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ON QUASISIMILARITY FOR ANALYTIC TOEPLITZ 
OPERATORS 

BY 

KATSUTOSHI TAKAHASHI 

ABSTRACT. L e t / b e a function in H°°. We show that iff is inner 
or if the commutant of the analytic Toeplitz operator 7> is equal to 
that of Th for some finite Blaschke product b, then any analytic 
Toeplitz operator quasisimilar to Tf is unitarily equivalent to Tf. 

1. Introduction. It is not yet known whether two quasisimilar (or similar) 
analytic Toeplitz operators are necessarily unitarily equivalent (cf. [2], [5], [10] ). 
In this note we give some conditions for quasisimilar analytic Toeplitz operators 
which imply their unitary equivalence. 

Let 3%[ and 3%?
2 b e Hilbert spaces. A (bounded linear) operator X:3tf[ —> J^2 

is called a quasiaffinity if it has trivial kernel and dense range, that is, if 
ker X = {0} and (ran X)~ = Jf2. Operators Tx and T2 acting on Jf?x and J^2 

respectively are said to be quasisimilar if there exist quasiaffinities 
X:Jtf{ -> J?2 and Y\3t?2 -> Jif{ such that XTX = T2X and YT2 = Tx Y, and this 
relation of Tx and T2 is denoted by 7j ~ T2. If Tx and T2 are unitarily 
equivalent, we write Tx = T2. 

F o r / i n //°° of the open unit disc D, the analytic Toeplitz operator Tf is the 
operator on the Hardy space H2 defined by Tj-h = fh. If / is inner and 
nonconstant, then Tf is a unilateral shift and its multiplicity is equal to 
dim(//2 QfH2). Quasisimilar unilateral shifts have the same multiplicity, and 
therefore they are unitarily equivalent. Thus, if both / and g are inner 
and Tf ~ T 9 then Tf = T. It was shown by Conway [3] that if / is a 
single Blaschke factor (i.e., Tf is a unilateral shift of multiplicity one) and 
g e i/°°, then Tf~Tg implies 7^ = 7 ,̂ and this result was extended in [ 13] to the 
case where/ is a finite Blaschke product. In this note we show that if/ is inner 
and g is a function in H°° with llglloo = 1 for which there exists a nonzero 
operator X such that XTg = TfX, then g is inner. The result is applied to show 
that whenever/is inner, for any g e H°°, the relation Tf~Tg implies Tf = T 9 

and to prove a conjecture given by Wu [15]. We also show that if / i s in H°° and 
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there exists a finite Blaschke product b such that {Tj)f = {Th}\ where for an 
operator A, {A}' denotes the commutant of A, then for any g e H°°, Tj- ~ Tg 

implies Tj = T. This result partially generalizes results of Cowen [5] and 
Seddighi [10]. From a result of Clary [1] or Deddens [6], it is known that 
quasisimilar analytic Toeplitz operators have equal spectra. Our result, together 
with a result of Cowen [4] or Thomson [14] on the commutants of analytic 
Toeplitz operators, shows that quasisimilar analytic Toeplitz operators also 
have equal essential spectra. 

2. Results. We first consider analytic Toeplitz operators which are quasi-
similar to unilateral shifts. If / i s in H°° and there is a nonzero operator X such 
that XTU = TrXîor some inner function w, then by [6] we have/(D) c o(Tu) = 
(u(D))~ and so ||/|loo — 1. Conversely, if / e H°° is nonconstant and 
I l/l loo = 1, then for any nonconstant inner function w, there is a nonzero 
operator X such that XTU = TjX [7]. However, we have the following result. 

THEOREM 1. Let f be a function in H°° with ||/||oo = 1 and let u be an inner 
function. If there is a nonzero operator X such that XTr = TUX, then f is inner. 

PROOF. If u is constant; u(z) = X for some scalar X with | \ | = 1, then 
XTj = TUX = XX. Since X ¥= 0, it follows that X is an eigenvalue of Tf. Then, 
since Tf is a contraction and |X| = 1, A is an eigenvalue of Tj- (cf. [11, Propos­
ition 1.3.1] ), which implies / = À, that i s , / i s a constant inner function. 

Now, suppose that u is nonconstant. Then clearly / is nonconstant. 
Let a = {elt:\f(elt) | = 1}. We have to show m(3D\a) = 0 where m denotes the 
normalized Lebesgue measure on the unit circle 3D. Since Tu is isometric and 
XTf = TUX, for h € H2 and n = 1, 2, . . . , we have 

\\Xh\\ = \\Tn
uXh\\ = \\XT}h\\ g IIXII IIT^AII. 

But, since | / | ^ 1 a.e. on 3D, 

lim \\T}h\\2 = lim f \f\2n\h\2dm = f XaW
2dm = \\Xah\\2 

for h € H , where xa ^s t n e characteristic function of a. Therefore it follows 
that \\Xh\\ ^\\X\\ \\xM for all h e H2, so we obtain the operator Y\J(-* H2, 
where Ji = ( x « # V ^ L2, such that Y(Xah) = Xh for h e H2. Let Mfbe the 
normal operator of multiplication on L2 by / Clearly the subspace Jt is in­
variant for Mf and Mf\Jt is isometric. We have for h e H2 

Y(Mf\J?)(Xah) = Y(xJh) = X(fh) 

= XTfh = TuXh = TuY{Xah\ 

so Y(Mf\Jt} =• TUY. It follows from [1] that o(Tu\ (ran Y)~) Q o{Mf\Jt\ But, 
since Y ¥= 0 and u is nonconstant, Tu\ (ran Y)~ is a nonzero unilateral shift, 
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hence we have D~ Q o(MAJt) and so MA JP is not unitary. This implies that 
m(3D\a) = 0, that i s , / i s inner. Indeed, if m(8D\a) ^ 0, then Szegô's theorem 
(cf. [2, Theorem IV.5.13] ) shows Jt = ( x ^ 2 ) - = xj^^ hence M reduces the 
normal operator Mf and the isometry MAJtis unitary. 

Let Si (i = 1, 2) be a unilateral shift of multiplicity nt and let Xbe an operator 
satisfying XSX = S2X. It is easily seen that if Xhas dense range, then nx = n2. It 
is also known [12] that if X is injective, then nx ^ n2. Thus, if X is a quasi-
affinity, then nx = n2, so Sx and S2 are unitarily equivalent. 

Parts of the following corollary were shown in [3] when u is a single Blaschke 
factor and in [13] when u is a finite Blaschke product (cf. also [16] ). 

COROLLARY 1. Let u be an inner function and f e H°°. Then the following 
conditions are equivalent. 

(i) Tf=Tu. 

(iii) There are operators X and Y having dense range such that XT- = TUX and 
YTU = TfY. 

(iv) There are injections X and Y such that XTr = TUX and YTU = TY. 
(v) I l/l loo = 1 and there is a quasiaffinity X such that XTf = TUX. 

PROOF. By [6], the existence of the operator Fin (iii) or (iv) shows ll/lloo = 1. 
Thus the implications (iii) => (i), (iv) =* (i) and (v) => (i) follow from Theorem 1 
and the above facts on the multiplicty of unilateral shifts. The other implica­
tions are trivial. 

The following corollary was conjectured by Wu [15] and proved in [16] for 
isometries V with dim ker V* < oo. 

COROLLARY 2. Let V be an isometry on a separable Hilbert space JSP. If 
T c Alg V and T ~ V, then T = V. Here for an operator X, Alg X is the weakly 
closed algebra generated by X and I. 

PROOF. If V is unitary, then T is normal and so the result follows from the 
well-known fact that quasisimilar normal operators are unitarily equivalent. 
Thus we assume that V is non-unitary, hence we can write V = U ® Tu 

on Jf? = @ @ H where U is a unitary operator and u is a nonconstant 
inner function (i.e., Tu is a unilateral shift). Since T e Alg V and Alg V Q 
Alg U 0 Alg Tu, we have T = A ® Tf where A c Alg U and / e H°°. (Note 
that Alg U and Alg Tu consist of normal operators and of analytic Toeplitz 
operators, respectively.) Let X and Y be quasiaffinities such that XT = VX and 
YV = TY. Since V is not unitary, the relation XT = VX implies that Tf is not 
normal (cf. [2, Proposition III. 11.7]) and therefore Tf is a pure subnormal 
operator (cf. [15, Lemma 4.4] ). Thus it follows from [2, Proposition III. 14.11] 
and its proof that A ^ 17, X<& Q & and Y& Q &. Let Xx = PX\H2 and 
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Yx = PY\H2 where P denotes the projection of Jf = 0 © H2 onto H2. 
Clearly XxTf = 7 ^ and Y j ^ = T^Yj. Since X has dense range and 
X ^ c ^ jfj has dense range too. Similarly YJ has dense range. Thus it 
follows from Corollary 1 that Tf = Tw hence T ~ V. 

In [5] Cowen proved that if analytic Toeplitz operators Tf and Tg satisfying 
{TfY = {TUY and {TgY = {Tv}' for some inner functions u and v are similar, 
then they are unitarily equivalent. On the other hand, Seddighi [10] proved that 
if analytic Toeplitz operators Tf and T respectively generate the same weak* 
closed algebras as Tu and Tv for some inner functions u and v, then Tf ~ Tg 

implies Tf = T. We have the following result. 

THEOREM 2. Let f e H°° and assume that there is a finite Blaschke product b 
such that {TfY = {Tb}'. If g e H°° and Tf ~ Tg, then Tf = Tg. 

The following lemma is known (cf. the proof of [16, Proposition 2.1] ), but we 
include its proof for completeness. For an operator A, let {A}" denote the 
double commutant of A. 

LEMMA. If S is a unilateral shift of finite multiplicity, then for any quasiaffinity 
X € {SY there is a quasiaffinity Y e {S}' such that YX e {5}". 

PROOF. We may suppose that S is the operator on the C^-valued Hardy space 
Hn defined by (Sh)(z) = zh(z), z e D, where «(<oo) is the multiplicity of S. 
Then {SY consists of all multiplication operators on Hn by n X n matrix 
valued, bounded analytic functions on D. Thus X is the multiplication operator 
on H by some n X n matrix valued, bounded analytic function F; (Xh)(z) = 
F(z)h(z) for z £ D and h e Hn. Since Xhas dense range, F i s outer, hence by [11, 
Proposition V.6.1 and Corollary V.6.3] d(z) : = det F(z) (z e D) is an outer 
function in H°° and there is an n X n matrix valued, bounded analytic function 
G such that G(z)F(z) = F(z)G(z) = d(z)I, z e D. Let Y be the multiplication 
operator on H2

n by G. Then Ye {SY, and we have YX = XY = Md where Md is 
the multiplication operator by d. Hence YX c {5}". Since d is outer, Md is a 
quasiaffinity. Therefore it follows from YX = Md = XY that Y is a quasi­
affinity. Thus Y is the required operator. 

PROOF OF THEOREM 2. Let X and Y be quasiaffinities such that XTj- = TgX 
and YTg = TfY. Then, since the quasiaffinity YX belongs to {TfY = {TbY and 
Th is a unilateral shift of finite multiplicity, by Lemma there is a quasiaffinity 
Z € {7^}' such that ZYX e {TJ,}" = {TfY. Thus, by replacing Y by Z 7 , we 
can assume that the quasiaffinities X and Y satisfy YX e {?/}". Under 
this assumption, we see that for all A e {?/}" the operator XAY belongs to 
{TgY\ so XAY is an analytic Toeplitz operator. Indeed, if A e {Tj}'\ then for 
any B e {TgY, since YBX e {TfY and YX e {Tfî" by our assumption, we have 
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YXAYBX = YBXAYX and therefore XAYB = BXAY because X and Y are 
quasiaf fini ties. This shows XAY e {Tg}". 

For n = 0, 1, 2 , . . . , since T% c {Tb}" = {7^}", by the above fact XTn
bY is 

an analytic Toeplitz operator, hence there is wn e H°° such that XTn
bY = Tw. 

Then, noting that YX and Tb commute, we have 

T"Wi = (XTbY)" = {XYf-'XTlY = 7 ^ 7 ^ , 

so that w" = vvo_1>vn for M & 1. We also have 

IKIloo = 117̂ 11 = \\XT»bY\\ â HA-II | | 7 | | 

for every n (because b is inner). Therefore it follows that 

iw.r'c-1) = KI K I 1 ^ - 1 ) ^ Ki ( ii*ii im i / ^ - 1 ' 
a.e. on 3D for n ^ 2, and letting K ^ o o w e get \wx\ ^ |w0| a.e. on 3D. But, since 
Tw = XY has dense range, w0 is outer. Therefore there is v e H°° such that 
H>, = w0v and IMI^ â 1 (cf. [9, Proposition 6.22] ). Then we have 

xrbY = TW{ = TWTV = x r r v 

and therefore the injectivity of Ximplies TbY = YTV. Hence it follows from the 
implication (v) => (i) in Corollary 1 that v is inner and Tb = Tv. 

Now since Tfe {Tf}" = {Tb}"9 there is h e H°° such t h a t / = h o b (cf. [4, 
Theorem 1 and 2] ). Let pn be the n-th Cesàro mean of h. Then, since pn —> h 
weak* in H°°, Tfipb -> Thob and 7^ov -> ZJ>ov weakly (cf. [11, Theorem III.2.1] ). 
Therefore it follows from TbY = YTV that TfY = ThobY = YThov. Also, if £/is 
a unitary operator satisfying TbU = UTV, then 7>£/ = UThov. Hence the relation 
Tb = Tv implies 7^ = rAov. But YTg = TfY = YThov, so we have 
Tg = Thov by the injectivity of Y. Thus g = h o v and Tj- = Tg. 

It was proved by Cowen [4] that i f / e //°° and for some scalar X the inner 
factor off — À is a (nonconstant) finite Blaschke product, then there is a finite 
Blaschke product b such that {TA' = {Tb}' (cf. also Thomson [14], Deddens and 
Wong [8] ). Thus we have the following result. 

COROLLARY 3. Let fe H°° and assume that for some scalar X the inner factor 
off — X is a finite Blaschke product. If g e H°° and Tf ~ T, then Tf = T 

It is known (cf. [1], [6]) that quasisimilar analytic Toeplitz operators have 
equal spectra. 

COROLLARY 4. Quasisimilar analytic Toeplitz operators have equal 
essential spectra. 
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PROOF. Let Tj and Tg be quasisimilar analytic Toeplitz operators. By the 
result of [1] or [6], we have only to consider the case when o(T^) ¥= oe(Tf) ( = the 
essential spectrum of Tj-) or o(Tg) ¥* oe(T). Suppose that o(Tf) ¥= oe{Tj), so 
there is a scalar A such that Tf — XI is a non-invertible Fredholm operator. 
Then, as noted in [14, Corollary 2], the inner factor of f — X is a finite 
Blaschke product. Therefore it follows from Corollary 3 that 7> = T and so 
°e<Tf) = °e(Tg)- Similarly, if o(Tg) * ae(Tg), then ae(Tf) = oe(Tg). 

We note that the proof of Theorem 2 shows the following result. 

PROPOSITION. Let f e H°° and assume that {TAf = {Tu\ for some inner 
function u. If g e H°° and there are quasiaffinities X and Y such that XTr = T^X, 
YTg = TfY and YX e {Tf}\ then Tf = Tg. 
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