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CLOSURE OF LEAVES IN 
TRANSVERSELY AFFINE FOLIATIONS 

ROBERT A. WOLAK 

ABSTRACT. We present first examples of complete transversely affine foliations on 
compact manifolds with leaves whose closures are not submanifolds. Moreover, we 
prove that under some additional assumptions the closures of leaves form a singular 
foliation. 

Transversely affine foliations (TAF for short) form a very interesting class of folia­
tions, although relatively little studied, cf. [6]. They appear naturally in many situations, 
as for example in the study of Anosov diffeomorphisms, cf. [14]. TAF admit a trans­
versely projectable connection and, therefore, in some respects, they are similar to Rie-
mannian foliations. If we assume that a TAF jF is transversely geodesically complete (i.e. 
for some supplementary subbundle Q geodesies of the transversely projectable connec­
tion tangent to Q are global) then J has the following properties which are well-known 
for Riemannian foliations, cf. [24,25] for TAF case: 

1. leaves of f have the common universal covering space, cf. [17,12,22]; 
2. the graph of J is a locally trivial fibre bundle, cf. [23]; 
3. if the bundle Q is integrable, then the universal covering M of M is the product 

LxG where L and G are the common universal coverings of leaves of 5 and Q, 
respectively, and the lifted foliation f of M is given by the projection onto the 
second factor, cf. [2]. 

Of course this list does not exhaust similarities between TA and Riemannian foliations. 
In fact, these three properties are common to a much larger class of foliations admitting 
a foliated system of ordinary differential equations, cf. [24]. However, when we look 
at the closures of leaves we find the first main difference. In Riemannian foliations the 
closures of leaves form a singular foliation, cf. [ 12]. In TAF it is not the case. Examples of 
noncomplete TAF on compact manifolds and of complete ones on noncompact manifolds 
have been well-known, cf. the 1-dimensional Hopf foliation of S2 x S1. However, even in 
transversely geodesically complete TAF leaves can behave very strangely. The following 
example is due to E. Ghys, cf. [4]. 

EXAMPLE 1. Take the matrix a = I . By the same letter we denote the diffeo-

morphism of the 2-torus induced by A. The suspension of the diffeomorphism A defines 
a 1-dimensional TAF ^4 of the toral bundle T\ over Sl. The leaves of J'A correspond 
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to orbits of A on T2. Thus the leaves corresponding to points with the first coefficient 
rational are compact, the closures of other leaves are 2-tori. Hence the closures of leaves 
of !TA, although submanifolds, they do not form a singular foliation. 

Using the same suspension procedure we can construct transversely geodesically com­
plete TAF on compact manifolds in which the closures of leaves are not necessarily sub-
manifolds. 

EXAMPLE 2. Let us consider a linear Anosov diffeomorphism A of a g-torus Tq. We 
would like to impose some additional conditions on A which would ensure that the folia­
tion fA obtained by suspending A has some leaves whose closures are not submanifolds. 
First, according to a result of M. Hirsch this cannot occur if q = 2, cf. [8]. Let us choose 
an irreducible primitive matrix A G SL(q, Z), q > 2, cf. [3]. Assume that the closure 
of an orbit of such a linear Anosov diffeomorphism is a submanifold. By passing to a 
finite covering, which corresponds to the suspension of the diffeomorphism Ak for some 
k > 0, we can assume that the closure of the orbit is a connected submanifold. Then 
Theorem A of [9] ensures that it must be a torus, but from the Proposition of [7] it results 
that our submanifold is either the torus Tq or a point. S. G. Hancock and F. Przytycki 
constructed very complicated invariant subsets for any linear Anosov diffeomorphism, 
cf. [7,16]. Thus the closure of any nonperiodic orbit contained in such an invariant subset 
cannot be a submanifold. 

Having shown that on compact manifolds there exist transversely geodesically com­
plete TAF with leaves whose closures are not submanifolds we would like to find out 
whether under some additional assumptions it is possible to demonstrate that the closures 
of leaves are submanifolds. First, we must reduce the study of the closures of leaves to 
the study of some more manageable objects. 

A TAF J on a manifold M is developable, i.e. there exist a covering M of M, a rep­
resentation a: TT\(M) —• Aff(E) (E ^-dimensional affine space) and a 7ri(M)-equivariant 
global submersion D: M —-• E defining the lifted foliation Jr. If J is transversely geodesi­
cally complete, then M = L x E and D is the projection onto the second factor (i.e. J is 
complete), cf. [24]. The group ima = T c Aff(E) is called the affine holonomy group 
and can be identified with the group of deck transformations of M. Leaves of J corre­
spond to orbits of F on E. Let L be a leaf of f and Tv (v G E) the corresponding orbit 
of T. Then L — D~l(Tv)\ T. This equality leads to the following lemma. 

LEMMA 1. Let J- be a complete TAF. Then the closure of a leafL is a submanifold 
iff the closure of the corresponding orbit of the affine holonomy group is a submanifold. 

Thus we can concentrate our attention on the study of orbits of finitely generated 
subgroups of Aff(E). In [26] we have proved that for a complete TAF the algebraic 
closure A(r) of the affine holonomy group V must act transitively on E, i.e., E can be 
considered as a homogeneous space A(T)/ H, where H is an isotropy group of the natural 
representation of A(T) on E. Then we have: 

https://doi.org/10.4153/CMB-1991-087-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1991-087-8


CLOSURE OF LEAVES IN TRANSVERSELY AFFINE FOLIATIONS 555 

LEMMA 2. The closure of an orbit Tv is a submanifold of E iff the set T - H is a 
submanifold ofA(T) where H is the isotropy group of ACT) at v. 

PROOF. Consider E as the homogeneous space A(T)\ H. Then the orbit Tv corre­
sponds to the orbit TeH where eH = eH G A(T)\H. The closure of TeH in A(T)\H is 
equal to T • H\ H. Thus it is a submanifold iff T • H is a submanifold. • 

These lemmas lead to the following theorem. 

THEOREM 1. Let fa be a complete TAF on a compact manifold M with abelian 
fundamental group. Then the closures of leaves of fa form a singular foliation. 

PROOF. The affine holonomy group r of fa is abelian, so is its algebraic closure 
A(T). Since fa is complete, the group A(T) acts transitively on E. As A(T) is abelian, the 
isotropy groups of the representation of A(T) on E are equal. We denote it by H. Lemma 2 
ensures that the closures of orbits of T are the orbits of the group H T = H(T) which is 
a Lie subgroup of A(T) C Aff(E). Thus these orbits are submanifolds and, therefore, the 
closures of leaves are submanifolds as well. Elements of the Lie algebra of H(T) define 
vector fields which span the tangent space to the orbits of H(T). As they are T-invariant, 
these vector fields induce global foliated vector fields on M. Their foliated orbits are 
precisely the closures of leaves of fa. Thus, in fact, the closures of leaves form a singular 
foliation in the sense of Stefan, cf. [20,21]. • 

Foliations with nilpotent affine holonomy group form another more general and very 
interesting class of TAF. Before formulating and proving a theorem for these foliations 
we must describe the commuting sheaf of a TAF. 

The foliation fa is a V — G-foliation with V being the canonical flat connection of 
E. Thus we have the following commutative diagram: 

Mi = p*Mx - ^ L(E) 

/ M\ / 7T 

M . / D > E 

A/ 
M 

where M\ — L(M, J) is the bundle of frames of the normal bundle of ^F, i.e. the bundle of 
transverse frames of (M, (J:). The bundle M\ admits a canonical foliation fa of the same 
dimension as fa and whose leaves are coverings of leaves of fa. fa\ is a developable 
foliation modelled on L(E), the bundle of linear frames of E; thus it is an Aff(E)-Lie 
foliation. 

In [27] we have defined the commuting sheaf of a V — G-foliation. This definition 
is based on Molino's definition of the commuting sheaf of a Riemannian foliation, cf. 
[10,11,12]. We recall the definition and describe this sheaf in detail. 
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Let C\ be the sheaf of germs of foliated vector fields which commute with all global 
foliated vector fields of (Mi, !f\). As these vector fields must commute with the funda­
mental horizontal and vertical vector fields, locally, they are lifts of local infinitesimal 
transformations of the transversely projectable flat connection of (M, ^F). Therefore C\ 
defines a sheaf C of germs of foliated vector fields on (M, Jr). We call C the commuting 
sheaf of ?. Its stalks consist of germs of local foliated infinitesimal affine transformations 
of the transversely projectable flat connection and the Lie bracket endows them with the 
Lie algebra structure. The lift C of the sheaf C to M consists of germs of foliated vector 
fields of (M, F) whose lifts to M\, forming a sheaf C\, commute with all T-invariant 
global foliated vector fields. This sheaf C\ projects to a sheaf CA on Aff(E) whose ele­
ments commute with all global (left) T-invariant vector fields on Aff (E), and thus with 
all K = f-invariant vector fields. This means that the vector fields of the sheaf CA must 
be tangent to the fibres of the #-fibre bundle Aff (E) -> K\ Aff (E) = W. Locally, this 
bundle is of the form K x U —• U. Therefore the vector fields of CA must commute with 
vector fields of the form Ylfth where kt G k,/i G C°°(W) and suppf C U. Thus, if ¥ is 
complete, each stalk of CA is isomorphic to the conjugated algebra k~. We call this Lie 
algebra the structure algebra of the TAF J. We have proved the following. 

PROPOSITION 1. Let f be a complete TAF with the affine holonomy group T. Then 
its commuting sheaf is a locally constant sheaf of Lie algebras whose stalk is isomorphic 
to the conjugated Lie algebra ofLie(K), K — f C Aff (E). 

For more properties of the commuting sheaf and its relation to the closures of leaves 
see [27]. 

Now we can prove the following: 

THEOREM 2. Let J be a complete TAF of a compact manifold with nilpotent affine 
holonomy group T. If the group K = T has a finite number of components, then the 
closures of leaves form a singular foliation and they are the orbits of the commuting 
sheaf 

PROOF. In [26] we have proved that the group T must be unipotent. Thus the con­
nected component Ko of K is an algebraic group, and according to [18] the orbits of Ko 
are closed. Since K has a finite number of connected components, its orbits are closed, 
and thus equal to the closures of orbits of F. Therefore the closures of leaves are sub-
manifolds. The description of the commuting sheaf ensures that these closures are the 
orbits of this sheaf. Hence the closures of leaves of <? form a singular foliation. • 

Example 1 shows that Theorem 2 is false if the group K has an infinite number of 
connected components, but we can still hope that the closures of leaves are submanifolds. 
We have seen that in the same example the space of closures of leaves has been a very 
irregular topological space. If we impose some separability condition on the space of 
orbits of the group K we can relax our other assumptions a little. 

PROPOSITION 2. Let f be a complete TAF on a compact manifold. If 
a) the affine holonomy group T is distal; 
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b) the group K — f has a finite number of connected components; 
c) the space K\ E is 7b, 

then the closures of leaves are the orbits of the commuting sheaf of ¥ and they form a 
singular foliation. 

PROOF. Glimm's theorem, cf. [5], ensures that orbits of K are relatively open in their 
closures. On the other hand these closures are minimal, cf. [13]. Therefore the orbits of 
K must be closed. The rest follows as in the proof of Theorem 2. • 

To complete this short note we give an example of a TAF having a solvable affine 
holonomy group and with some closures of leaves not being submanifolds. 

EXAMPLE 3. As in the previous examples we suspend an Anosov diffeomorphism; 
this time of a nontoral nilmanifold, cf. [19,1]. 

Let H be a 3-dimensional real Heisenberg group, and let G = H x H. The group G is 
diffeomorphic to R6. G admits the following uniform subgroup To: 

T0 = {(au...ya6) e R6 \at e Z(V3)andai+3 = â,-,i = 1,2,3} 

where if a = m + ny/3, m,n G Z, then à = m — ny/3. The space Gj T is a compact 
nontoral nilmanifold. Let A = 2 + y/3, v — (2 — \/3)2, \i — \v — 2 — y/3. Then the 
transformation </> : R 6 —• R 6, 

(f>(x\,. . . ,Xe) — (ÀXi,/XX2,i/X3,ÀX4,/ÏX5,î7X6) 

preserves the lattice To and, therefore, defines an Anosov diffeomorphism of Gj TQ. The 
suspension of </> defines a 1-dimensional TAF ^ on the total space of R x̂ > Gj To. The 
affine holonomy group T of ^ is the subgroup of Aff(R6) generated by the group To 
and </>. It is a solvable group. It is not difficult to verify that the closure of the T-orbit of 
the point (JC, 0 , . . . , 0), x ^ 0, is not a submanifold. Thus, indeed, the foliation ^ has the 
property we have been looking for. 

Other examples of this kind can be constructed using the examples of H. L. Porteous, 
cf. [15]. Moreover, E. Ghys has informed the author that similiar examples can be con­
structed using the work of M. Morse on dynamics on tori, which is, of course, previous 
to the results of S. G. Hancock and F. Przytycki. 
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