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Abstract

Jensen's inequality for the expectation of a convex function of a random variable is proved
for a wide class of convex functions defined on a space of probability measures. The result is
applied to statistical experiments using the concept of Blackwell-sufficiency. In particular,
we show a monotonicity result for the expected information of Poisson-experiments. As
an application to economics we consider the introduction of new production technologies.

1. Introduction

The importance of Jensen's inequality for the expectation of a convex real-valued
function in probability theory and mathematical statistics is well recognized and
requires no discussion. One form of this inequality is the following:

Let 5 be a convex subset of the n -dimensional Euclidean space R" and let X be an
integrable random variable with range in 5. Then for any convex function / : 5 -> K
the expected value Ef(X) of f{X) exists, EX e S and

f{EX) < Ef(X).

In this paper we prove Jensen's inequality for a class of convex functions / :
P(0) -*• [—oo, c»), where P(©) denotes the space of all probability measures defined
on the Borel a-algebra of a separable and complete metric space ©. Since in general
we face an infinite-dimensional situation we require / in addition to be lower semi-
continuous. (Recall that in the n-dimensional case the convexity of / implies the
continuity of / in the interior of 5.)

The formulation of our theorem is free of the notion of Bochner integration and
related concepts, and the relevant quantity EX is explicitly stated in given terms. To
prove the theorem we embed IP(@) in a suitable Banach space, we identify EX to
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be the Bochner expected value of the random variable X in this Banach space, and
we then apply the strong law of large numbers for Banach-valued random variables.
For a detailed discussion of Jensen's inequality in infinite-dimensional linear spaces
see [16].

In the applications we consider 0 to be an index space and we use the stated inequal-
ity to prove some sensitivity results on the expected information (relative to a function
/ ) of a special class of statistical experiments, the so-called Poisson-experiments.
Here we make use of the concept of Blackwell-sufficiency, which is well-examined
in statistical sufficiency theory, to show how the expected posterior distributions can
be calculated. The results are then applied to an interesting economical problem
concerning the introduction of new production technologies.

2. Preliminaries

For any topological space Y we denote by BS(Y) the CT-algebra generated by its
open sets, that is, the Borel a-algebra.

A separable and complete metric space (M, d) will be called a Polish space, and the
set of all probability measures defined on 3§{M~) is denoted by P(M). We will always
consider IP(M) as a topological space with the weak topology, and if \x e P(M) is the
weak limit of a sequence of probability measures \xn we write \xn -> [x. Of course
this means that fM f dfin converges to fM f d[i for each / e C(M), where C(M)
denotes the space of all real-valued bounded and continuous functions on M.

On the set i V(M) Q P(M)) of all Borel measures of bounded variation on M the
dual bounded Lipschitz norm || • \\BLt can be defined (see for example, [1], page 10)
and the associated metric is denoted by /J. In particular, the subspace (IP(M), y3) is a
Polish space, and ft metrizes the weak topology (see for example, [1], pages 11, 18).
We embed the space BV(M) in the usual way into a Banach space (J?T, || • ||) such
that \\n\\ = \\fi\\BL. for all ^ € EV(M).

If (Q, E, P) denotes a probability space, a map X from £2 into a topological space
Y is called a random variable if X~l(A) e E for each A e S8{Y). As usual Px

denotes the distribution of X with respect to P (see for example, [2]).
For any random variable X : Q —> Y, Y now being a Banach space, which is

Bochner integrable (see for example, [10]) we denote by EX the Bochner integral of
X, and we call EX the Bochner expected value of X.

Obviously every random variable X : £2 —»• (P(M) is also a random variable
considered as a mapping from £2 into X (note that 3§{W(M)) = 38{S£) n P(M))
and since \\fi\\Bu < 1 for each /LA € P(M) we see by [10], Theorems 3.5.3 and 3.7.4,
that X is Bochner integrable. Consequently X is Pettis integrable and thus I (EX) =
fnl oX dP holds for all / € SC*, where 3£* denotes the dual space of 3C'. Evidently
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EX is uniquely determined by this property.

3. Jensen's inequality

THEOREM 3.1. Suppose (@,d) to be a Polish space, let (ft, E, P) be a probability
space and assume X : £2 —> P(0) to be a random variable.

Then a probability measure fix £ P(©) can be defined by

Hx(A) = f X(cv)(A) dP(co) (A G #(©)),

and for any convex and lower semi-continuous map f : IP(0) —> [—oo, oo) we have
Jensen's inequality

fOix)< I foXdP,
Jn

provided that fn\f o X\dP remains finite.

REMARK. The proof of the theorem will show that ixx can be identified to be the
Bochner expected value of X : SI ->• SC {3C denoting a Banach space according to
the preliminaries).

Within the proof of Theorem 3.1 we will need the following well-known result (see
for example, [3], Theorem 4, page 237).

LEMMA 3.2. Let (M, d) be a Polish space. Then each probability measure /x € P(M)
is the weak limit of a sequence of discrete probability measures in P(M).

(The latter are those measures which can be represented in a form Yl aie*, by
means of finitely many points *, e M and non-negative real numbers a,, where ex.
denotes the probability measure which is equal to one for each A e 3§{M) containing
xt and zero else.)

PROOF OF THEOREM 3.1. First note that for any A e B8{&) the map FA : IP(0) ->• D&
defined by FA(/x) = (i(A) is (Borel-) measurable.

For, if G c 0 denotes an open set, and if \xn —• M w e have liminf FG(/Ltn) >
FG(fi), see [3], Theorem 2.1, page 11. Thus FG is lower semi-continuous, hence
measurable. Now set A. = {A s 3'(0) : FA is measurable} and let n consist of all
open subsets of 0 . Applying Dynkin's 7r-A.-theorem (see [4], Theorem 3.2, page 37)
then yields SB{&) = X..
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Consequently, we see that for any A e <^(0) the map co \-+ X(a>)(A), w e £2, is
a random variable, and we therefore may define a probability measure \xx £ 1P(0)
according to

fix(A) = f X(co)(A)dP(co) (A € #(©)).
Jn

Since the distribution Px of X is a probability measure on <^(P(0)) and since
(P(0), fi) is a Polish space we can find by Lemma 3.2 a sequence of discrete probab-
ility measures Pn e IP(P(0)) converging weakly to PX.

Writing Pn = £, . a]es» with sj e (P(0), a" > 0 we prove that /xn = £ y «"*" -+
fix in iP(0) for which it suffices to show that f@ f d(in converges to fe f d[ix for
each / € C(0).

Thus for / 6 C(0) we define the function g : P(0) - • R by setting

g(v)=[fdv, veP(0).

Obviously g e C(P(0)) and using standard arguments we conclude that

f fdnx= [ goXdP= f gdPx=limf gdPn
Je Jn Jn®) " -* 0 0 . /IP(0)

= lim y]aV(5n) = lim f f dfiH

as desired.
As explained in the preliminaries the Bochner expected value EX of X exists as

an element in an associated Banach space 3C. Taking any / € 3C* and observing that

l(EX) = I loXdP = f ldPx = lim I ldPn= lim l(jin) = l(jxx)
Jn Jp(0) n^°°Jp(0) n->°°

we conclude that EX = \xx.
Now, having identified fix to be the Bochner expected value of X, the desired in-

equality is a simple consequence of the strong law of large numbers for Banach-valued
random variables (see for example, [8], Theorem 1.1), see also [16], Theorem 4.1.

First assume the given function / to be finite and choose a sequence of ^T-valued
independent random variables X, (on a suitable probability space) such that each X,
assumes only values in !P(0) and the distribution of X, coincides with Px. (The
existence of such a sequence is guaranteed according to [2], Corollary 5.4.5.)

By the convexity of / and P(0) we have /(£"=i ^X,) < £"=i \ f o X,,
n G N, and since f̂ _, ± X, -* nx and £? = I \ f o X,- 4 fQf oXdP (a.s.) the
lower semi-continuity of f implies:

/(^)<liminf/(y]ix( j < f foXdP.
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Finally let / be as in Theorem 3.1.
We then introduce the finite, convex and lower semi-continuous functions /„ =

max(—n, / ) , n e N, which converge monotone to / , and applying the monotone
convergence theorem we get

f(Hx)<fn(Hx)< f fnOXdP^ [ foXdP.
Jn Jn

4. Poisson-experiments

By K++ we denote the set of all positive real numbers, R+ = R++ U {0}, and
we let A be an arbitrary non-empty subset of R++ while we assume @ c R++ to
be non-empty and closed in K (which is necessary and sufficient for © to be Polish,
concerning the usual Euclidean metric in K). With each X 6 A we associate a
family qk = [q(\9, X) : M o - > R , S e 0 ) and, following the definition of statistical
experiments (see [6], [9], [19]), we call qk a Poisson-experiment if for each 9 € © the
function q{-\9, X) is the density of a Poisson distribution with parameter X9. In what
follows we will assume qk to be a Poisson-experiment for all X £ A.

Suppose that the information on the parameter 9 € © can be expressed by a so-
called prior distribution p e IP(@), let A. e A and assume co e No to be the result of
the Poisson-experiment qx.

Then the so-called posterior distribution after performing the experiment qk is given
by the operator Q>x : P(0) x N 0 - > IP(@), known as Bayes-operator, and defined by

OxGo, co)(B) = f g ( f t > | g ' ^ dp{9) (B €
JBq(co\p,X)

where q(co\p, X) = J@ q(co\9, X) dp(9) (e R++).
To quantify the information we get by performing a Poisson-experiment qx, X e A,

we use a slight generalization of the definition given in [7]:
Le t / : P(0) -> [—oo, oo) be a convex lower semi-continuous map. The expected

information If(p, X) of a Poisson-experiment qk, A. e A, relative to / and given a
prior distribution p € (P(0) is defined by (existence provided)

If(p, X) = £?(<»|pf X) /(<D,(p, co)) - f(p).

I/(p, X) is the increment we get by a transition from the prior distribution p to the
posterior distribution <&k(p, co) measured in values of the map / .

The examination of the expected information is not only important for statistical
information and entropy theory (see for example, [6], [7], [19]) but also for optimiz-
ation theory concerning the Bayesian information models where / can be identified
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to be the so-called value function of a finite horizon decision problem (see Section 5
and [17]).

THEOREM 4.1. Let p be an element of P(0) and f : IP(@) -+ [-00, 00) be a convex
and lower semi-continuous map such that ^™=0q((o\p,X)\f(tyi,(p,co))\ remains
finite for all X e A. Then we have

for each pair (X, X') G A x A with X < X'.

This means that the expected information of a Poisson-experiment is always non-
negative and increasing in A € A.

To prove Theorem 4.1 we need an auxiliary lemma. Within the proof of this lemma
we establish a relation between two experiments qk and qv which was theoretically
introduced for statistical experiments in [5] and is known as Blackwell-sufficiency
(see also [6], [9], [13], [19]).

LEMMA 4.2. For each p G P(0) and for each pair (X, X') € A x A with X < X' there
exists a map h' : No x No ->- K+ such that £ ~ = 0 h'(co,co') = 1 for all <w G No and
such that the following two statements are fulfilled:

a) J ^ *'(*>, co')q(co\p, X) = q(a/\p, X') for all a! e No.
w=0

00

b) ^*v(p,<w')04)A'(<u.ft/) = **(/£>, <u)(4) for each A € &{&) and for all
a/=0

co e NO-

PROOF. Suppose p e P(0) and (X, X') € A x A with X < X' to be given.

Define a function h : No x No -» K+ by

for co < co' and by zero otherwise. Observe that for &/ 6 No we have J2™=o ''(<"> <w') =
1 and ]T^=o M<w, a/)<7(a/|6>, A.') = q(a>\9, X) for all co G No, 6> e 0 . Now define
A' : No x No -^ K+ by /i'(&>, to') = h(co, co')q(co'\p, X')/q(co\p, X), co, co' G No, and
prove the statements straightforward.

PROOF OF THEOREM 4.1. Let p € P(0) and / as stated in the theorem. We may
assume f{p) to be finite since otherwise If(p, X) — 00 for all choices of A.. We take
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(X, X') e A x A with X < X', and, using Lemma 4.2 we have

, X) £ V ( a > , co1) |/(4>x-(p, o/))| = ^<7(a>'|p, A') | / ( < M P , ^'))l < oo
<u=0 a/=0

by assumption.

Thus for any co e No we have 5Z~=o ̂ '(w> ^O I / ( * A ' ( P . <W'))| < oo and consider-
ing the probability space (No, ^"(No), Pw) (where <^(N0) denotes the power set of
No and the probability measure Pa is defined by Pa({co'}) = h'{co, co'), co' e No) and
the random variable 3 v ( p . •) • No —> (P(0) we get, using again the previous lemma
and Jensen's inequality, that

f(<S>,(p,eo)) < £*'(a>, a/)
a/=0

Multiplying the inequality with q(co\p, X), summing over co and subtracting / ( p )
yields

as desired.
To prove that / / ( p , X) is non-negative take A. € A. This time we consider the

probability space (No, ^ ( N o ) , P) where the probability measure P is defined by
P({<*>}) = <7(<y|p,A.), co e No, and the random variable 4>x(p, •)• Using the eas-
ily checked martingale property of 3>x, stating that X^Lo<7(w|p, X) <I>x(p, co)(A) =
p{A) for all A e S§{@), again Jensen's inequality yields

<u=0

which completes the proof.

Looking at the proofs above we see that the statements in Lemma 4.2 are essential.
It should be noted that the theorem can be proved analogously for all statistical
experiments which can be compared by using the concept of Blackwell-sufficiency
(see for example, [7], [14], [15], [21]).

5. New production technologies

Consider a company having the choice between two production techniques 1 (rep-
resenting an old production process) and 2 (representing a new process). The profit
function of each technique is assumed to be a linear function of the capital invested
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in it. The company has to decide upon the quantity (proportion) of the two processes
to be used in production. The problem is complicated by the returns of process.2
which are not known by certainty. In contrary, the returns of the old technique are
well-known and are assumed to be rt e K+. Suppose A.i and A.2 to be the quantities
of process 1 and 2 in production, and suppose that the return co per unit of tech-
nology 2 can be described as the realization of a random variable with distribution
Q{6, A.2; •) on a probability space (Q, E) where 9 e 0 is an unknown parameter
and 0 is a compact subset of 1. Suppose that q(-\6, A2) > 0 is a v-density of
Q(0, A2; •) with respect to a a-finite measure v on £8($i) which is continuous in 9
(v is assumed to be independent of 9 and A.2). Furthermore, we assume the existence
of a measurable map g : Q —> K with fa g((o) dv(a>) < oo such that

q(a>\9,k) <g(co) for all <y e Q, 9 € 0 , A. e A.

Most of these assumptions are needed in order to give a rigorous proof of the results
to follow, in particular the continuity of Vn().

There is an investment budget of M dollars in each period. The (relative) prices
(costs) per quantity used are 1 dollar for the old technique and p e N dollars for the
new one. Therefore, Aj = M — pX2 and A2 e A := {A. € No : A < M/p). The aim of
the company is to maximize the expected discounted total profit over JVeN periods
where /? G K++ is an appropriate discount factor (see for example, [11], page 43).
Let p e P(0) be the company's information on the unknown parameter. Then the
expected periodic return is given by r(p, A2) = fe r{9, A2) dp(6) with

r(0, A2) = r, • (M - pX2) + X2 f a)dQ(9, A2; «).
Jn

We assume that 9 •-»• r(9, A.2) e C(0) for all A2 e A.
The following results are well-known from stochastic dynamic programming (see

for example, [11], page 40):

1. The maximum expected discounted total reward VN over AT periods can be com-
puted by the so-called value iteration

Vn(p) = max )r(p, A2) + 0 I Vn_,(<DX2(p, w))dQ(p, A2; co)\ ,

1 < n < N, p e (P(0) with Vo = 0, and *^2 : P(0) x f l - > IP(0) (see Section 4)
is denned by

<t>k2(p, a>KB) = / *; 2 ; dp{9) (B e ^ ( 0 ) ) ,
JB q(<o\p,k2)

where q((o\p,k2) = feq(co\6,k2)dp(9)(€ R++) is the v-density of Q(p, A.2; •) =
feQ(9,k2\-)dp(9).
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2. Let /„ (p) be the greatest maximum point of the map

k2 H> r(p, k2) + P I Vn^{.^{p,co))dQ{p,k2,(o), k2 € A

for p e P(@), 1 < n < N. Then the so-called policy n = (fN, fN_u ..., fx) is
optimal, that is, the expected discounted total reward is maximized by investing
/„ (p) at the beginning of period N — n + 1 in the new technology if the prior
distribution on the unknown parameter is p e P(0).

The convexity and continuity of Vn in p (1 < n < N) can easily be established
using [12], Theorem 19.9. For example, taking [18], Lemma 4.4 into account, we
obtain:

THEOREM 5.1. Suppose A to be totally ordered by some ordering <A, let p € P(0)
and assume that /Vn_, (p, A.2) < IVn_, (p, k'2) holds for each 1 < n < N and each pair
(A2, X2) € A x A with k2 <A A.2. Then we have

that is, fi(p) is a lower bound for the optimal investment in the new technology for
the information p on the unknown parameter and for each period 1 < n < N. (Here
the expected information is analogously defined as in Section 4.)

Recall that according to Section 4 (using Theorem 3.1) the assumption in The-
orem 5.1 is always satisfied in the case of Blackwell-sufficiency.

EXAMPLE 1. Let 0 c R++, fi = No and Q(6, k2; •) be a Poisson distribution with
parameter X29, X2 € A C\ H. Then it was proved in Section 4 that if <A denotes the
natural ordering, the future expected rewards

Jn
\<n<N

are increasing as the invested amount of money in the new technology is increased
and therefore the so-called myopic investment fx (p) is a lower bound for the optimal
investment.

EXAMPLE 2. (See [20].) Let Q = OS and let Q(6, X2; •) be a normal distribution with
unknown mean 9 and a variance of l/X2, k2 6 A n N. Thus the uncertainty on
the return of the new process is decreasing as the quantity of this process used in
production is increased.

Again Theorem 5.1 applies (see [18], [21]) which means that larger investments k2

(again with respect to the natural ordering) lead to more certainty about the new
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process and therefore to higher future profits. This is because the company not only
obtains returns from the process itself but also gains information on the unknown
technique which will be useful in the following periods. Therefore, as in Example 1,
the so-called myopic investment /i (p) is a lower bound for the optimal investment.
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