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The basal speed of valley glaciers: an inverse approach
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ABSTRACT. Geophysical inverse methods are used to calculate the basal motion of a
glacier. They are applied to a one-dimensional forward model that can be linearized to
make the analysis simpler. The inverse method finds a solution that fits the data within a
given error. It selects for smooth solutions to discriminate against unrealistic oscillations.
The method is applied to a simple model glacier of uniform shape and thickness to test
how well a given basal motion field can be reconstructed. It shows, as expected, that
optimizing for smoothness lowers maxima and increases minima of the solution. A step
change in basal velocity is drawn out in the inversion over a distance that is given by the
half-width of a resolving function. This is typically about three times the ice thickness, but
1s also affected by the sampling rate of the data. The method is then applied to two glaciers
where suitable data are available: Brown Glacier on Heard Island, southern Indian
Ocean, and McCall Glacier in the Brooks Range, Alaska, U.S.A. The McCall results

agree well with earlier estimates of basal motion.

INTRODUCTION

Modeling the flow of ice is central to glaciology. A glacier
model can be used to predict changes in response to climate
change (e.g. Oerlemans and Van der Veen, 1984). Inversely,
observed changes of glaciers and ice sheets are related to the
climate history, but the dynamics of glacier flow makes this
relationship complex. Accurate glacier models are also
important to help date and interpret ice cores (e.g. Dahl-
Jensen, 1989) or to assess glacier-related natural hazards
(e.g. Pralong and others, 2003).

A temperate glacier can be modeled by considering the
equations of mass and momentum balance, a flow law and
boundary conditions (e.g. Hutter, 1983). The surface bound-
ary condition is that of a stress-free surface and a prescribed
climate (accumulation/ablation). The bottom boundary
condition consists of a melting rate defining the velocity
component perpendicular to the bed, and a sliding law
defining the basal velocity, often as a function of the basal
shear stress and/or basal water pressure (e.g. Budd and
others, 1979).

Formulating a glacier flow model poses many chal-
lenges, but one of the most fundamental is a poor under-
standing of the basal boundary condition. This is a
significant problem, because basal motion can be 50% or
more of the total glacier or ice-stream motion. Direct meas-
urements of basal motion are often difficult or impossible to
obtain, for obvious reasons. Theoretical sliding laws for ice
overlying bedrock have been derived (Lliboutry, 1968;
Kamb, 1970; Nye, 1970; Iken, 1981; Fowler, 1986; Truffer and
Iken, 1998), but they do not perform well on a macroscopic
scale (e.g. Iken and Truffer, 1997). Some observations indi-
cate that water storage plays an important role for basal
motion (Kamb and others, 1994; O’Neel and others, 2001),
but no useful parameterization of this relationship has yet
been proposed. An added complication is that many
glaciers rest on sediments. Viscous models of sediment
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deformation lead to basal boundary conditions similar to
the ones mentioned above (Boulton and Hindmarsh, 1987),
but laboratory experiments show a strongly non-linear or
even plastic behavior (e.g. Kamb, 1991), which motivated
Truffer and others (2001b) to introduce a stress boundary
condition into their flow model. Usually it is not even possi-
ble to infer the subglacial morphology (hard vs soft vs mixed
beds), but, even if that was known, there are no appropriate
general boundary conditions.

Contrary to the situation at the bottom of a glacier,
measurements on the glacier surface are much easier to
accomplish, either by field or remote-sensing methods. In
particular, synthetic aperture radar (Goldstein and others,
1993) has made it possible to measure the surface velocity
fields of glaciers (Fatland and Lingle, 1998; Michel and
Rignot, 1999) and large parts of the ice sheets (Fahnestock
and others, 1993; Joughin and others, 1996, 1999, 2000,
Rignot and others, 1997, 2001; Mohr and others, 1998). Air-
borne and ground geophysics also provide an increasing
dataset of ice thickness and surface topography (Bamber
and others, 2001a, b; Gogenini and others, 2001; Lythe and
others, 2001; Arendt and others, 2002).

Mathematically, this sets up a classic ill-posed problem:
it can be shown that infinitely many assumptions for the
basal velocity field lead to the same surface velocities.
Essentially, there are too many boundary conditions at the
top and not enough at the bottom. This situation is common
in many other areas of science, particularly geophysics. It is
typically addressed by inverse methods.

Inverse theory is becoming an increasingly popular tool
in glaciology. Van der Veen and Whillans (1989) pioneered
the force budget method. It uses geometry and surface
velocities as input and calculates basal velocities by solving
the momentum equations in successive layers from the top
down. This method is numerically unstable, however, and
it magnifies input errors (Bahr and others, 1994; Lliboutry,
1995). It lacks the capability to deal with errors in the input
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data, and it provides no mechanism to choose a desirable
solution among the infinitely many possible solutions. On
the other hand, the force budget method works well for
estimating basal shear stresses on the scale of several ice
thicknesses.

MacAyeal (1993) applied control theory to calculate the
basal friction of Ice Stream E, West Antarctica. He solves a
well-posed forward model assuming some basal friction.
The friction is then used as an adjustable parameter to mini-
mize a misfit functional (calculated vs observed surface
velocities) using an adjoint trajectory method . This theory
is robust and has also been successfully applied to West Ant-
arctica’s Whillans Ice Stream (Rommelaere and MacAyeal,
1997) and the northeast Greenland ice stream (Joughin and
others, 2001), where a finite-element forward model (Mac-
Ayeal, 1989; Hulbe and MacAyeal, 1999) was inverted. Gud-
mundsson and others (1998) chose an analytical approach
and calculated transfer functions for basal velocities and
topography, and inverted those.

Here we propose to use a different approach, based on
inverse methods common in geophysics and many other
areas (Menke, 1989; Parker, 1994).

METHODS

In this paper we will adapt textbook inverse methods to an
analytical one-dimensional glaciological model developed
by Kamb and Echelmeyer (1986). It is particularly simple,
because it can be linearized. We will follow an approach out-
lined by Parker (1994, section 3).

The first step in inverse modeling is the formulation of a
forward model. A forward model is a well-posed problem;
1n our case it is a model to calculate surface velocities, given
an appropriate basal boundary condition (such as basal
velocities). In general terms, a linear forward model can be
written as an inner product:

dj = (gjvm)aj = 1N7 (1)

where d; are N numbers that can be derived from measure-
ments taken at discrete points, ;. The so-called model m is
a continuous function of the longitudinal coordinate x and
g; are continuous functions of x; — x, called representers.
Equation (1) defines a linear forward model. If m is known,
d; can be calculated. The inverse model finds m given d;. If
we treat m as a function in a Hilbert space V, and dj are N
real numbers, then the inverse problem is underdetermined
and infinitely many exact solutions exist for m. The goal
then is to find a measure of m to optimize, so the best
solution in some sense can be selected. We will choose a
norm (actually a semi-norm) based on the first derivative.
This procedure will select for a smooth solution, i.e. one
with a small first derivative. Even though the data can be
fitted exactly, it is advantageous to relax this criterion. The
data will only be fitted within a given tolerance.

As an example we will present a one-dimensional for-
ward model that can be linearized. It treats the flow of gla-
cier ice down an inclined channel. An analytical solution
exists for the surface velocity of an inclined slab (inclination
@, thickness h) of infinite extent (Paterson, 1994):
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where Uplate 18 the surface speed. Equation (2) is derived by
treating ice as a non-linear viscous fluid: A is the flow rate
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factor, n the flow law exponent, p the ice density and g the
gravitational acceleration. For flow of ice confined to a
channel the surface velocity on the center line of the glacier
can be calculated by introducing a shape factor f (Nye,
1965):

2A . o
) (pgfsina)"h". (3)

his now the ice thickness at the center of the channel. Kamb
and Echelmeyer (1986) described a method to calculate u,
for the case of longitudinally variable ice thickness and sur-

Uch =

face slope, by a method of longitudinal averaging (adapted
from their equations 35a and b):
L

In ugyf(z) = /g(x’ — ) In(ue, (2) + wp(z')) dz’,  (4)
0

where z is the downslope longitudinal coordinate, L is the
glacier’s length, and ¢(.) is a weighing function:

g(z — ') = Celo=al/Ee (5)

C'is a normalizing factor such that fOL g(¢' —z)da’ = 1. L
and L, are up- and downstream averaging lengths, as cal-
culated by Kamb and Echelmeyer (1986). They are typically
about three times the local ice thickness. The basal speed wy,
was introduced into Equation (4) in an ad hoc way, assum-
ing that it is averaged in the same way as the deformational
speed uy. It is of advantage to write Equation (4) as an in-
ner product:

In Ugurf = [g, 1n(uch + ub)] . (6)

We recast this equation into:

In ugyr — (g, Inuey) = {g, 1n<1 + ub)] . (7)

Uch
The lefthand side can be evaluated at discrete points x;, as it
only contains quantities derivable from measurements, such
as Ugyy and uep. Comparing Equation (7) to Equation (1) we
realize that we have defined a linear inverse problem, with
d; = Inugwi(z;) — (9, Inuen) and m = In(1 + wp, /ten).

As mentioned above, infinitely many solutions m satisty
Equation (7) exactly. We now need a measure to choose an
optimal solution. Following Parker (1994, sec. 3.05), we ac-
complish this by minimizing a norm. The choice of a norm
should be guided by a property of the function that is desir-
able. Here, we choose a norm (more correctly a semi-norm)
that is a measure of the first derivative of m. Minimizing
this norm will select a function with a small first derivative,
1.e. a smooth function. Since solutions will be found numeri-
cally, we proceed by discretizing m, writing it as a vector in
IRM, with M > N (the number of measurements). The cal-
culation of the norm can then be defined through a matrix
R, such that:

|m|*= mRTRm. . (8)

We will choose R = W'/29, where W/2 = diag(w}/Q, wé/Q,

. w}f) 1s a diagonal matrix containing the proper weight-
ing factors for a quadrature rule integration, and

0
=4 ) ©)

-1 1
is a differencing operator. It is now possible to proceed by
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Fig. 1. A forward model is used to generate “data’ The lower
line 1s the prescribed basal speed, the upper solid line shows
calculated surface speed, and the crosses show the surface speed
with some random nouse that is used for the inverse model. The
longitudinal coordinate is normalized by the ice thickness, and
the flow speed by the deformational speed that would result if
the glacier was frozen to its bed.

minimizing this norm for all m that solve Equation (7)
exactly.

However, the lefthand side of Equation (7) has measure-
ment errors associated with it, so we do not wish to solve it
exactly. Instead, we require that Equation (7) be solved
within a tolerance that is dictated by the errors in the data:

|57 d = Bm)| <. (10)

where ¥ is a diagonal matrix containing the standard devia-
tions, and B = WG is the product of a weighting matrix for
quadrature integration W and the Gram matrix G consist-
ing of the discretized representers g;. T'is the tolerance level,
and it is strictly a function of NV (Parker, 1994, sec. 3.01). Park-
er (1994, sec. 3.02) also shows that under most conditions
equality holds for Equation (10). The problem now becomes
one of minimizing the semi-norm (6) under condition (10). A
standard method of doing that is to introduce a Lagrange
multiplier ¥ and minimize the functional:

U(m,v) = mR'Rm — v(T? — |=(d — Bm)|*). (11)

v is sometimes called the trade-off parameter. If it is large,
fitting the data within the tolerance is dominant; if it is
small, then minimizing the semi-norm is more important.
In that sense it defines a trade-off between norm-minimiza-
tion and data fit. But in general, both v and m can be found
by solving OU /0m; = 0 and OU /Ov = 0. The second condi-
tion simply yields Equation (10) with equality.

SYNTHETIC GLACIERS

We have done controlled tests of this inverse procedure by
running a forward model to create “data”, introducing some
noise, and inverting the “data”. The forward model consists
of a simple glacier of uniform thickness, shape and slope.
The basal speed varies down-glacier (lower curve in Fig. 1).
The upper solid line shows the surface speed predicted by
the forward model. We then sample this at regular intervals
and introduce random noise (crosses in Fig. 1). This “data-
set” 1s used as an input to the inverse model.

The lower solid line in Figure 2 shows the results of the
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Fig. 2. Results of the inversion (lower solid line ) compared to
the originally prescribed basal speed. The inversion result is
again run through the forward model (upper solid line) and
compared to the “data’’ Normalized units are as in Figure 1.

inversion, compared to the originally prescribed basal
speed (lower dotted line). The basal speeds resulting from
the inversion are again run through the forward model
(upper solid line) and compared to the “data” This simple
example shows that a satisfactory solution can be found.
Because the inverse procedure selects smooth functions, the
true maxima in basal speed are under-predicted while the
minima are over-predicted. Figure 2 also shows that the
solution fits the data within the error.

Two things should be noted: First, in general the true
basal velocities cannot be recovered. This is because of the
diffusive nature of ice flow. Small-scale velocity variations
can only be detected close to the glacier bed, not at the sur-
face. This is in close agreement with results from Balise and
Raymond (1986) and Gudmundsson (2003). Secondly, it
would be a mistake to try to fit surface velocities exactly.
Of all the models that fit the above “data” exactly (there are
an infinity), the smoothest one still oscillates in an unrealis-
tic fashion (Fig. 3). This is again due to the non-linear and
diffusional nature of ice flow. If an error in a surface meas-
urement is interpreted as a physical effect described by the
model, it will require an amplified subglacial cause. Thisis a

1.5r 1

0 25 50 75 100
Flowline distance

Fig. 3. The smoothest model that fits the “data” exactly. The
lower curve shows the result of the inversion (solid line) com-
pared to the originally prescribed basal speed (dotted line).
The upper curve shows the “data” ( crosses) and the fit of the
wnversion to them (solid line ). Units are as in Figure 1.
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Ig. 4. Resolving function for the inversion discussed above
(upper line ). The half-width of this function defines a resolo-
ing scale for the inverse model. The lower line illustrates how
the resolution degrades for inaccurate data.

major problem with Van der Veen and Whillans® (1989) force
budget method. It is an appealing feature of this inverse
method that measurement errors can be accommodated.

As mentioned above, we cannot hope to resolve velocity
variations on a small scale. There is a somewhat intuitive
way to derive resolving functions to find the minimum
resolving length. It is done by running a Dirac function
through the forward model and then inverting the result.
The Dirac 6 function is used, because it represents the smal-
lest possible perturbation. Inverting the resulting surface
speeds thus illustrates how much a small-scale basal pertur-
bation spreads through the inversion process. The half-
width of the resulting bell-shaped function gives a measure
of the spatial scale at which structure in the model can be
resolved (Fig. 4). This scale depends on the accuracy of the
data. It is noteworthy that the resolving scale does not tend
towards zero as the sampling interval for the data becomes
small. The half-width of the resolving function remains at
two to three ice thicknesses, even for an almost continuous
record of glacier geometry and surface speed (Fig. 4; ice
thickness 1s 200 m in this example).

Since the inversion method presented here selects for a
smooth model, it will discriminate against fast changes and
spread them out over a range given approximately by the
half-width of the resolving function. We illustrate this by
modeling a glacier with constant thickness (200 m), slope
(5°), and channel shape (f = 0.5). Basal velocities undergo
a step change from 0 to 5ma ' halfway down the glacier. We
ran the forward model and inverted it subsequently (Fig. 5).
The step change is spread over several ice thicknesses, as
illustrated by the results of the inversion and the resolving
function.

We will now apply the method to two glaciers, where
suitable data have been gathered: Brown Glacier in the
southern Indian Ocean, and McCall Glacier in the Brooks
Range, Alaska, U.S.A.

BROWN GLACIER

Brown Glacier is located on the flanks of Big Ben, a 2700 m
high volcano on the Australian sub-antarctic Heard Island
(53°05"S, 73°30'E). The Australian Antarctic Division
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Fig. 5. A step change (dash-dotted line) in basal speed was
run through the forward model and sampled at a regular inter-
val (crosses). The results were then inverted (dotted line).
The inversion results fit the original data well (thick solid
line). The half-width of the resolving function (thin solid
line) compares well to the spreading of the step change in the
tnversion process.

selected it for a detailed study illustrating glacier change in
the Southern Hemisphere. The ensuing report (Truffer and
others, 2001a) contains data on the flow and geometry of the
glacier (Fig. 6). Velocities were measured at points spaced
about 500 m along the 5 km long glacier (Fig. 6d). Ice thick-
ness was only measured at four sites (Fig. 6a). The shape fac-
tor was calculated assuming a channel of parabolical shape
and interpolating between the results obtained for the half-
width to depth ratios calculated by Nye (1965). Surface slope
was read from a map that was created from kinematic
global positioning system profiles (Truffer and others,
2001a). The slope was averaged over about one ice thickness
(~100 m).

We restrict our analysis to the lower part of the glacier,
where the ice thickness is known. All data were interpolated

1 1 1 1 1 1 1 1
150 500 1000 1500 2000 2500 3000 3500 4000 4500

. b
T 145} .
=

14" 1 1 1 1 1 1 1
0 a0 1000 1500 2000 2500 3000 3500 4000 4500
c

0s8r W d

1 1 1 1 1 1 1 1
] 00 1000 1500 2000 2500 3000 3500 4000 4500
. d T T T T T T T T
= 50k J

1 1 1 1 1 1
1500 2000 2500 3000 3500 4000 4500
Longitudinal coordinate (m)

D 1 1
0 500 1000

Fig. 6. Data used in the inverse model for Brown Glacier. Ice
thickness (a), surface slope (b), shape factor (c¢) and
observed surface velocities (d) are shown. Ice thickness and
shape factors were only determined on the lower part of the
glacier.
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Fig. 7. Results of the Brown Glacier inversion, showing the
wnverted basal speed (dotted line), the deformational speed
without basal motion (dash-dotted line), the surface speed
calculated from the inverted results (solid line), and the
observed speed ( crosses ). Note that the results of the inversion
do not match the observations exactly. The bell-shaped curves
are resolving functions at two positions. Thewr half-width is
an indication of the spatial scale over which changes can be
resolved.

onto a regular grid, spaced 200 m, and this was used as an
input for the inverse model, as described above. We assumed
a flow rate factor of A =3.2x10"*Pa?s™! in Equa-
tion (). This value is about half that recommended by Pater-
son (1994). Figure 7 shows the deformational speed
calculated with the forward model assuming no basal
motion. Note that the deformational speed would exceed
observed surface speed at many locations if Paterson’s
(1994) value for the flow rate factor were used. This has been
found to be true for many temperate glacier flow models
(Hooke, 1981; Hubbard and others, 1998; Gudmundsson,
1999; Adalgeirsdottir, 2000; Albrecht and others, 2000; Truf-
fer and others, 2001b). The inversion indicates steadily in-
creasing basal motion in the lower part of the glacier
(Fig. 7). As discussed above, we do not require the inversion
to fit the data exactly, in order to account for errors. The ac-
tual measurement errors for the glacier speed are small
(£3ma~!), but additional errors can arise due to the sim-
plification of a one-dimensional model. Figure 7 also shows
the fit of the inversion to the original data, and resolving
functions at two points. These functions have a half-width
of about 500 m. This defines a useful scale for the interpret-
ation of the inversion results. Nothing should be deduced on
a scale smaller than that. For example, it is possible that the
actual increase in basal motion happens on a smaller scale,
as demonstrated above for the step function model.

McCALL GLACIER

McCall Glacier in Alaska’s Brooks Range has been studied
intermittently since the International Geophysical Year
(Rabus and others, 1993, and references therein). As part of
a more recent regional mass-balance study, Rabus and
Echelmeyer (1997) described the dynamics of this polyther-
mal glacier. They noticed that deformational speeds alone
could not account for the observed surface speeds and a
region of year-round basal motion must exist in the middle
part of the glacier. Here, we confirm their findings by run-
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Fig. 8. Results of the McCall Glacier inversion. Inverted
basal motion ( dotted line ), deformational speed ( dash-dotted
line), surface speed calculated from the inversion results
(‘heavy thick line ), and the observed surface speeds ( crosses)
are shown. The thin solid line shows the basal velocity that
Rabus and Echelmeyer (1997) wused to model surface
velocities. The bell-shaped curves are resolving functions with

half-<widths of about 700 m ( four to five ice thicknesses ).

ning an inverse model. We used data published by the above
authors (their fig. 10) and sampled it every 200 m. Our
results show not only the sliding anomaly pointed out by
Rabus and Echelmeyer (1997), but also a smaller one further
upstream (Fig. 8). Not surprisingly, the inversion results in a
smoother profile of basal speeds than that proposed by the
other authors. The resolving functions show a resolving
scale of about 500-700 m (or about three to four times the
ice thickness). As discussed above, nothing can be said about
the variation of basal motion on smaller scales, so both
models for basal motion are equally plausible.

CONCLUSIONS

We successfully applied geophysical inverse methods to find
the basal velocity of a valley glacier. The forward model is a
one-dimensional theory of glacier flow down an inclined
channel. It includes longitudinal stress gradients (Kamb
and Echelmeyer, 1986) and can be used to calculate the sur-
face speed given the glacier geometry, basal motion and the
flow law. Inverse methods are then applied to calculate the
basal motion, given the surface speed and glacier geometry,
which is a more realistic and common situation. The inverse
procedure chosen here selects for a smooth model by mini-
mizing a norm that is a measure of the first derivative. In
general, the inverse problem can be solved exactly. How-
ever, it is advantageous to relax that condition and allow
the model to account for errors in the data. This prevents
unphysical solutions resulting from trying to fit measure-
ment errors, or processes not accounted for in the model.
Our method also allows us to calculate so-called resolving
functions. They are obtained by propagating a point pertur-
bation through the forward and back through the inverse
model. Its half-width is a qualitative measure of the mini-
mum scale that can be resolved by the inverse method. This
scale is typically three to four times the ice thickness, but
can be larger if data are sparse. It depends on the averaging
lengths (L4 and L_ in Equation (5)) and on the sampling
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interval for geometry and surface velocity. The averaging
lengths also depend on the rate of basal motion (Kamb
and Echelmeyer, 1986). This can be accounted for through
an iterative procedure, where the averaging lengths are
adjusted after a first inversion, and the inversion is then
repeated with the new values.

This paper focuses on applying inverse methods to val-
ley glacier flow, which is a problem that has seldom been ad-
dressed in the glaciological inverse literature. However, the
same methods can be applied to ice sheets and ice streams,
and they can be generalized, in principle, to non-linear for-
ward models (e.g. Parker, 1994) and to numerical forward
models. They can then be extended to two or three dimen-
sions and applied to a variety of complex flow regimes.
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