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Abstract

Background. There is growing evidence that smoking increases the risk of developing psychi-
atric disorders, but the underlying mechanisms are largely unknown. We examine brain
structure as a potential pathway between smoking and psychiatric disease liability.
Methods. We test associations between smoking (initiation, cigarettes per day, cessation,
lifetime use) and depression, bipolar disorder, and schizophrenia, with and without correcting
for volume of the amygdala, hippocampus, lateral and medial orbitofrontal cortex, superior
frontal context, and cortical thickness and surface area.We use three methods that use summary
statistics of genome-wide association studies to investigate genome-wide and local genetic
overlap (genomic structural equation modeling, local analysis of (co)variant association), as
well as causal associations (Mendelian randomization).
Results. While we find causal effects of smoking on brain volume in different brain areas, and
with psychiatric disorders, brain volume did not seem to mediate the effect of smoking on
psychiatric disorders.
Conclusions. While these findings are limited by characteristics of the included summary
statistics (e.g. sample size), we conclude that brain volume of these areas is unlikely to explain
a substantial part of any effect of smoking on psychiatric disorders. Nevertheless, genetic
methods are valuable tools for exploring other potential mechanisms, such as brain functional
connectivity, foregoing the need to collect all phenotypes in one dataset.

Introduction

Smoking is one of the leading preventable risk factors formorbidity andmortality (Effertz &Karl,
2013). It is much more common among individuals with psychiatric disorders, such as major
depressive disorder and schizophrenia (Talati, Keyes, &Hasin, 2016), who – likely because of this
– have a lower life expectancy (Hjorthøj, Stürup, McGrath, & Nordentoft, 2017; Rosoff et al.,
2024). Previous research suggests bidirectional causal effects between smoking and psychiatric
disorders (Taylor & Treur, 2023). The causal effect of smoking on psychiatric outcomes is
especially clinically relevant, as this suggests that smoking cessation may have mental health
benefits in patient populations.While this is ofmajor public health relevance, there is a surprising
lack of clarity regarding the mechanisms that may underlie this pathway.

There are different lines of evidence revealing a causal effect of smoking on psychiatric
outcomes. A large systematic review by Taylor and colleagues that included longitudinal studies
of any clinical population that report change in depression, anxiety, positive affect, psychological
quality of life or stress from a pre-quit attempt to follow-up (6weeks later) indicated that smoking
cessation is associated with later improvements in mental health (Taylor et al., 2021). When
performing adjusted analyses where common confounders such as age, sex, education, and
income were included, no meaningful change in results was observed, showing that the effect is
unlikely to be confounded by these factors. In addition, 56 of the 102 studies performed
secondary analyses of randomized controlled trials, indicating that reverse causation is unlikely
to bias these results. In addition, a systematic review ofMendelian Randomization studies (MR, a
form of instrumental variable analysis where genetic variants are included as instruments,
explained in more detail in the methods section) found evidence for bidirectional causal effects
of smoking on depression, bipolar disorder and schizophrenia (Treur, Munafò, Logtenberg,
Wiers, & Verweij, 2021).

There are likely different environmental and (neuro)biological pathways that underlie the
smoking-psychiatric disease associations. On the environmental side, it may be the case that factors
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such as socioeconomic status (SES) mediate or confound these asso-
ciations. For example, it is possible that individuals with low SES are
both more likely to smoke and more likely to develop a psychiatric
disorder (with current literature providing mixed results for this).
Similarly, there are different neurobiological mechanisms that
(together) may explain effects of smoking on risk of psychiatric
disorders, such as inflammation, alterations in neural functional
connectivity, or reduced neurogenesis (van de Weijer et al., 2024).
Nicotine can modulate neurotransmitter activity of many different
neurotransmitters (e.g. dopamine, serotonin, acetylcholine, glutam-
ate) by binding to nicotinic acetylcholine receptors distributed widely
across the central nervous system. Through this neurotransmitter
activity, nicotine has been found to affect different cognitive pro-
cesses, such as attention, reward, and motivation – processes that are
also affected in different psychiatric disorders (Chau, Roth, & Green,
2004; Quattrocki, Baird, & Yurgelun-Todd, 2000).

A potential long-term mechanism that has received little atten-
tion so far is changes in the structure or volume of certain brain
areas. Many imaging studies have linked smoking behaviors to
differences in brain volumes (Gray et al., 2020; Zhong et al.,
2016). For example, imaging meta-analyses have found volume
differences between smokers and non-smokers in areas of the
(pre)frontal cortex, insula, and cingulate cortex (van de Weijer
et al., 2024), and studies in rats have shown that nicotine damages
developing brain cells in a way that interferes with cell replication
and differentiation and can evoke apoptosis (Slotkin, 2002). A
recent study provided compelling evidence that smoking can caus-
ally decrease subcortical volume, specifically in the amygdala and
hippocampus, by using genetic variants associated with smoking as
genetic instruments through MR, outlined below in more detail
(Logtenberg et al., 2022). Similarly, there is considerable evidence
for altered brain volumes in patients with bipolar disorder (Bora,
Fornito, Yücel, & Pantelis, 2010; Wang et al., 2019), major depres-
sion (Brandl et al., 2022; Schmaal et al., 2016; Sexton, Clare, &
Ebmeier, 2013), and schizophrenia (Shah et al., 2017; Vita, De Peri,
Deste, & Sacchetti, 2012). Examples are frontal areas such as the
medial and lateral orbitofrontal and superior frontal cortex (Bora
et al., 2011; Lu et al., 2019; Wise et al., 2017), areas that have also
been implicated in smoking (Sutherland et al., 2016; Yang, Zhang,
Cheng, & Zheng, 2020; Zhong et al., 2016). Combining these
insights leads to the hypothesis that causal effects of smoking on
the liability for developing psychiatric disorders may be mediated
by structural changes in the brain. Although this causal chain seems
plausible, it has not yet been formally tested.

Studying smoking to brain volume to psychiatric disorder path-
ways is difficult because it requires large imaging datasets in indi-
viduals with (and without) these disorders, including information
on their smoking status. In addition, obtaining causal evidence is
difficult since we cannot ethically perform a randomized controlled
trial where we allocate individuals to a smoking ‘treatment’. How-
ever, an alternative way in which we can study these pathways is by
using genetic data. There are different methods available that
employ genetic information to get better insight into causal path-
ways between two or more variables of interest. The advantage of
these methods is that the variables in question do not necessarily
need to be available in the same dataset, as long as the samples are
drawn from similar populations. For example, it is possible to
calculate a genetic correlation (quantification of genetic overlap)
between two sets of summary statistics from separate genome-wide
association studies (GWASs). Using these genetic methods, we aim

to examine and distinguish so-called horizontal pleiotropy from
vertical pleiotropy. With horizontal pleiotropy, the same genes
influence multiple traits, thus inducing an association between
the two even in the absence of a causal association (‘genetic con-
founding’). With vertical pleiotropy, genes directly associated with
an exposure become indirectly associated with an outcome (and
potential mediators of the association) through the causal chain
from the exposure to the outcome. In this way, these genetic
methods can be used to study the presence of potential mechanisms
without these necessarily reflecting a genetic mechanism. For this
purpose, we use three methods.

First, genomic structural equation modeling (GSEM) (Grotzin-
ger et al., 2019) uses effect size estimates from genetic variants (from
existing GWASs) across the whole genome to model complex
multivariable relationships.We use this method to establish if there
is genetic pleiotropy between the traits, which may be due to both
horizontal and vertical pleiotropy. Second, a method for examining
genetic associations on a more detailed genomic level is local
analysis of (co)variant association (LAVA) (Werme, Van Der Sluis,
Posthuma,&De Leeuw, 2022). LAVA can be used to find out if local
(i.e. specific regions of the genome) genetic correlations between
phenotypes (e.g. smoking and major depression) are mediated by
other phenotypes (e.g. cortical surface area). We include this
method to examine the presence of local genetic correlations, which
may exist even with a low or absent global genetic correlation (and
could thus cancel each other out on a global level). Finally, MR can
formally test causal effects by employing genetic variants predictive
of an exposure as instrumental variables. The method can be
extended to assess the independent direct effects of multiple expos-
ures through multivariable MR (Burgess & Thompson, 2015). This
analysis goes a step further than the genetic correlation analyses by
(through sensitivity analyses) trying to distinguish horizontal
(confounding) from vertical (causal) pleiotropic effects.

This is the first study testing if structural brain measures
mediate the association between smoking phenotypes and psy-
chiatric disease (bipolar disorder, major depression, schizophre-
nia). Based on the prior evidence, we focus on volume of the
amygdala and hippocampus, the lateral and medial orbitofrontal
cortex, and the superior frontal cortex.We acknowledge that there
are other brain areas that have previously been implicated in
substance use and/or psychiatric disease. However, we are
restricted to GWAS that include UK Biobank (UKB) data, since
this is the largest imaging dataset that also includes genetic data. In
prior work, we found that other than the amygdala and hippo-
campus, none of the subcortical structures in UKB were signifi-
cantly causally associated with psychiatric disease, and thus these
were left out. We additionally include frontal areas since these
have specifically been implicated in both substance use and psy-
chiatric disease (Koster et al., 2025; van de Weijer et al., 2024). In
the UKB, volume measures of the following brain areas are
available: caudal middle frontal, frontal pole, lateral OFC, medial
OFC, rostral middle frontal, and superior frontal. To limit the
number of tests, we include only OFC volume and superior frontal
volume. In addition, we refrain from relying solely on specific
genomic regions based on prior knowledge and additionally
include measures of cortical surface area and thickness. We seek
to clarify the plausibility of these global and regional differences as
an underlying mechanism in the association between smoking
and the risk of psychiatric disorders by studying potential medi-
ation across three methods (GSEM, LAVA, and MR).
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Methods

This study was pre-registered at the Open Science Framework:
https://osf.io/3eksj. Deviations from the pre-registration are listed
in the Supplementary Methods.

Summary data

We use summary statistics from large GWASs and meta-analyses.
In a GWAS (Abdellaoui, Yengo, Verweij, & Visscher, 2023), asso-
ciations between millions of genetic variants and an outcome are

estimated. The resulting summary statistics are a list of these
associations and their p-values. Detailed information on the sum-
mary statistics are provided in Table 1.

As smoking exposures, we include European ancestry summary
statistics for smoking initiation, cigarettes per day, and smoking
cessation from Liu and colleagues (Liu et al., 2019) (including
23andme, Inc. and excluding UK Biobank to prevent overlap with
the brain volume GWASs) and lifetime smoking (composite of
smoking initiation, heaviness, duration and cessation) by Wootton
and colleagues (Wootton et al., 2020). The summary statistics for

Table 1. Details of included GWAS summary statistics

Phenotype Source Sample Measure

Smoking initiation Liu et al. (2019) European ancestry meta-
analysis, including
23andme and excluding
UKB (N = 848,460)

Binary phenotype: any participant reporting ever being a regular smoker in
their life (current or former) were coded ‘2’, while any participant who
reported never being a regular smoker were coded ‘1’. Was measured in
three ways: a. Have you smoked over 100 cigarettes over the course of
your life? b. Have you ever smoked every day for at least amonth? c. Have
you ever smoked regularly?

Cigarettes per day Liu et al. (2019) European ancestry meta-
analysis, including
23andme and excluding
UKB (N = 216,590)

Defined as the average number of cigarettes smoked per day, either as a
current smoker or former smoker. For studies that collected a
quantitative measure of cigarettes per day, responses were binned as
follows: 1 = 1–5, 2 = 6–15, 3 = 16–25, 4 = 26–35, 5 = 36+

Smoking cessation Liu et al. (2019) European ancestry meta-
analysis, including
23andme and excluding
UKB (N = 630,154)

Binary phenotype with current smokers coded as ‘2’ and former smokers
coded as ‘1’, and never smokers are coded as missing

Lifetime smoking Wootton et al. (2020) European ancestry UKB
sample (N = 462,690)

Combines smoking status (current, former, never), age at initiation in years,
age at cessation in years, time since cessation and number of cigarettes
smoked per day into a lifetime smoking index along with a simulated
half-life (τ) constant. Half-life captures the exponentially decreasing
effect of smoking at a given time on health outcomes.

Hippocampus volume Logtenberg et al. (2022) European ancestry meta-
analysis of ENIGMA and
UKB (N = 50,290)

Sumof right and left brain volume (inmm3) as defined by structural MRI and
corrected for total intracranial volume

Amygdala volume Logtenberg et al. (2022) European ancestry meta-
analysis of ENIGMA and
UKB (N = 50,290)

Sumof right and left brain volume (inmm3) as defined by structural MRI and
corrected for total intracranial volume

Cortical surface area Grasby et al. (2020) European ancestry meta-
analysis of ENIGMA and
UKB (N = 33,992)

Whole cortex surface area derived from in vivo whole-brain T1-weighted
MRI scan

Cortical thickness Grasby et al. (2020) European ancestry meta-
analysis of ENIGMA and
UKB (N = 33,992)

Thickness whole cortex derived from in vivo whole-brain T1-weighted MRI
scan

Volume of the lOFC,
mOFC and superior
frontal cortex

UK Biobank UKB GWAS (N = 36,443) Sumof right and left brain volume (inmm3) as defined by structural MRI and
corrected for total intracranial volume.

Major depression Wray et al. (2018) European ancestry meta-
analysis, excl. 23andme
and UKB (Ncases = 42,465,
Ncontrols = 81,600,
Neffective = 48,660)

Cases were required to meet international consensus criteria (DSM-IV, ICD–
9, or ICD–10) for a lifetime diagnosis of major depressive disorder
established using structured diagnostic instruments from assessments
by trained interviewers, clinician-administered checklists, or medical
record review.

Bipolar disorder Mullins et al. (2021) European ancestry meta-
analysis, excl. UKB
(Ncases = 40,463,
Ncontrols = 313,436,
Neffective = 48,144.46)

Cases were required to meet international consensus criteria (DSM-IV, ICD–
9 or ICD–10) for a lifetime diagnosis of bipolar disorder, established using
structured diagnostic instruments from assessments by trained
interviewers, clinician-administered checklists or medical record review.

Schizophrenia Trubetskoy et al. (2022) European ancestry meta-
analyses (Ncases = 53,386,
Ncontrols = 77,258,
Neffective = 58,749.13)

Cases were defined as individuals with schizophrenia, schizophrenia or
schizoaffective disorder (SCZ/Schizoaffective), or schizophrenia
spectrum disorder. Diagnostic strategy varies across cohorts, including
consensus diagnosis, research diagnostic interview, review of medical
records, and mixed strategy (see original paper for details).

Note: UKB, UK Biobank; lOFC, lateral orbitofrontal cortex; mOFC, medial orbitofrontal cortex.
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smoking cessation are oriented so that higher scores reflect current
smoking.

As mediators, we include European ancestry summary stat-
istics for subcortical volume of the amygdala and hippocampus
from Logtenberg and colleagues (2022), and surface area and
thickness of the whole cortex from Grasby et al. (2020). For the
MR analyses, we also employ the summary statistics for amyg-
dala and hippocampal volume stratified for smoking status.
Unfortunately, the cortical surface area and thickness summary
statistics were only available for the full sample (unstratified for
smoking). We ran (full and smoking-stratified) GWASs for
lateral and medial orbitofrontal cortex and the superior frontal
cortex ourselves in a subset of European ancestry individuals in
UK Biobank (Bycroft et al., 2018) (see Supplementary Methods
and Figures S1–S8).

As outcomes, we include European ancestry summary statistics
for bipolar disorder (Mullins et al., 2021), major depressive disorder
excluding 23andme (Wray et al., 2018), and schizophrenia
(Trubetskoy et al., 2022) from the Psychiatric Genomics Consor-
tium, excluding the UK Biobank for the MR analyses. These sum-
mary statistics are not available stratified for smoking.

Analyses

Genomic SEM
We examine genome-wide overlap between the traits by calculating
(partial) genetic correlations using the r-package GSEM. GSEM is
an extension of LD score regression (Bulik-Sullivan et al., 2015) that
can be used tomodel themultivariate genetic architecture of a set of
traits (Grotzinger et al., 2019). Using GWAS summary data, GSEM
allows for modeling user-specified structural models unbiased by
sample overlap (Grotzinger et al., 2019). We use GSEM to calculate
(partial) genetic correlations between smoking phenotypes and
psychiatric outcomes while controlling for brain phenotypes (see
Figure 1). The mediation/confounding (the method cannot distin-
guish between these) effect is calculated by multiplying the effect of
association between the smoking exposures and the brain measures
(a) with the effect of the association between the brain measures on
the psychiatric outcomes (b). The product of the mediation effect
and the direct effect of smoking (c) is the total effect and equals the
bivariate genetic correlation.

LAVA
When there are local genetic correlations in opposite directions, they
cancel each other out in global genetic correlations. We use LAVA
(Werme et al., 2022) to calculate local genetic correlations between
all smoking phenotypes and psychiatric outcomes. We first identify
regions where both a predictor (smoking phenotype) and outcome
(psychiatric disorder) exhibit significant SNP heritability for 2,495
regions based on region definitions by Werme and colleagues

(Werme et al., 2022), using the 1000 Genomes European panel as
a reference panel (MAF> .01) (Clarke et al., 2012). Significance of the
SNP heritability is based on a significance threshold corrected for the
number of studied regions (0.05/2,495 = .00002). For regions where
both a predictor andoutcome exhibit significant univariate signal, we
run bivariate tests to identify local genetic correlations. Significance
of the local genetic correlations is based on a significance threshold
corrected for the number of regions examined in the bivariate
analyses (0.05/758 = .000066). We repeat these analyses for associ-
ations between brain phenotypes and psychiatric outcomes. If a
region shows significant correlations of a psychiatric outcome with
a smoking phenotype and brain phenotype, we run multivariate
regression models including both predictors in the model to assess
potential mediation/confounding.

Mendelian randomization (MR)
We conduct MR to examine evidence for causal effects of liability
to smoking on psychiatric disease risk and brain volume and of
brain volume on psychiatric disease risk. MR can be seen as
somewhat similar to a randomized controlled trial (RCT), but
instead of randomization to a control and treatment group, indi-
viduals are randomized at conception with respect to which alleles
they receive. Through this random allocation, we can distinguish
groups of individuals with high lifetime genetic risk for an expos-
ure from individuals with low lifetime genetic risk for an exposure,
independent from potential confounders. Therefore, outcome
differences between these groups must be due to differences in
the exposure, dependent on some key assumptions. MR relies on
the following assumptions: (1) the genetic variants (instruments)
are robustly associated with the exposure, (2) the instruments are
independent of population-level confounding, and (3) the instru-
ments do not directly affect the outcome, only through the expos-
ure. Inverse-variance weighted (IVW) regression implemented in
the TwoSampleMR r-package (Hemani et al., 2018), is used as a
main method of estimating causal effects. As instruments, we use
harmonized independent genome-wide significant SNPs
(p < 5×10�8) from the exposure GWASs. When this leads to the
inclusion of five or fewer SNPs, we take a more liberal threshold of
p < 1×10�5 (applied to amygdala volume, cortical thickness, and
medial OFC volume). In IVW, a ratio estimate is obtained by
dividing SNP-outcome effects by SNP-exposure effects. The indi-
vidual SNPs are weighted by the inverse of their variance and
combined to a single effect estimate. To assess instrument
strength, we obtain an F-estimate and assess if F > 10 as a rule
of thumb. Heterogeneity across the causal estimates of the SNPs in
each instrument is assessed with Cochran’s Q-statistic. In add-
ition, we perform leave-one-out (LOO) analyses, where we repeat
the IVW analyses after removing each SNP. We perform the
following sensitivity methods: (1) Weighted median regression,
(2) Weighted mode regression, (3) MR-Egger, (4) MR pleiotropy

Figure 1. Path diagram assessing the brain measures as mediators of associations between different smoking exposures and psychiatric outcomes. The product of the mediation
effect of the brain measures (a × b) and the direct effect of the smoking exposures (c’) is the total effect of smoking exposures on psychiatric outcomes (c’ + a × b).
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and residual sum and outlier (MR-PRESSO) analysis, and
(5) Steiger filtering. We interpret an effect as reliable when the
results of the sensitivity tests are consistently in the same direction
as the IVW results. More information on the sensitivity methods
is found in the Supplementary Methods.

Multivariable MR
Weuse theMVMR r-package (Sanderson, Spiller, & Bowden, 2021)
to perform multivariable MR (MVMR) where we predict the psy-
chiatric outcomes using all combinations of (1) a smoking pheno-
type and (2) volume of a brain area. All harmonized gene–exposure
and gene–outcome associations for each trait-combination selected
as instruments for the exposures are included in these analyses.
Since we use summary statistics with non-overlapping samples, the
pairwise covariance between the SNPs is set at zero.With respect to
instrument strength, the instruments are required to be strongly
associated with the exposure, conditioning on the remaining expos-
ures. This strength is quantified using a conditional F-statistic, with
a threshold of F > 10. Finally, we test for heterogeneity using a
modified form of Cochran’s Q statistic.

Interpretation of results

We interpret p-values as the strength of evidence for our hypoth-
eses, where p > .05 indicates extremely weak, p = .01–.05 indicates
weak, p = .01–.005 indicates moderate, and p < .005 indicates strong
evidence based on the broad interpretation of p-values described by
Sterne and Davey Smith (Sterne & Smith, 2001). An overview of all
analyses is displayed in Figure 2.

Results

Genomic SEM

Bivariate genetic correlations between all traits are found in Sup-
plementary Table S1 and Supplementary Figure S1. The smoking
phenotypes were positively genetically correlated with bipolar dis-
order (rg ranging between .055 [smoking cessation] and .174 [life-
time smoking]), major depression (rg ranging between .285
[cigarettes per day] .395 [lifetime smoking]), and schizophrenia
(rg ranging between .114 [smoking cessation] and .205 [lifetime
smoking]). Adjusting for the brain phenotypes did not have a
statistically significant influence on associations between smoking
phenotypes and psychiatric outcomes (Figure 3, Supplementary
Table S2).

We foundweak evidence for amediating role (p < .05) of cortical
surface area in the association between cigarettes per day andmajor
depression (mediation effect = .013 (4.5%), p = .023), smoking
cessation and major depression (mediation effect = .012 (3.7%),
p = .035), lifetime smoking and major depression (mediation effect
= .011 (2.7%), p = .034), and lifetime smoking and bipolar disorder
(mediation effect = �.011 (�6.3%), p = .040).

LAVA

There were 1,585 combinations where both a smoking variable and
a psychiatric disorder exhibited significant univariate signal and
1,478 combinations where both a brain volume measure and a
psychiatric disorder exhibited significant univariate signal (across
N regions: 758). Across the 758 regions with a univariate signal for

Figure 2. Overview of all included methods for examining (1) bivariate associations between smoking and psychiatric disorders (top row) and (2) multivariate models where we
examine the influence of brain volume on these associations (bottom row). Genomic SEM = Genomic Structural Equation Model, LAVA = Local (co)Variant Association Analysis,
MR = Mendelian Randomization. Blue rectangles indicate local regions, and blue circles indicate individual genetic variants associated with smoking (indicated with a cigarette
pictogram), or brain volume (indicated by the brain pictogram).
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two or more variables, there were 43 significant local genetic
correlations between smoking variables and psychiatric disorders
(all but one of the associations were positive, i.e. higher levels of
smoking were associated with a higher chance of psychiatric dis-
ease) and 8 significant local genetic correlations between brain
measures and psychiatric disorders (3 positive, 5 negative) (see
Figure 4 and Supplementary Tables S3–S4). Two regions showed
significantmultivariate signal: for both, there was significant bivari-
ate signal between schizophrenia and both a smoking measure and
brain volume.

One of these regions (between 3:186602046 and 3:187939199)
showed strong genetic correlations of schizophrenia with lifetime
smoking (local rg = .624, p = 1.01×10�5) and amygdala volume (local
rg = .686, p = 3.31×10�5). In a multivariate model including both
lifetime smoking and amygdala volume as predictors of schizophre-
nia, evidence for local genetic correlations between lifetime smoking
and schizophrenia (local rg = .302, p = .449) and between amygdala
volume and schizophrenia (local rg = .485, p = .265) was extremely
weak.Another region (between 6:30715007 and 6:31106493) showed
significant genetic correlations between schizophrenia and lifetime
smoking (local rg = .831, p = 1.02×10�5) and the medial OFC (local
rg=�.979, p= 4.27×10�7). In amultivariatemodel including lifetime
smoking and medial OFC volume as predictors, evidence for local

genetic correlations between lifetime smoking and schizophrenia
(local rg = .186 p = .707) and between medial OFC volume and
schizophrenia (local rg = �.857, p = .220) was extremely weak.
However, it should be noted that for all these multivariable analyses,
the confidence interval around the local genetic correlation analyses
was large (i.e. ranging values below �1 to above 1 for all estimates),
indicating imprecise estimates.

Mendelian randomization

The full results from the MR analyses from smoking to psychiatric
outcomes, smoking to brain volume, and brain volume to psychi-
atric outcomes are presented in Supplementary Tables S5–S8, S9–
S12, and S13–S16, respectively.

Smoking to psychiatric outcomes

Figure 5 summarizes the results for the smoking to psychiatric out-
comes analyses. The F-statistic was >10 for all phenotypes (range:
24.69–70.24), indicating sufficient instrument strength. There was
strong evidence for heterogeneity based on Cochran’s Q. We found
strong evidence that cigarettes per day causally increases the risk of
bipolar disorder (IVW β = .26, SE = .08, p = .002), and schizophrenia

Figure 3. Bivariate genetic correlations between the four smoking phenotypes and three psychiatric disorders and partial correlations controlling for the different brain
phenotypes.
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(IVW β = .52, SE = .14, p = .0002), with similar effect sizes across the
weighted median, mode, and MR-Egger analyses. The MR-Egger
intercept was not significantly different from zero, indicating an
absence of horizontal pleiotropy. MR-PRESSO detected outliers for
the cigarettes per day-schizophrenia association, but removing them
did not change the results. There was moderate evidence for a causal
effect of smoking cessation onmajor depression, but this effect was not
replicated in the sensitivity analyses. There was strong evidence for
positive causal effects of smoking initiation on bipolar disorder (IVW
β = .61, SE = .08, p = 7.30×10�14), major depression IVW (β = .61,

SE = .06, p = 6.56×10�24), and schizophrenia (IVW β = .81, SE = .10,
p = 9.22×10�17), with comparable effects in weighted median and
mode regression. Since the I2 statistic for these associations were
below/around .60, we cannot reliably interpret the MR-Egger/SIMEX
results. MR-PRESSO detected outliers, but removing them did not
change the results. Finally, there was strong evidence that the
liability for lifetime smoking causally increases risk for bipolar disorder
(IVW β = .80, SE = .15, p = 1.52×10–7), major depression (IVW
β = .91, SE = .12, p = 2.54×10–13), and schizophrenia (IVW β = .1.33,
SE = .22, p = 2.29×10–9), with similar effect sizes in weighted median

Figure 4. Local and global genetic correlations of the psychiatric outcomes with smoking and brain volume phenotypes.

Figure 5. IVW, weighted median, weighted mode, and MR-Egger results for the MR analyses examining a potential causal effect of smoking phenotypes (y-axis) on psychiatric
outcomes (β on x-axis).
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and mode regression. The MR-Egger intercept was not significantly
different from zero, suggesting an absence of horizontal pleiotropy.
However, the MR-Egger slope indicated smaller and non-significant
effects: bipolar disorder (β = .75, SE = .58, p = .20) and major
depression (β = .10, SE = .46, p = .82) and schizophrenia (β = .82,
SE= .82, p= .32).MR-PRESSOdetected outliers for these associations,
but removing them did not impact the results. For all instruments,
MR-Steiger identified SNPs more predictive of the outcome than the
exposure. The identified associations were still significant when
re-running the analyses without these SNPs, but the effect sizes were
somewhat reduced.

Smoking to brain volume

Figure 6 summarizes the results for the smoking to brain volume
analyses. The F-statistic was >10 for all phenotypes (range: 18.83–
91.12). Cochran’s Q indicated strong evidence for heterogeneity for
associations between brain volumes and smoking initiation and
lifetime smoking. There was strong evidence for a negative effect of
cigarettes per day on hippocampal volume in smokers (IVW
β = �106.63, SE = .22.18, p = 1.53×10�6), replicating across
weighted mode (β =�118.29, SE = 29.96, p = 7.87×10�5), weighted
median (β = �119.92, SE = 25.82, p = 3.09×10�5), and MR-Egger
analyses (β =�118.87, SE = 32.59, p = .0007). MR-PRESSO did not
identify outliers, and the Egger intercept did not deviate from zero.
In addition, there was a significant negative causal effect of smoking
initiation on cortical thickness in the IVW regression (IVW
β = �.02, SE = .005, p = .0001), but this effect disappeared when
removing SNPs with reverse causal effects using MR-Steiger (IVW
β=�.005, SE = .005, p= .30). A significant negative effect of lifetime
smoking on cortical thickness was identified (IVW β = �.03,
SE = .01, p = .005), which was reduced in weighted median
(β = �.02, SE = .01, p = .05) and mode (β = �.006, SE = .03,
p = .83) regression, but much larger in SIMEX-correctedMR-Egger
(β =�.14, SE = .04, p = .001). MR-PRESSO did not detect outliers,
but the effect disappeared after Steiger filtering (β =�.01, SE = .008,
p = .18).

Brain volume to psychiatric outcomes

Figure 7 summarizes the results for the MR analyses of brain
volume to psychiatric outcomes. F-statistic was higher than 10
for all phenotypes. There was some evidence for heterogeneity for
most associations based on Cochran’s Q.

In the IVW analyses, there was strong evidence only for a
significant, positive effect of superior frontal cortex volume on
bipolar disorder (β = .0001, SE = .00004, p = .005). This effect
was somewhat consistent across the weighted median (β = .00009,
SE = .00004, p = .03) and weighted mode analyses (β = .00001,
SE = .00008, p = .89) but could not reliably be tested with MR-Eg-
ger/Egger-SIMEX since the I2 was zero. Leave-one-out analyses
indicated that removal of some of the SNPs led to weaker effects,
andMR-PRESSO detected one outlier, removal of which resulted in
a weaker association (β = .00009, SE = .00004, p = .02).

Multivariable MR

Results for the MVMR analyses are found in Supplementary
Tables S17–S20. We found lower conditional F-statistics for both
exposure types (smoking and brain volumes) than in the univari-
able analyses. In the analyses including cigarettes per day, smoking
initiation, or lifetime smoking, the conditional F-statistic for vol-
ume of different brain areas was around/below 10, indicating weak
instrument bias. In the models including smoking cessation, the
conditional F was around/below 10 for smoking cessation. We also
found high Q-values, indicating heterogeneity, but these might be
inflated due to weak instrument bias. Across the models, smoking
exposures had similarly sized effects on the psychiatric outcomes as
in the univariable MR analyses. However, we found somewhat
smaller effects of smoking initiation on bipolar disorder and schizo-
phrenia in models, including volume of the lateral OFC, medial
OFC, and superior frontal cortex (bipolar: multivariable β between
.32 and .43, schizophrenia: multivariable β between .45 and .65).
In addition, we found somewhat larger effects of smoking cessation
on major depression in models, including volume of the lateral

Figure 6. IVW, weighted median, weighted mode, and MR-Egger results for the MR analyses examining a potential causal effect of smoking phenotypes (y-axis) on brain volume
(x-axis, scales differ per phenotype depending GWAS).
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OFC, medial OFC, and superior frontal cortex (multivariate β
between 1.11 and 1.52).

Discussion

We investigated whether causal effects of smoking on the risk of
depressive disorder, bipolar disorder, schizophrenia are (partially)
mediated by brain volume of different brain areas (amygdala,
hippocampus, lateral and medial OFC, superior frontal cortex),
and global brain volume measures (cortical thickness and surface
area). By using genetic methods that employ summary statistics, we
circumvented the issue of the absence of a dataset with sufficient
sample size on all measures. In general, we find small-to-medium
genetic correlations between smoking measures and psychiatric
disorders, and no to small genetic correlations between smoking
and brain measures. In addition, we find evidence for causal effects
of the different smoking measures on all psychiatric outcomes,
evidence for a few causal effects of smoking on brain volume
(hippocampal volume and cortical thickness) but no causal effects
of brain volume measures on psychiatric disease. All in all, there
was no evidence for a mediating role of the included brain volumes
in smoking to psychiatric disorder associations.

First, we examined genetic correlations using genomic SEM.
Similar to previous work (Jang et al., 2022), we found small-to-
moderate positive genetic correlations between smoking and psychi-
atric disorders, with the smallest associations with bipolar disorder
and the largest associations with depressive disorder. Adjusting for
brain volume did not affect these associations. We generally found a
lack of genetic correlations between brain volume and psychiatric
disorders, in line with Liu and colleagues (Liu, Smit, Abdellaoui, van
Wingen, & Verweij, 2023), who found that psychiatric disorders are
more strongly correlated to brain function than structure. We were
also interested in zooming into local associations using LAVA, as
local genetic correlations in opposite directions cancel each other out
in global correlations. We found 43 significant local genetic correl-
ations between smoking and psychiatric outcomes, ofwhichonly one
was negative, confirming the positive association (i.e. higher levels of

smoking associated with higher chances of psychiatric outcomes) on
a local level. Local associations between brain volume andpsychiatric
disease were less uniform, with three positive and five negative
associations. There were two regions with significant bivariate signal
between schizophrenia and both a smoking measure and brain
volume. One of the regions is located in the MHC region, which is
extremely pleiotropic for immune- and health-related traits
(Watanabe et al., 2019). The other is located on chromosome 3 in
a region spanning multiple genes (Supplementary Table S20).
Finally, to examine causality, we performedMR.We replicate causal
effects of smoking on the psychiatric disorders (Treur et al., 2021)
and of smoking on amygdala and hippocampal volume (Logtenberg
et al., 2022). We also found effects of smoking initiation and lifetime
smoking on cortical thickness, but these disappear after Steiger
filtering. We did not find significant effects of brain volume on
psychiatric outcomes. In addition, the multivariate models generally
did not reduce associations between smoking and psychiatric disease,
with a few exceptions (but these analyses had low power).Of note, we
interpret p-values as the strength of the evidence for the hypotheses,
where p > .05 indicates extremely weak, and p < .005 indicates strong
evidence ((Sterne& Smith, 2001), instead of conducting a Bonferroni
(or similar) correctionwherewe correct for the number of tests. Since
the tests we perform are not necessarily independent (e.g. multiple
measures of correlated smoking exposures) and the associations
tested are based on findings from previous research in the same or
similar datasets (e.g. our previous MR work identifying the smoking
– subcortical brain volume associations in the same data), we
believed such a correction was too strict. While others may have
performed more strict corrections, this would not have changed our
conclusion of an absence of mediation of the included brain volume
measures.

These findings should be interpreted in light of some limita-
tions. First, whereas the GWASs included in this paper are large
and had sufficient instrument strength, they still index only a
small percentage of the variation in their respective phenotypes
and are the result of a meta-analysis of multiple cohorts, poten-
tially leading tomore noise. In addition, the summary statistics for

Figure 7. IVW, weighted median, weighted mode, and MR-Egger results for the MR analyses examining a potential causal effect of brain volume (x-axis, scale differs depending on
GWAS) on psychiatric disorders (y-axis).
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the brain volume measures were based on much smaller samples
than the other phenotypes and thus held lower power. However,
this would have the largest effect on the standard error rather than
the (low) point estimates found for genetic correlations with brain
volume. In addition, the F-statistic of the MR analyses indicated
sufficient instrument strength, albeit lower than for the smoking
instruments. In addition, we did not have smoking-stratified
summary statistics for the psychiatric outcomes. This means that
samples on which these GWASs are based are a mix of smokers
and non-smokers, and that the effects in smokers must thus be
strong enough to counterbalance that the association cannot be
observed in the non-smokers. While we did identify effects of
smoking on psychiatric outcomes using unstratified summary
statistics, these effects are likely an underestimate. With respect
to the sample, all summary statistics were based on European
ancestry samples, meaning that the results do not necessarily
generalize to other ancestries. In addition, theremight be selection
bias, as individuals who participate in genetic studies are not
always representative of the general population. This volunteer
bias has previously been demonstrated for the UK Biobank, where
individuals were found to be more likely to be older, healthier and
of higher socioeconomic status (van Alten, Domingue, Faul,
Galama, & Marees, 2024). Our GWASs in UKB thus suffer from
this limitation as well. Finally,MR is a powerful tool for examining
causality when an RCT is not practical or feasible, but is
dependent on strict assumptions which may have been (partly)
violated. In addition, there are important limitations to the inter-
pretation of the effects of an MR analysis, due to the effects
reflecting lifetime genetic liability. We therefore only interpret
the effects of our MR analyses in terms of the absence or presence
of a causal effect, and not in terms of the magnitude of that effect.
In order to achieve more reliable evidence on themechanisms that
explain causality between smoking and psychiatric disease, the
MR evidence should be triangulated with evidence from different
study types, such as longitudinal studies.

Given these limitations, we cannot exclude the possibility that
brain volume explains a part of the association between smoking
and psychiatric disorders, but, if present, this would likely be a
very small part. Importantly, our results only pertain to the
included brain areas, which were selected based on prior research.
Similarly, we chose to focus on psychiatric outcomes previously
linked to smoking in MR research (Treur et al., 2021), but this
does not exclude the possibility of other psychiatric outcomes
being linked to smoking. In addition, there may be an effect,
but this effect might depend on the age of smoking initiation, in
that we would only observe an effect if smoking was initiated
when the brain is still developing. At the same time, there may
also be a role for brain volume, but in a different direction then
examined here. A likely hypothesis is that individuals with psy-
chiatric disorders are more prone to smoke, and that this even-
tually results in lower brain volume. However, since we were
interested in explaining the effect of smoking on psychiatric
disease, and not vice versa, this hypothesis was not explored. In
addition, it is likely that many mechanisms are simultaneously at
play. As mentioned in the introduction, there are many ways in
which the brain may play a role in the effect of smoking on
psychiatric disease, such as through alterations in functional
connectivity. For example, research suggests that smokers have
lower connectivity than non-smokers in the default mode network
(Weiland, Sabbineni, Calhoun, Welsh, & Hutchison, 2015), a
network that also seems to have abnormal connectivity in

individuals with psychiatric disorders (Doucet et al., 2020). These
functional alterations take place on a more rapid timescale than
structural changes, making this an interesting potential pathway
for future research. Finally, there may also be non-biological
mechanisms and confounders (e.g. physical exercise, alcohol
use) influencing these associations that are not captured in the
genetic correlations. While not explicitly modeled in the genetic
correlation analyses, if these are downstream consequences of
smoking, genetic correlations would partly capture these effects
through vertical pleiotropic effects. If these factors are (heritable)
confounders of the smoking-psychiatric disease association, they
would likely be captured by the genetic correlations and result in
inflated correlations. However, for the MR analyses, unless these
confounders are associated with our genetic instruments, these
confounders should not inflate our MR findings. A confounder
that is important to mention is SES, as this is a potential example
of this situation. Previous research has found that SES-associated
genetic variation influences GWAS results, potentially due to
geographical clustering of SES (Marees et al., 2021). This poten-
tially violates the second MR assumption of independence and
should be examined in future research, potentially using MVMR.

To conclude, we present the first study testing whether struc-
tural brain measures mediate the link between smoking and psy-
chiatric outcomes. We use genetic methods that do not require
individual-level data to study global and local genetic associations
and assess whether identified associations reflect causality. We do
not find evidence for a mediating role of the included brain areas
but note that our findings are limited by sample characteristics of
the GWASs. Further research is needed to explore other potential
mechanisms, and genetic methods such as the ones used here could
aid these explorations.
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