ON QUASISIMILARITY FOR ANALYTIC TOEPLITZ OPERATORS

BY KATSUTOSHI TAKAHASHI

ABSTRACT. Let f be a function in H^{∞} . We show that if f is inner or if the commutant of the analytic Toeplitz operator T_f is equal to that of T_b for some finite Blaschke product b, then any analytic Toeplitz operator quasisimilar to T_f is unitarily equivalent to T_f .

1. **Introduction.** It is not yet known whether two quasisimilar (or similar) analytic Toeplitz operators are necessarily unitarily equivalent (cf. [2], [5], [10]). In this note we give some conditions for quasisimilar analytic Toeplitz operators which imply their unitary equivalence.

Let \mathscr{H}_1 and \mathscr{H}_2 be Hilbert spaces. A (bounded linear) operator $X:\mathscr{H}_1 \to \mathscr{H}_2$ is called a *quasiaffinity* if it has trivial kernel and dense range, that is, if ker $X = \{0\}$ and $(\operatorname{ran} X)^- = \mathscr{H}_2$. Operators T_1 and T_2 acting on \mathscr{H}_1 and \mathscr{H}_2 respectively are said to be *quasisimilar* if there exist quasiaffinities $X:\mathscr{H}_1 \to \mathscr{H}_2$ and $Y:\mathscr{H}_2 \to \mathscr{H}_1$ such that $XT_1 = T_2X$ and $YT_2 = T_1Y$, and this relation of T_1 and T_2 is denoted by $T_1 \sim T_2$. If T_1 and T_2 are unitarily equivalent, we write $T_1 \cong T_2$.

For f in H^{∞} of the open unit disc **D**, the analytic Toeplitz operator T_f is the operator on the Hardy space H^2 defined by $T_f h = fh$. If f is inner and nonconstant, then T_f is a unilateral shift and its multiplicity is equal to $\dim(H^2 \ominus fH^2)$. Quasisimilar unilateral shifts have the same multiplicity, and therefore they are unitarily equivalent. Thus, if both f and g are inner and $T_f \sim T_g$, then $T_f \cong T_g$. It was shown by Conway [3] that if f is a single Blaschke factor (i.e., T_f is a unilateral shift of multiplicity one) and $g \in H^{\infty}$, then $T_f \sim T_g$ implies $T_f \cong T_g$, and this result was extended in [13] to the case where f is a finite Blaschke product. In this note we show that if f is inner and g is a function in H^{∞} with $||g||_{\infty} \leq 1$ for which there exists a nonzero operator X such that $XT_g = T_f X$, then g is inner. The result is applied to show that whenever f is inner, for any $g \in H^{\infty}$, the relation $T_f \sim T_g$ implies $T_f \cong T_g$, and to prove a conjecture given by Wu [15]. We also show that if f is in H^{∞} and

Received by the editors July 4, 1986, and, in revised form, August 17, 1987.

Key words and phrases: quasisimilarity, analytic Toeplitz operator, commutant.

AMS Subject Classification (1980): Primary, 47B20; Secondary, 47B35.

[©] Canadian Mathematical Society 1986.

K. TAKAHASHI

there exists a finite Blaschke product b such that $\{T_f\}' = \{T_b\}'$, where for an operator A, $\{A\}'$ denotes the commutant of A, then for any $g \in H^{\infty}$, $T_f \sim T_g$ implies $T_f \cong T_g$. This result partially generalizes results of Cowen [5] and Seddighi [10]. From a result of Clary [1] or Deddens [6], it is known that quasisimilar analytic Toeplitz operators have equal spectra. Our result, together with a result of Cowen [4] or Thomson [14] on the commutants of analytic Toeplitz operators also have equal essential spectra.

2. **Results.** We first consider analytic Toeplitz operators which are quasisimilar to unilateral shifts. If f is in H^{∞} and there is a nonzero operator X such that $XT_u = T_f X$ for some inner function u, then by [6] we have $f(\mathbf{D}) \subseteq \sigma(T_u) = (u(\mathbf{D}))^-$ and so $||f||_{\infty} \leq 1$. Conversely, if $f \in H^{\infty}$ is nonconstant and $||f||_{\infty} \leq 1$, then for any nonconstant inner function u, there is a nonzero operator X such that $XT_u = T_f X$ [7]. However, we have the following result.

THEOREM 1. Let f be a function in H^{∞} with $||f||_{\infty} \leq 1$ and let u be an inner function. If there is a nonzero operator X such that $XT_f = T_uX$, then f is inner.

PROOF. If u is constant; $u(z) \equiv \lambda$ for some scalar λ with $|\lambda| = 1$, then $XT_f = T_u X = \lambda X$. Since $X \neq 0$, it follows that $\overline{\lambda}$ is an eigenvalue of T_f^* . Then, since T_f^* is a contraction and $|\lambda| = 1$, λ is an eigenvalue of T_f (cf. [11, Proposition I.3.1]), which implies $f = \lambda$, that is, f is a constant inner function.

Now, suppose that u is nonconstant. Then clearly f is nonconstant. Let $\alpha = \{e^{it}: |f(e^{it})| = 1\}$. We have to show $m(\partial \mathbf{D} \setminus \alpha) = 0$ where m denotes the normalized Lebesgue measure on the unit circle $\partial \mathbf{D}$. Since T_u is isometric and $XT_f = T_u X$, for $h \in H^2$ and $n = 1, 2, \ldots$, we have

$$||Xh|| = ||T_u^n Xh|| = ||XT_f^n h|| \le ||X|| ||T_f^n h||.$$

But, since $|f| \leq 1$ a.e. on $\partial \mathbf{D}$,

$$\lim_{n\to\infty}||T_f^nh||^2 = \lim_{n\to\infty}\int |f|^{2n}|h|^2dm = \int \chi_{\alpha}|h|^2dm = ||\chi_{\alpha}h||^2$$

for $h \in H^2$, where χ_{α} is the characteristic function of α . Therefore it follows that $||Xh|| \leq ||X|| ||\chi_{\alpha}h||$ for all $h \in H^2$, so we obtain the operator $Y: \mathcal{M} \to H^2$, where $\mathcal{M} = (\chi_{\alpha}H^2)^- \subseteq L^2$, such that $Y(\chi_{\alpha}h) = Xh$ for $h \in H^2$. Let M_f be the normal operator of multiplication on L^2 by f. Clearly the subspace \mathcal{M} is invariant for M_f and $M_f|\mathcal{M}$ is isometric. We have for $h \in H^2$

$$Y(M_f | \mathcal{M})(\chi_{\alpha} h) = Y(\chi_{\alpha} f h) = X(f h)$$
$$= XT_f h = T_u X h = T_u Y(\chi_{\alpha} h),$$

so $Y(M_f|\mathcal{M}) = T_u Y$. It follows from [1] that $\sigma(T_u|(\operatorname{ran} Y)^-) \subseteq \sigma(M_f|\mathcal{M})$. But, since $Y \neq 0$ and u is nonconstant, $T_u|(\operatorname{ran} Y)^-$ is a nonzero unilateral shift,

hence we have $\mathbf{D}^- \subseteq \sigma(M_f|\mathcal{M})$ and so $M_f|\mathcal{M}$ is not unitary. This implies that $m(\partial \mathbf{D} \setminus \alpha) = 0$, that is, f is inner. Indeed, if $m(\partial \mathbf{D} \setminus \alpha) \neq 0$, then Szegö's theorem (cf. [2, Theorem IV.5.13]) shows $\mathcal{M} = (\chi_{\alpha} H^2)^- = \chi_{\alpha} L^2$, hence \mathcal{M} reduces the normal operator M_f and the isometry $M_f|\mathcal{M}$ is unitary.

Let S_i (i = 1, 2) be a unilateral shift of multiplicity n_i and let X be an operator satisfying $XS_1 = S_2X$. It is easily seen that if X has dense range, then $n_1 \ge n_2$. It is also known [12] that if X is injective, then $n_1 \le n_2$. Thus, if X is a quasiaffinity, then $n_1 = n_2$, so S_1 and S_2 are unitarily equivalent.

Parts of the following corollary were shown in [3] when u is a single Blaschke factor and in [13] when u is a finite Blaschke product (cf. also [16]).

COROLLARY 1. Let u be an inner function and $f \in H^{\infty}$. Then the following conditions are equivalent.

(i) $T_f \cong T_u$.

(ii) $\dot{T}_f \sim T_u$.

(iii) There are operators X and Y having dense range such that $XT_f = T_u X$ and $YT_u = T_f Y$.

(iv) There are injections X and Y such that $XT_f = T_u X$ and $YT_u = T_f Y$.

(v) $||f||_{\infty} \leq 1$ and there is a quasiaffinity X such that $XT_f = T_u X$.

PROOF. By [6], the existence of the operator Y in (iii) or (iv) shows $||f||_{\infty} \leq 1$. Thus the implications (iii) \Rightarrow (i), (iv) \Rightarrow (i) and (v) \Rightarrow (i) follow from Theorem 1 and the above facts on the multiplicity of unilateral shifts. The other implications are trivial.

The following corollary was conjectured by Wu [15] and proved in [16] for isometries V with dim ker $V^* < \infty$.

COROLLARY 2. Let V be an isometry on a separable Hilbert space \mathcal{H} . If $T \in \text{Alg } V$ and $T \sim V$, then $T \cong V$. Here for an operator X, Alg X is the weakly closed algebra generated by X and I.

PROOF. If V is unitary, then T is normal and so the result follows from the well-known fact that quasisimilar normal operators are unitarily equivalent. Thus we assume that V is non-unitary, hence we can write $V = U \oplus T_u$ on $\mathscr{H} = \mathscr{G} \oplus H^2$ where U is a unitary operator and u is a nonconstant inner function (i.e., T_u is a unilateral shift). Since $T \in \text{Alg } V$ and Alg $V \subseteq$ Alg $U \oplus \text{Alg } T_u$, we have $T = A \oplus T_f$ where A ϵ Alg U and $f \in H^\infty$. (Note that Alg U and Alg T_u consist of normal operators and of analytic Toeplitz operators, respectively.) Let X and Y be quasiaffinities such that XT = VX and YV = TY. Since V is not unitary, the relation XT = VX implies that T_f is not normal (cf. [2, Proposition III.11.7]) and therefore T_f is a pure subnormal operator (cf. [15, Lemma 4.4]). Thus it follows from [2, Proposition III.14.11] and its proof that $A \cong U$, $X\mathscr{G} \subseteq \mathscr{G}$ and $Y\mathscr{G} \subseteq \mathscr{G}$. Let $X_1 = PX|H^2$ and

 $Y_1 = PY|H^2$ where P denotes the projection of $\mathscr{H} = \mathscr{G} \oplus H^2$ onto H^2 . Clearly $X_1T_f = T_uX_1$ and $Y_1T_u = T_fY_1$. Since X has dense range and $X\mathscr{G} \subseteq \mathscr{G}, X_1$ has dense range too. Similarly Y_1 has dense range. Thus it follows from Corollary 1 that $T_f \cong T_u$, hence $T \cong V$.

In [5] Cowen proved that if analytic Toeplitz operators T_f and T_g satisfying $\{T_f\}' = \{T_u\}'$ and $\{T_g\}' = \{T_v\}'$ for some inner functions u and v are similar, then they are unitarily equivalent. On the other hand, Seddighi [10] proved that if analytic Toeplitz operators T_f and T_g respectively generate the same weak* closed algebras as T_u and T_v for some inner functions u and v, then $T_f \sim T_g$ implies $T_f \cong T_g$. We have the following result.

THEOREM 2. Let $f \in H^{\infty}$ and assume that there is a finite Blaschke product b such that $\{T_f\}' = \{T_b\}'$. If $g \in H^{\infty}$ and $T_f \sim T_g$, then $T_f \cong T_g$.

The following lemma is known (cf. the proof of [16, Proposition 2.1]), but we include its proof for completeness. For an operator A, let $\{A\}''$ denote the double commutant of A.

LEMMA. If S is a unilateral shift of finite multiplicity, then for any quasiaffinity $X \in \{S\}'$ there is a quasiaffinity $Y \in \{S\}'$ such that $YX \in \{S\}''$.

PROOF. We may suppose that S is the operator on the \mathbb{C}^n -valued Hardy space H_n^2 defined by $(Sh)(z) = zh(z), z \in \mathbf{D}$, where $n(<\infty)$ is the multiplicity of S. Then $\{S\}'$ consists of all multiplication operators on H_n^2 by $n \times n$ matrix valued, bounded analytic functions on **D**. Thus X is the multiplication operator on H_n^2 by some $n \times n$ matrix valued, bounded analytic function F; (Xh)(z) = F(z)h(z) for $z \in \mathbf{D}$ and $h \in H_n^2$. Since X has dense range, F is outer, hence by [11, Proposition V.6.1 and Corollary V.6.3] $d(z) := \det F(z) (z \in \mathbf{D})$ is an outer function in H^∞ and there is an $n \times n$ matrix valued, bounded analytic function G such that $G(z)F(z) = F(z)G(z) = d(z)I, z \in \mathbf{D}$. Let Y be the multiplication operator on H_n^2 by G. Then $Y \in \{S\}'$, and we have $YX = XY = M_d$ where M_d is the multiplication operator by d. Hence $YX \in \{S\}''$. Since d is outer, M_d is a quasiaffinity. Therefore it follows from $YX = M_d = XY$ that Y is a quasiaffinity. Thus Y is the required operator.

PROOF OF THEOREM 2. Let X and Y be quasiaffinities such that $XT_f = T_gX$ and $YT_g = T_fY$. Then, since the quasiaffinity YX belongs to $\{T_f\}' = \{T_b\}'$ and T_b is a unilateral shift of finite multiplicity, by Lemma there is a quasiaffinity $Z \in \{T_b\}'$ such that $ZYX \in \{T_b\}'' = \{T_f\}''$. Thus, by replacing Y by ZY, we can assume that the quasiaffinities X and Y satisfy $YX \in \{T_f\}''$. Under this assumption, we see that for all $A \in \{T_f\}''$ the operator XAY belongs to $\{T_g\}''$, so XAY is an analytic Toeplitz operator. Indeed, if $A \in \{T_f\}''$, then for any $B \in \{T_g\}'$, since $YBX \in \{T_f\}'$ and $YX \in \{T_f\}''$ by our assumption, we have YXAYBX = YBXAYX and therefore XAYB = BXAY because X and Y are quasiaffinities. This shows $XAY \in \{T_{\alpha}\}^{"}$.

For n = 0, 1, 2, ..., since $T_b^n \in \{T_b\}^n = \{T_f\}^n$, by the above fact $XT_b^n Y$ is an analytic Toeplitz operator, hence there is $w_n \in H^\infty$ such that $XT_b^n Y = T_{w_n}$. Then, noting that YX and T_b commute, we have

$$T_{w_1}^n = (XT_bY)^n = (XY)^{n-1}XT_b^nY = T_{w_0}^{n-1}T_{w_n}^n,$$

so that $w_1^n = w_0^{n-1} w_n$ for $n \ge 1$. We also have

$$||w_n||_{\infty} = ||T_{w_n}|| = ||XT_b^n Y|| \le ||X|| ||Y||$$

for every n (because b is inner). Therefore it follows that

$$|w_1|^{n/(n-1)} = |w_0| |w_n|^{1/(n-1)} \le |w_0| (||X|| ||Y||)^{1/(n-1)}$$

a.e. on $\partial \mathbf{D}$ for $n \geq 2$, and letting $n \to \infty$ we get $|w_1| \leq |w_0|$ a.e. on $\partial \mathbf{D}$. But, since $T_{w_0} = XY$ has dense range, w_0 is outer. Therefore there is $v \in H^{\infty}$ such that $w_1 = w_0 v$ and $||v||_{\infty} \leq 1$ (cf. [9, Proposition 6.22]). Then we have

$$XT_bY = T_{w_1} = T_{w_0}T_v = XYT_v$$

and therefore the injectivity of X implies $T_b Y = YT_v$. Hence it follows from the implication (v) \Rightarrow (i) in Corollary 1 that v is inner and $T_b \cong T_v$.

Now since $T_f \in \{T_f\}'' = \{T_b\}''$, there is $h \in H^\infty$ such that $f = h \circ b$ (cf. [4, Theorem 1 and 2]). Let p_n be the *n*-th Cesàro mean of *h*. Then, since $p_n \to h$ weak* in H^∞ , $T_{p_n \circ b} \to T_{hob}$ and $T_{p_n \circ v} \to T_{hov}$ weakly (cf. [11, Theorem III.2.1]). Therefore it follows from $T_b Y = YT_v$ that $T_f Y = T_{hob} Y = YT_{hov}$. Also, if *U* is a unitary operator satisfying $T_b U = UT_v$, then $T_f U = UT_{hov}$. Hence the relation $T_b \cong T_v$ implies $T_f \cong T_{hov}$. But $YT_g = T_f Y = YT_{hov}$, so we have $T_g = T_{hov}$ by the injectivity of *Y*. Thus $g = h \circ v$ and $T_f \cong T_g$.

It was proved by Cowen [4] that if $f \in H^{\infty}$ and for some scalar λ the inner factor of $f - \lambda$ is a (nonconstant) finite Blaschke product, then there is a finite Blaschke product b such that $\{T_f\}' = \{T_b\}'$ (cf. also Thomson [14], Deddens and Wong [8]). Thus we have the following result.

COROLLARY 3. Let $f \in H^{\infty}$ and assume that for some scalar λ the inner factor of $f - \lambda$ is a finite Blaschke product. If $g \in H^{\infty}$ and $T_f \sim T_g$, then $T_f \cong T_g$.

It is known (cf. [1], [6]) that quasisimilar analytic Toeplitz operators have equal spectra.

COROLLARY 4. Quasisimilar analytic Toeplitz operators have equal essential spectra.

1988]

PROOF. Let T_f and T_g be quasisimilar analytic Toeplitz operators. By the result of [1] or [6], we have only to consider the case when $\sigma(T_f) \neq \sigma_e(T_f)$ (= the essential spectrum of T_f) or $\sigma(T_g) \neq \sigma_e(T_g)$. Suppose that $\sigma(T_f) \neq \sigma_e(T_f)$, so there is a scalar λ such that $T_f - \lambda I$ is a non-invertible Fredholm operator. Then, as noted in [14, Corollary 2], the inner factor of $f - \lambda$ is a finite Blaschke product. Therefore it follows from Corollary 3 that $T_f \cong T_g$ and so $\sigma_e(T_f) = \sigma_e(T_g)$. Similarly, if $\sigma(T_g) \neq \sigma_e(T_g)$, then $\sigma_e(T_f) = \sigma_e(T_g)$.

We note that the proof of Theorem 2 shows the following result.

PROPOSITION. Let $f \in H^{\infty}$ and assume that $\{T_f\}' = \{T_u\}'$ for some inner function u. If $g \in H^{\infty}$ and there are quasiaffinities X and Y such that $XT_f = T_gX$, $YT_g = T_fY$ and $YX \in \{T_f\}''$, then $T_f \cong T_g$.

References

1. W. S. Clary, Equality of spectra of quasisimilar hyponormal operators, Proc. Amer. Math. Soc. 53 (1975), pp. 88-90.

2. J. B. Conway, Subnormal operators, Pitman, Boston, 1981.

3. J. B. Conway, On quasisimilarity for subnormal operators, II, Canad. Math. Bull. 25 (1982), pp. 37-40.

4. C. C. Cowen, *The commutant of an analytic Toeplitz operator*, Trans. Amer. Math. Soc. 239 (1978), pp. 1-31.

5. C. C. Cowen, On equivalence of Toeplitz operators, J. Operator Theory 7 (1982), pp. 167-172.

6. J. A. Deddens, Intertwining analytic Toeplitz operators, Michigan Math. J. 18 (1971), pp. 243-246.

7. J. A. Deddens, Analytic Toeplitz and composition operators, Canad. J. Math. 24 (1972), pp. 859-865.

8. J. A. Deddens and T. K. Wong, *The commutant of analytic Toeplitz operators*, Trans. Amer. Math. Soc. **184** (1973), pp. 261-273.

9. R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972.

10. K. Seddighi, On quasisimilarity for Toeplitz operators, Canad. Math. Bull. 28 (1985), pp. 107-112.

11. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam, 1970.

12. B. Sz.-Nagy and C. Foias, Jordan model for contractions of class C₋₀, Acta Sci. Math. **36** (1974), pp. 305-322.

13. K. Takahashi, On quasiaffine transforms of unilateral shifts, Proc. Amer. Math. Soc. 100 (1987), pp. 683-687.

14. J. E. Thomson, *The commutant of a class of analytic Toeplitz operators*, *II*, Indiana Univ. Math. J. 25 (1976), pp. 793-800.

15. P. Y. Wu, *Hyponormal operators quasisimilar to an isometry*, Trans. Amer. Math. Soc. 291 (1985), pp. 229-239.

16. P. Y. Wu, Contractions quasisimilar to an isometry, preprint.

Department of Mathematics Sapporo Medical College Minami-1 Nishi-17, Sapporo, Japan