At lower field period, the surfaces are noticeably
elliptical all the way inward to the axis, while the cross-sections become circular as ¢ is
increased, except for cusp-like edges that persist near r. Figure 3(b) shows two helical
field periods of each configuration and the vertical compression of these field periods
from larger field period number while figure 3(c) shows the same two field periods after
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FIGURE 4. Analytic results from the helical shapes in cylindrical geometry before embedding
into a torus for each field period number ng, = n¢. (a) Total rotational transform (¢ x + of (C1))
as a function of ro/r. (b) The derivative of the quantity in (a) times 7 as a measure of global
shear.

the toroidal embedding. We find in plots of the rotational transform (C1) and its derivative
(figures 3(c) and 3(d), respectively) that the strong radial derivatives at high-field period
suppress rotational transform in the core of the configurations and sharpen the cusp-like
edges, which increases global shear near the outermost flux surface. In addition, the
regions of bad curvature get squeezed into smaller and smaller field line segments as the
field period is scaled up (figure Sc¢).

As the field period is increased, global shear at the edge becomes the dominant factor
in setting the ITG mode correlation length and thus the critical gradient. Gyrokinetics
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FIGURE 5. Field-line geometry calculations. (a) The surface ro/r = 0.9 for ng, = 10 (orange)
and the magnetic field line starting at ¢ = 0, z = 0 (blue curve). (b) Normal curvature and shear
amplification (C5) along the field line in (a). (c) Field-line geometry outputs as a function of
ngp with diamonds representing data points and curves connecting them on a log-log plot.
The curves are: shear amplification factor ||S||max/||S|Imin (C5) (red), total surface rotational
transform ¢ x ¢ of (C1) (light blue), arc length per field period (green), maximum bad normal
curvature (purple), maximum good normal curvature (orange), the line y = ng, (black dashed),
the line y = 1/ng, (black double dashed), average normal curvature (grey), and maximum bad
curvature times the length of the bad curvature well (turquoise).

in the sheared slab limit (cf. Landreman, Plunk & Dorland 2015) tells us that, based on
dimensionless ratios, the shearing length L, replaces A, in the estimate (3.3) for the critical
gradient such that L;/Lr.; = F, where F depends on dimensionless system parameters
such as t. The shearing length, which comes from the secularly growing part of g*”, can
be estimated by fitting a parabola to the profile of g*”(£) and setting the resulting coefficient
of £% to be 1/L?. This component increases with global shear and thus the critical gradient
increases in proportion with toroidal field period number.

4.4. GENE simulations near the outer flux surface

The ITG linear critical gradients for the three equilibria ng = 10, 20, 40 (figure 6) are
found by generating the solutions with the VMEC code (Hirshman & Whitson 1983),
passing them to the GIST package (Xanthopoulos et al. 2009) and running the GENE code
with the GIST output. In the GIST normalization, the temperature gradient and parallel
length scales are now expressed relative to an effective minor radius a >~ 7. As in § 3.3,
T, =T, electrons are adiabatic, there is no density gradient and m = 0 such that k, = 0.
The standard twist-and-shift parallel boundary condition is used. We choose a flux tube
in the outboard midplane 6,, = 0 on the surface where (toroidal flux/edge toroidal flux =
0.99) for the three cases, with the toroidal angle defined to be zero, starting where the
rotating cross-section is level with the midplane. The ITG linear critical gradient is found
by varying a/Ly until y — 04, where a is the average minor radius and is a constant set
in the GIST package. Here we do a scan in k,p to determine the global marginal mode.
In figure 6(a), we plot the results of a/Lr scans in which the critical mode was found.
We obtain a critical gradient a/Ly > 2.40 for ng, = 10, which then scales almost exactly
with field period (a/Ly ~ 2,4, 8). The profiles of g along the flux tube are plotted in
figure 6(b), from which it becomes clear that the dominant length scale is set by the global

https://doi.org/10.1017/50022377821000507 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377821000507

ITG linear critical gradient 17

(a)g_ozs. ............ (b) SO0 oot - (C)
I I =10
®0.020 4000 S
20 Zo.
. goa
0015 | % 3000/ =06
o - | % 506
0.010 | 2000/ 04
0.005 | f 1000 02
0'00’0;.. ............ gl M VN 0.0 i~ n J
2 4 6 8 10 60 -40 20 0 20 40 60 60 -40 20 0 20 40 60
all; tia tla

FIGURE 6. ITG linear simulations of toroidally embedded helical equilibria on the field line
Bpol = 0 on the surface with 99 % of the edge toroidal flux. The colour coding is ngp = 10 (light
blue), 20 (green) and 40 (red). (a) Scan in a/L7 with a as the normalized average minor radius.
Convergence to the linear critical gradient y — 0 for the last growing mode near marginality is
found. (b) Plot of g along the field line showing strong global shear as well as helical ripples.
(c) Plot of |¢| normalized to its maximum value along the field line showing reduction of the
mode width as shear increases.

shear parabola. The mode structures along the field line for the critical modes are plotted in
figure 6(c). It can be inferred from these results that the lower bound on the critical gradient
of the ITG mode, which pertain to broad-along-the-field-line, low-k, resonant modes, is
set by global shear. Note that lower k, 0 modes than those predicted by the local slab theory
(3.1) are to be expected, because k,p corresponds to the minimum value of k, p and k, p
increases away from £ = 0 when global shear is included. Thus small &, p is a signature of
the sheared slab mode, as observed in GENE simulations of low-global-shear stellarators
such as W7-X (Zocco et al. 2018) and HSX (Faber et al. 2018). Because ng, = 1/e€ = 10
retains rotational transform at the centre of the device (figure 4a), we speculate that setting
ng = 1/€ may help the ITG-mode stability, as such a configuration can still enjoy the
benefits of reduced parallel length scales (compared with smaller field period numbers)
while not increasing global shear too sharply throughout the volume.

5. Direct calculation of the ITG linear critical gradient

The integral equation (2.8) includes the full physics of the linear electrostatic ITG
critical gradient with adiabatic electrons. It also assumes d|B|/d¢ = 0 such that particle
trapping is neglected and all ions can be treated as passing. The integrals contained can
be challenging to evaluate as they contain a singularity and are oscillatory. Equation (2.8)
has been solved for the case of a circular tokamak geometry (Romanelli 1989) assuming
finite y and a density gradient. We start by setting y = Im[w] = 0 and, as mentioned in
§ 3.2, curvature now enters into the problem by modifying the phase factor A, which we
define as
|t -]

XVt

A, 0) = sgn(f — )M, ) = (0 — (@), (5.1)

where (2.9) was used and (-) denotes an average over the parallel length between ¢ and ¢',
i.e.
1
1€ — ]
If (w;) = (a)d)(xﬁ + xi /2) is positive (‘average bad curvature’), cancellation with @ can
happen, which leads to a decrease of A and thus an increase in the effective correlation

(@a) (€, ) =

¢
/ de” @,(€"). (5.2)
v
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length vy/A through the drift resonance. This is the primary drive mechanism for the
toroidal branch of the ITG and leads to the onset of resonant modes driven by curvature
explored in § 3.4. Because the case (w,;) < 0 (average ‘good curvature’) eliminates the
resonance (we use the sign convention wf w > 0), it is expected to provide uniform
stabilization of the mode by increasing the magnitude of the phase factor and effectively
decreasing the correlation length vr/A. However, even (®;) > 0 can lead to damping of
the mode, as mentioned in § 3.4, by pulling the mode out of the drift resonance once
(wg) > w. Thus, in the cases where A is large and of either sign, curvature can result in a
damping effect from decorrelation similar to that of the parallel slab resonance (§ 3.1).

Note that the effect of curvature on the drive of the mode may not be reflected in the
mode width. For instance, the average curvature can be roughly uniform and have no
outward effect on the mode structure, but it may affect the drive of the mode, especially for
an extended slab-like mode as tends to be seen near marginality. We thus caution that the
mode width and the distance between local features in the geometry (nominal connection
length) are both potential ‘red herrings’ that generally do not reveal the correlation length
L. In fact, L; is a ‘hidden’ length captured by the integral equation (2.8) that can be less
than the mode width. With some basic understanding of the physics of curvature in hand,
we now outline the steps to solving (2.8).

5.1. x, Integration

Some analytical progress can be made in (2.8) by performing the x, integral first
(Romanelli 1989) using Weber’s formula,

~/0oo dx,x,Jo (Wm) Jo (\/m)ﬁ) exp (_pXi)

_ exp(=(b(®) + b(t))/(2p)) I (\/b(ﬂ)b(i/)
2p P

) = Ty(b(£), b(¢), p) (5.3)

where the first term of the magnetic drift velocity V In B, has been absorbed into the factor
p=14+1iw,/(2xvr), with @, = [€ — ¢'| (w,). The singularity at x; = 0 in p causes no
obvious issues because Weber’s formula is valid for Re[p] > O, which is guaranteed by
the 1 coming from the Maxwellian in x, . The term o x] from the ! factor can also be
integrated analytically by writing it as a p derivative of (5.3) yielding what we call I
(Appendix B).

The I” functions contain interactions between curvature and shear. Curvature can
provide additional oscillatory behaviour to the integral through the imaginary term in p
and can suppress the effect of shear in the exponent and I, if 1/p is very small, although
this tends to be the limit where phase mixing from @ already suppresses the integral for
(wg) < w. The I v behaves similarly to a Dirac delta function §((b(£) — b(€’))/p), which
causes large suppression if b(£) and b(¢') are very large and different but gives a finite
contribution to the integral if b(¢) >~ b(¢') or 1/p < b(£) — b(¢’). These observations
follow from the asymptotic form of I at large argument.

5.2. x) Integration
Equation (2.8) can now be written

pl) =

Tf/ de (e)/ —L(wly — ol (= 3/2T + I)

X exp |:—xﬁ +i (i _ @ )} ; (5.4)
X vr Ur
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where @ = |€ — ¢'|w. The x| integration can also be done analytically in the case of p = 1
(wg = 0) when written as Meijer G-functions times FO or Fl, although the logarithmic
singularity at £’ = £ and x; = 0 must still be avoided in the ¢’ integration.

Returning to the general case including curvature, we note that for £ # ¢', the x[l
singularity is shielded by the oscillatory behaviour in the @ exponent and also negated
by the factor 1/p — 0 for x; — 0 and (w,) # 0 in (5.4). In numerical solutions of the
x integration (we know of no analytical expression for the integral including w,), the x,
integrand at £ = ¢’ is replaced by the centred average of its values at ¢’ = £ £ £6¢, where
84 is the spacing of the parallel coordinate grid and & = 1/8 for the results presented in
§5.4.

5.3. U Integration

We now discretize ¢(£) to evaluate the integral in (5.4) by assuming that ¢ is piecewise
constant over N sub-domains, with £ set to be at the centre point of each sub-domain. This
allows us to extract the constant ¢ and integrate the remaining kernel numerically across
each sub-domain, which yields an N x N matrix G such that (5.4) becomes ¢; = G;¢p;.
The numerical integration is done over an £’ grid with N’ points. The £ grid overlaps with
the ¢’ grid but we use a finer resolution in £’ such that N’ > 2N + 1. This reduces the total
number of integral evaluations by a factor N'/N compared with a scheme where N = N’
but can resolve basic mode structures, such as a mode that peaks near £ = 0 and decays
for large enough |£], as could be modelled with N > 3. The scheme still captures some of
the effect of fine-scale features in the geometry through the ¢’ integration.
Equation (5.4) is finally written as

Det[G — 1] =0, (5.5)

where 1 is the identity matrix of size N. Note that condition (5.5) is satisfied only if
there is an eigenvector with zero eigenvalue, because the determinant is the product of the
eigenvalues.

5.4. Eigenvalue problem

Equation (5.5) is traditionally considered as an eigenvalue problem, with the complex
quantity w as the eigenvalue. Here we reinterpret it by treating the pair of real frequencies
(w, w!) as the eigenvalue. It is not clear a priori whether the integral equation should be
well-behaved at y = 0 (because it was derived assuming y > 0 as in Connor et al. 1980).
We find, however, that the determinant smoothly approaches zero and a root can be found
to eight digits of precision, which proves the concept for finding the critical @! (and hence
critical gradient) as an eigenvalue of the dispersion relation. We use a numerical Newton
solver to obtain roots to this equation for three test cases: the sheared slab geometry plotted
in 1(a) (3.4), the same case but with constant ‘bad’ curvature w,; = \/zkyva/ (2Ly) and
the case with constant ‘good’ curvature w,; = —\/zky pvr/(2Ly), where the effective radius
of curvature in the latter two cases is R = kypvr/ («/Ea)d) = Ly/2. The mode has k,p =
ki p = 0.8, i.e. no sweep in k, space is performed to find the true critical mode, but the
change in the onset of the single, marginal ITG mode with k,p = 0.8 is tracked. A root
is found for the values N = 1, 10, 20, 40, 80 (1 < N < 10 does not always converge on a
sensible answer), keeping a fixed N' = 161 for the three cases.

In figure 7(a), we plot the eigenvalues ! against the critical gradients obtained
from linear GENE simulations with the same shear profile and the appropriate constant
curvature added. For large NV, the curves show agreement with the GENE critical gradients
to within 6 %. The convergence is non-uniform (fluctuating about the presumed fully
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FIGURE 7. Validating solutions of (5.4) against GENE simulations. (a) Scan in N, the number of
points in £, used for the solution of (5.4) showing convergence of the eigenvalue w! crit (squares
connected by dashed lines) for the shear geometry of § 3.3 with varying constant curvature,
where black is the slab case with no curvature, green is with ‘good’ curvature Reff = —Lo/2
and red is the ‘bad’ curvature case Reff = Lo/2. Values taken from GENE are plotted as solid
horizontal lines for validation of the root find. (b) Mode structures from GENE for the three
geometries in (a) with the same colour scheme and dashed lines for cases with curvature. (c)
Step function representation of |¢| from the solution of (5.4) with N = 20 overlaid on the GENE
solution of |¢| (dashed) for the slab case with no curvature.

converged answer) because the numerical method uses three grids to evaluate the ¢’
integral, only one of which is refined in this series by increasing N. There is uncertainty
in the critical gradients read off from the GENE simulations owing to finite precision of
the GENE solution and the requirement of finding a mode above marginality (y > 0). As
such, we consider convergence to within 6 % deviation from the GENE critical gradient to
be acceptable.

As expected in the case of a modified slab mode with w > (w,), curvature shifts the
critical gradient for k0 = 0.8 up (good curvature) or down (bad curvature) by roughly
10 %, which is comparable to the ratio (w,)/wgp = 1/5. The plots of |¢(£)| from GENE
confirm that the slab solution mode structure is barely affected by the curvature (figure 70).
For the solutions with N = 1 in figure 7(a), very little difference between the good, bad and
zero curvature cases is seen and the critical gradients from the root finds are approximately
half the converged answers. A large deviation for N = 1 is not surprising because the
requirement that ¢ = 0 at the boundaries in £ is not even satisfied by a constant ¢. In
figure 7(c), we show the approximate eigenfunction for N = 20 overlaid on the GENE
solution for the zero curvature case to visualize the discretization scheme. The choice
N = 20 captures the rapid decay of the eigenfunction near |€|/L, = 1/2 particularly well.

A convergence check for the N = 10 bad curvature case was also performed with finite
positive gamma to ensure that no discontinuities between y = 0 and y > 0 were present,
e.g. delta function terms o §(y) that appear in quasilinear theory of the ITG mode
(Helander & Zocco 2018). A root was found after setting a fixed y/|w| =~ 0.01, where
w is that of the y = 0 solution. A corresponding increase of one percent in both w and
o! relative to the case of y = 0 occurred, which suggests the solutions are smooth near
y = 0. It may be that an averaging effect from integrating over many points in £ helps
regularize the integral for y = 0.
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6. Discussion

In this work, the gyrokinetic ITG mode linear critical gradient has been investigated
using analytic theory and numerical models in flux tube geometries. We found that
traditional connection length estimates often do not adequately capture the physics of
the onset of the linear electrostatic ITG mode, and that instead the correlation length L,
which emerges in the solution of the integral equation (2.8), is the appropriate reference
length that sets the critical gradient through the damping frequency vy/L;. The correlation
length can be determined by local shear, global shear, curvature or some combination
of all three of these geometric properties. It has long been assumed that strong local
shear features inherent to stellarators will stabilize ITG turbulence. However, in § 3.3,
we discovered using numerical experiments that large shear amplification factors of the
perpendicular wavenumber &, (£) with broad extent along the field line are needed to
significantly increase the ITG mode linear critical gradient. Using this model as a basis, we
then showed the onset of curvature-driven resonant ITG modes, whose correlation length
is set by the peak magnitude of drift curvature in § 3.4. Subsequent experiments in § 4
revealed that the absolute critical gradient for the ITG can be predictably increased through
global shear by the field period number using helical stellarator shapes. The optimal field
period number may be close to the toroidal aspect ratio of the configuration, because
for larger field periods, the benefits to the ITG mode are localized to small radial layers.
Motivated by this evidence, we turned to direct calculation of the critical gradient in § 5.4
through solving equation (2.8), in which we observed that average magnetic drift over the
mode extent is likely the most important factor in setting the critical gradient aside from
global shear.

We note that several approximations were made in solving equation (2.8) that constrain
the validity of the solution, such as neglecting particle trapping and electromagnetic effects
on the ITG mode associated with finite plasma S (Zocco, Helander & Connor 2015).
However, trapped particles may ultimately only contribute weakly to the linear behaviour
of the ITG (Proll, Xanthopoulos & Helander 2013), especially if this particle population is
small. This may occur in optimized stellarators because reducing trapped particle fractions
is one way to lower neoclassical transport (Dinklage et al. 2018).

The method we have devised to calculate the linear critical gradient has several
potential advantages over running a traditional gyrokinetic linear solver. First, simulations
become increasingly difficult approaching the critical gradient, owing to the large
timescales required for convergence, whereas there is no time variable for our eigenvalue
problem. The numerical grid for gyrokinetic solvers generally also includes two velocity
coordinates, whereas our approach integrates over these variables, leaving a single
variable, the field line following coordinate. While we can only speculate for now, we
suspect an optimized solution of (2.8) using tabulated integrals and a decent initial guess
for (w, ®!) should take approximately a second per value of k, or k, on a single processor
for N = 10 points used in the discretization of the eigenmode structure. For reference, the
parallelized GENE simulation close to the critical gradient depicted in figure 1(a) took
approximately 20 s for the marginal k,p, and this was the result of a sweep downward
from higher guesses of a/Ly.

The simple numerical model developed in § 3 and used to validate the solver in § 5.4
does not use the true geometry of stellarators but does contain field-line varying metric
coefficients. As such, while a stellarator would have more complicated variation along the
field line, the evaluation of the geometry inputs would be the same as in our simple model.
The possibility of a rapid calculation of the critical gradient,as a general figure of merit
for ITG turbulence, is an appealing prospect for stellarator optimization. Work toward this
goal is now underway.

https://doi.org/10.1017/50022377821000507 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377821000507

22 G.T. Roberg-Clark, G.G. Plunk and P. Xanthopoulos

Acknowledgements

G.T.R.C. would like to thank M.J. Pueschel, T. Gorler, and A. Bafion Navarro for
essential help with running the GENE code, as well as A. Zocco for helpful discussions
and comments on the manuscript. We also thank the anonymous reviewers for their help in
improving the clarity and content of the manuscript. The GENE simulations were carried
out on the draco cluster located at IPP Garching in Germany.

Editor William Dorland thanks the referees for their advice in evaluating this article.

Funding
This work was supported by a grant from the Simons Foundation (No. 560651, P. H.).

Declaration of interests
The authors report no conflict of interest.

Appendix A. Ballooning theory

Equation (2.3) is a differential at the first order in £ and can be recast in integral form by
taking the right-hand-side as a source and integrating directly, as shown by Connor et al.
(1980). This is done for each sign o = sign(v)) separately, because we will need to use
o -dependent boundary conditions. Rewriting (2.3) using vy = o |y |, we have

g .o - .o -
— —i— (0 —wy)g = —i— (0 — ©)Jopfo. (A1)
at |yl vl

We multiply this equation by the quantity exp(—io M ({y, £)), where

¢ w — C’bd(g/) ,

MLy, L) = ——d¢,
(b0 © /e vy (€]

and integrate to arrive at the expression

(A2)

4

¢
g() = goexp(ioM (£, £)) —io(w — c?)*)fof li(/)l(ﬁ(f') exp(ioM (¢, £))de',  (A3)
Lo 1Y

where v; = vy (¢') and J; = Jo(kL(€)v, (£)/$2).

To fix the constant of integration g, consider Im[{w] = y > 0 and £, = —o 00, then note
that exponential divergence of the term gy exp(—io M) will occur unless gy = 0. This is
equivalent to applying the boundary conditions

gy >0, =—-00) =0, (A4)
gy <0,£=00)=0. (AS5)
Equation (A3) then becomes
4 J/
g(t) = —io (@ — @) f e explo M, 0)de (A6)
—ooo V)

Substituting this into (2.4) yields (2.8). This equation is also derived by Romanelli (1989)
following Connor et al. (1980).
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Appendix B. Weber integral
The term including the factors w!x3 in (2.8) is

L), by, p)
_ / dx 2T, (sz(e)xl) Jo (\/Zb(ﬁ/)xl) exp (—p2%)
0

d_fo __exp(=(b(0) + b({))/(2p)) |:_ (b(ﬁ) +b(0) )I (vb(ﬂ)b(ﬁ/))
dp p? 2 r) p

()

+vVb)b()], , (B1)

where T} is defined in (5.3).

Appendix C. Helical equilibria calculations
C.1. Rotational transform

The average rotational transform on a helical surface can be computed from the equation
of a field line, rd¢p/dr = B, /B,. We quote the result of Morosov & Solov’ev (1966) for
n=2,

5¢

= et €h

S¢p = /rmx drg (e — 70) (I/ (A2 (28 11e1) /A (28 1))

s ,
. \/ (2rb2d12(2;rhe1)/d(2;rhel)) 0, ny
{By

where ¢ is the rotational transform per two helical field periods (called @ in Morosov
& Solov’ev 1966), rmax is the maximal surface radius (where 6 = 0), rp;, 1S the minimal
radius (¢ = w/4) and §¢ is the total azimuthal displacement of a field line as 6 varies by
—1t/2. Note that oscillatory behaviour is superimposed on the secular increase of ¢ per
field period and averaged out by the integration.

(C2)

C.2. Coordinate-free representation of the geometry
The analytic solutions for the helical shapes (4.2) can be used to find geometric quantities.
For instance, we can calculate a proxy measure for local shear from S = Vb, where b
is the unit magnetic field vector (not to be confused with b = k7). Noting that hVa =
b- V¥ =0, we find
bV =12b-Vf(t)=—k k, :S (C3)
where ko =k, (£ = 0) and f(£) = k% (£)/k3, is the shear amplification factor. Thus we
can find f(¢) by extracting the perpendicular components of .S, defining

—kik, S =k, (cos*(®)Su + sin*(D)S,y + cos(?) sin(D) (S + Sy)) - (C4)

In this notation, a proxy for the upper bound on amplification by local shear (which would
operate in tandem with the secular increase from global shear) is

IS]] = /82, + 82, + 82, + 82, = \/(Vj)) :(V.b) = \/(B xS):(bxS)  (C5)
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where the final two definitions do not require magnetic coordinates to be defined. In
the case of the helical surfaces (4.2), only the equation for a field line in cylindrical
coordinates must be solved and derivatives taken. Here, S also yields the variation of

normal curvature (k - V¥) along the field line because £ = b-S, the sign of which can
tell whether curvature will be favourable or unfavourable for the toroidal branch of the
ITG mode. The S also has the well-known property that.S - b = 0.
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