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Abstract
The temporal contrast requirements for high-power laser pulses have become increasingly stringent with rising irradiance 
levels. Over the past decade, in addition to discrete pre-pulses, spatiotemporal pulse pedestals have attracted significant 
attention as a major limiting factor for contrast quality in chirped-pulse amplification s ystems, p rimarily c aused by 
imperfections in their stretching and compression optics. In this work, we present the first direct high-resolution single-
shot measurement of these contributions in the spatiotemporal domain using an imaging spectrometer in combination 
with a two-dimensional self-referenced spectral interferometer.
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1. Introduction

Ultra-intense laser systems are employed in a broad range
of applications in high-energy-density and relativistic laser–
plasma physics. These research fields — enabled by the
2018 Nobel Prize awarded chirped pulse amplification (CPA)
concept [1] — continuously drive the demand for higher
peak intensities to access new regimes of experimental
physics, including high-temperature plasma generation,
ultra-compact particle acceleration, and even strong field
quantum electrodynamic phenomena [2]. Recent large-
scale ultrafast laser projects target peak powers on the
order of 10 PW per pulse to achieve irradiances exceeding
1023 W/cm2 at focus (see, e.g. [3,4]). At such intensities,
temporal contrast ratios better than 10−12 together with
absolute knowledge of the exact pulse shape are required on
time scales ranging from nanoseconds to tens of picoseconds
before the main pulse [5–9] for laser-plasma-interactions
with solid state targets. Although various amplification
techniques are employed, all systems rely on CPA [1]

to mitigate optical damage and nonlinear effects during
amplification and pulse shaping. CPA uses pulse stretchers
and compressors to tailor the spectral phase, thereby
increasing pulse duration and reducing peak power. These
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devices typically use diffraction gratings to geometrically
disperse the pulse into its spectral components. However,
surface imperfections on these optical elements directly
affect the spectral phase of the pulse. As peak powers
increase, so do the demands on temporal stretching and beam
diameter, making the system more susceptible to spatiotem-
poral contrast degradation [10,11]. While spatiotemporal
coupling is often discussed in the context of low-frequency
components [10], which primarily affect the shape of the
main pulse, contributions at higher temporal frequencies
— extending to more than ten times the Fourier-limited
pulse duration — are at least equally critical, as they lead
to pre-plasma formation in the application [12]. Bromage
et al. theoretically demonstrated that imperfections in
stretcher and compressor optics can generate spatiotemporal
pedestals with distinct slopes in both the temporal and
far-field (k–t) domains [11]. These pedestals have been
partially validated experimentally using third-order cross-
correlators to probe temporal contrast in the near and
far field [13,14] or a spatiotemporal cross-correlator on a
specific experiment on stretcher-compressor apparatus [15].
However, a full high-resolution single-shot spatiotemporal
characterization confirming these slopes experimentally
at the output of a TW class laser system has not been
achieved to date. In this work, we demonstrate that
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spatiotemporal pedestals can be characterized using imaging
spectrometry in combination with self-referenced two-
dimensional spectral interferometry [16,17].

2. Experimental realization

An enhanced two-dimensional self-referenced spectral inter-
ferometry (2D SRSI) setup was implemented at the probe
beam port of the CPA1 stage of the Draco laser system [17–19].
The port provides laser pulses of up to 10 mJ energy, cen-
tered around 800 nm, with a pulse duration of 30 fs and a
repetition rate of 10 Hz. Here, 2 mJ at the entrance of the
2D SRSI device are used, in a beam with 5 mm full-width
half-maximum spatial size are used.

Figure 1. The oscillator (a) output is first amplified in a booster amplifier
(b) and subsequently stretched in a classical Öffner stretcher (c). Further
amplification and spectral pulse shaping are performed in a regenerative
amplifier (d) and a multipass amplifier (e). The pulses are then compressed
in an in-air compressor (f). A periscope (BR) rotates the pulse orientation
by 90° to match the horizontal plane of the stretcher and compressor with
the vertical slit of the spectrometer. In the 2D SRSI, a beamsplitter (BS)
separates the light: the transmitted part is used to generate the reference
(XPW) and the corresponding delay (D), while the reflected part is directed
along the signal path (Sig) to the entrance slit of the imaging spectrometer
(2DIS), where it is re-combined with the reference.

The 2D SRSI interferometer enables spatial–spectral
interferometry by combining two pulses at the entrance slit
of an imaging spectrometer (Princeton Instruments IsoPlane-
320A), equipped with a 12-bit, 16-megapixel CMOS camera
(ZWO ASI1600MM), as shown on figure 1. The reference
pulse is self-generated from the signal pulse via a cross-
polarized wave generation (XPW) [20,21], which provides a
spatially, spectrally, and temporally clean reference, while
the signal pulse remains undisturbed. Details of the 2D SRSI
setup used can be found in [17], while the study of the SRSI
method, its validity domain, algorithm, and limitations are
described in [22].
To ensure consistent spatial orientation throughout the
system, the pulse stretcher is first aligned to match the spatial
dispersion plane of the air-based compressor. Subsequently,
both stretcher and compressor are jointly matched to the
vertical slit orientation of the imaging spectrometer. For this
purpose, a periscope is positioned behind the compressor
to rotate the beam such that the horizontal dispersion plane
of the compressor and the stretcher aligns with the vertical

spatial detection axis of the spectrometer.

The measured interferogram can be expressed as:

S̃(x, ω) = S̃0(x, ω)+f̃(x, ω)ei(ωτ+kxx)+f̃∗(x, ω)e−i(ωτ+kxx),
(1)

where the DC term is given by

S̃0(x, ω) =
∣∣∣∣ẼRef(x, ω)

∣∣∣∣2 + ∣∣∣∣Ẽin(x, ω)
∣∣∣∣2 , (2)

the sum of the spectra of the XPW-filtered reference pulse∣∣∣∣ẼRef(x, ω)
∣∣∣∣2 and the signal input pulse to be measured∣∣∣∣Ẽin(x, ω)
∣∣∣∣2. The AC term is given by

f̃(x, ω) = Ẽ∗
Ref(x, ω) Ẽin(x, ω), (3)

the interference of the two pulses. This formulation fol-
lows the principles of classical Fourier Transform Spectral
Interferometry [20], with the distinction that the separation of
AC and DC terms in the Fourier domain appears along the
temporal axis and the spatial frequency axis in the temporal
far-field kx–t domain. This is illustrated in figure 2 by the
intensity terms DC ( S̃0(x, ω)) and AC cross-correlation field
term (f̃(x, ω)).

Figure 2. Temporal-far-field intensity in logarithmic scale of the
interferogram. The spatio-spectral interferogram is shown in the inset.

The central term DC is centrosymmetric in the kx-t do-
main. Since this symmetry is centered around the zero-
frequency point, it already reveals the contribution of the
pedestal along a diagonal line. Indeed, as theoretically pre-
dicted [11], in the time-domain far field, the pedestals arising
from near-field contributions follow diagonal structures. In
contrast, the contribution from the convex mirror of the
employed Öffner stretcher, which is located in the far field,
manifests as a pedestal aligned along the temporal axis. The
corresponding far-field intensity in the time domain can be
expressed in the form [11]:
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⟨I(kx, ky, t)⟩ = I0(kx, ky, t)+∫ ∞

−∞
dt′ I0(kx, ky, t

′) PSDcvx(t− t′)+∑
n

∫ ∞

−∞

∫ ∞

−∞
du dv I0(u, v, t+ γnkx − γnu)

PSDn(kx − u, ky − v), (4)

where I0 denotes the far-field intensity of the pulse in
the absence of spatiotemporal contributions, PSDcvx is the
power spectral density of the phase screen equivalent to
the surface of the convex mirror, and PSDn are the power
spectral densities of the phase screens corresponding to near-
field optics such as the concave mirror, diffraction gratings,
or folding mirrors. The parameters γn are the spatio-spectral
coupling coefficients (in mm/THz), which determine the
central position of the beam on a given optical element as
a function of the optical frequency ω by xn(ω) = γnω. In
our configuration, the main contributions originate from two
key optical components: the second, third grating (pass) and
the roof mirror of the air compressor and the convex mirror
of the Öffner stretcher. The contribution from the second
and third grating (pass) and roof mirror is expected to appear
along a diagonal in the kx-t domain, with a slope of − 1

γ =
−0.47mm−1/ps, resulting from the dispersion and setting
of the compressor. In contrast, the contribution from the
convex mirror, being a far-field optical element, is aligned
along the temporal axis. Other contributions are expected
with different slopes but at a much lower level due to the
surface quality of their original optical component [11,14,15].

3. Results

In first place the expected characteristics in the kx-t-space
can be seen in the DC cross-correlation term. When us-
ing only one beam path (signal or reference) the DC2

term represents an intensity autocorrelation in the far-field.
Figure 3 shows the results for signal and XPW reference
individually. The signal measurement clearly reveals the

Figure 3. Temporal-far-field intensity in logarithmic scale of the
spectrogram whose spatio-spectral intensity is shown in the inset, (a) for
the signal and (b) for the XPW cleaned reference pulse.

effects of optical imperfections introduced by the stretcher
and compressor. In contrast, in the measurement of the
reference the spatial-temporal structures are absent, due to
the pulse cleaning of the XPW effect. Nevertheless, due
to the autocorrelation-nature of the DC, phase information
and potential asymmetric temporal shape are lost. The slope
of the spatial-temporal tilted contribution is -0.47 mm−1/ps,
as expected. To reveal the phase information, as well
as the temporal shape of the laser pulse, the signal and
reference pulses have to be spatial-spectrally interfered in
the 2D SRSI. Thus not only the DC terms are present in
the kx-t space, but also the AC term as cross correlation
of signal and reference. The same contribution as in the
DC appears on the AC term, but it is blurred by a slight
defocusing between the two arms of the interferometer
(figure 2). After subtracting this unintended defocusing
contribution in the data post-treatment, the two signals AC2

and DC show the pedestal on the same diagonal slope as
shown on figure 4. The intensity profiles extracted from

Figure 4. (a) (1) Temporal/far-field intensity in log scale of the
interferogram for the DC term and the intensity profiles along the green
box and black dotted line. (b) (1) Temporal/far-field intensity in log scale of
the interferogram for the AC² term, (2) its temporal/near-field intensity and
(3) the intensity profiles along the green box and black dotted line for the
far field domain, and grey and orange for the central position and a lateral
position showing a defect.

the DC term (figure 4 (a)) are symmetrical in time because
they correspond to the sum of the autocorrelations of signal
and reference. Whereas for the AC2 term (figure 4 (b)),
the cross-correlation between signal and references reveals
the temporal (asymmetric) shape. The slope is identical for
both terms and corresponds to the compressor parameters.
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In our case, the two contributions in the far-field are almost
equivalent, as shown by the black and green curves in figure
4(b.3).
The inclined pedestal is generally not detected by third order
cross-correlators measurering in the far field [23]. This type
of device then only measures the pedestal along the temporal
dimension, caused by the convex mirror in the stretcher.
Other third order cross-correlators [18,24] measure in the near-
field instead, where the two contributions are almost indis-
tinguishable because the inclination is small compared to the
size of the beam; both contributions are overlapping. The
spatiotemporal cross-correlation measurement [15] should be
able to measure it, but it suffers from low temporal resolution
(0.5 ps) and spatial frequency in far field (>0.2 mrad) despite
the need to scan the spatial dimension. In addition, it has
not yet been used to measure the spatiotemporal pedestal
at the output of a TW-class laser beam. Here, we can
derive a similar measurement as a near-field cross-correlator
would result by Fourier-transforming the spatial frequency
axis of the AC2 term back to the spatial dimension. In our
measurement by the 2D SRSI the spatial resolution reveals
a local deterioration, as can be seen when comparing the
temporal intensity profile at the central part of the near-field
along the grey dotted box in figure 4 (b.2) in comparison
to the profile along the orange region on the side of the
near-field profile in figure 4(b.3). A typical near-field cross-
correlator is detecting the total average of such a near-field
profile.
Since, in our case, the dominant contribution comes from
the convex mirror, the temporal intensity profiles are almost
identical in the near- and far-field. Nevertheless, as the
contribution of the compressor is fairly close, improving
the surface quality of this mirror should only significantly
increase the contrast in the far-field. Indeed, few improve-
ments are expected in the near-field, which is also limited by
the contributions of other optics, notably the second, third
grating (pass) and roof mirror of the compressor.

4. Conclusion

In conclusion, the presented measurement results demon-
strate the potential of 2D SRSI for capturing high-dynamic-
range spatiotemporal features. Even a simpler measurement
using only an imaging spectrometer provides access to the
spatiotemporal intensity autocorrelation of the pedestal gen-
erated by the compressor grating. Both techniques operate
in single-shot mode and can be implemented on large-scale
ultrafast laser systems, where accurate characterization of
such pedestals is essential. Since 2D SRSI measures the full
electric field, a single acquisition allows for simultaneous
evaluation of near-field and far-field contributions with high
resolution and wide coverage in both spatial and tempo-
ral domains. This enables the identification of previously
undetectable spatiotemporal distortions and facilitates the
optimization of laser system performance. It is important

to emphasize that the observed asymmetry in the far-field
profile indicates that particular care must be taken in aligning
the beam on the experimental target—especially in solid-
state experiments. For spatiotemporally inclined pedestals,
the incidence angle of the light on the target varies in time.
As a result, the effective delay depends on the target angle,
potentially leading to asymmetries in the pulse contrast. In
high-contrast experiments, two opposite angles of incidence
may thus produce significantly different temporal contrast
profiles.
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