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C-ALGEBRAS FROM SMALE SPACES 

IAN F. PUTNAM 

ABSTRACT. We consider the C* -algebras constructed from certain hyperbolic dy­
namical systems. The construction, due to Ruelle, generalizes the C* -algebras of Cuntz 
and Krieger. We discuss relations between the C* -algebras, show the existence of nat­
ural asymptotically abelian systems and investigate the AT-theory and ^-theory of these 
C* -algebras. 

1. Introduction. In [14], David Ruelle constructed C*-algebras from certain hy­
perbolic dynamical systems including Smale spaces. Special cases are the topological 
Markov chains where these C* -algebras were earlier constructed by Cuntz and Krieger 
[6,8]. Thus, Ruelle's algebras may be viewed as "higher dimensional" analogues of the 
Cuntz-Krieger algebras (—the OA 's as well as other algebras appearing in [6,8]). This 
paper is an attempt to continue these investigations. 

Roughly speaking, a Smale space is a compact metric space (X, d) with a homeomor-
phism cj> ofX so that, locally, X can be written as a product of two subsets. Moreover, 
on the first subset <j> is (exponentially) contracting and on the second <j>~1 is contracting. 
One is then interested in three equivalence relations on the points of X determined as fol­
lows. For x,y inX, they are equivalent if the distance between <t>n(x) and <t>n(y), their «-th 
iterates, tends to zero as n goes to plus infinity, minus infinity and both plus and minus 
infinity. These are referred to as stable, unstable and asymptotic equivalence. Locally, the 
first two are given in the local product structure. The third can actually be represented by 
certain local maps called conjugating homeomorphisms arising directly from the Smale 
space structure. These dynamical notions are presented in Section 2. These are taken 
more or less directly from Ruelle's papers [13, 14] (except for two technical lemmas), 
but we present them here for completeness. 

We consider the C* -algebras of these equivalence relations which we denote by S, U 
and A, respectively. In [14], the emphasis is on the C*-algebra ,4. The point of [14] is to 
relate Gibbs states of the dynamical system with KMS states on the C*-algebra. Here, we 
make use of the fact that the original homeomorphism induces *-automorphisms, as, au 

andaa ,of£, U and A, respectively. We show that the action of aa onA is asymptotically 
abelian. This result along with other basic properties of the C*-algebras is developed in 
Section 3. 
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In Section 4, we consider the AT-theory for our C*-algebras. The asymptotically abelian 
action provides us with various elements in the Connes-Higson ^-theory [5]. In particu­
lar, the Xo-group of one of our C*-algebras (the mapping cylinder for (A, oca)) is actually 
a ring. Moreover, this C* -algebra has a natural trace and the induced map from Ko to the 
reals is actually a ring homomorphism precisely because our original system is strong 
mixing (with respect to the measure of maximum entropy). 

I would like to thank: Nigel Higson for several helpful conversations and for an early 
version of [5], Terry Loring for the present simple proof of Theorem 3.1, Jerry Kaminker 
for initially drawing my attention to [14], and David Ruelle for remarks which helped 
clarify some of the hypotheses. 

2. Dynamics. We describe Smale spaces and certain results we will need later. We 
will also present several examples. We follow the two papers of Ruelle [13, 14] with 
some minor changes of notation. 

Let (X, d) be a compact metric space and let <f> be a homeomorphism of X. Rather than 
begin with the rigourous (and perhaps confusing) treatment, we will proceed heuristi-
cally. We suppose that, locally, X is a product space; for every JC in X, we have two sets, 
Vs(x, e), Vu(x, e), where e > 0 is some small parameter. These are subsets of X and their 
intersection is {x}. Moreover, their cartesian product is homeomorphic to a neighbour­
hood of x. This decomposition should be invariant under <f> in the sense that</>(K5(jt,e)) 
and Vs(</>(*)> e) should agree in some neighbourhood of </>(JC), as should </>( Vu(x, e)) and 
Vu(<f>(x)9ey Most importantly (j> \ Vs(x,e) should be contracting, as is </>_1 | Vu(x,e). 

Postponing our rigourous definition further, let us look at some examples. 

1. SUBSfflFTS OF FINITE TYPE (SFT). Let n be a positive integer and let A be a fixed 
n x n matrix whose entries are zeros and ones. We will assumed is primitive; i.e. for 
some k, Ak has no zero entries. Let { 1 , . . . , «} z be the space of doubly infinite sequences 
of { 1 , . . . , n} with the product topology. Define 

X= {(xOg.oo G {1 , . . . ,«} Z \AXiXi+l = 1, foralHinZ}, 

and 
<j>(x)i = Xi-\9 i G Z, x G X. 

We use the metric 
d(x9y) = j:2-tt\xi-yi\. 

To see the local product structure here, consider 

Vs(x,e) = {y eX\ Xi = yh for all/ < 0} 

Vu(x,e) = {y eX\ xt = yh for all i > 0}. 

It's fairly easy to see that there is a natural homeomorphism between Vu(x, e) x Vs(x, e) 
and 

{y G X | XQ = y0} 
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which is a neighbourhood of x. Moreover, for y9y
f G Vs (x, e) 

d{<KyU(y')) = \d(y,y') 

and for z^z' in Vu(x9 e) 

d^-\z\r\z)) = \d(z9J\ 

We leave it to the reader to observe that Vs(^(x), e) and <l>(ys(x9ety are not equal but 
"agree in a neighbourhood of </>(*)•" 

2. ANOSOV DIFFEOMORPHISMS. Let M be a compact Riemannian manifold. An 
Anosov diffeomorphism is a smooth map (j>:M—>M such that TM = £ © F, where is, F 
are sub-bundles of 7M, each invariant under T<j> and such that, for some constants C and 
0 <8 < 1, we have 

||(7W*v|| < CS*||v||, v G £ , t = l , 2 , 3 , . . . 

| | W r ^ | | < G5*||w||, w 6 F , t = l , 2 , 3 

The sets Vs(x9 e) and ^ ( x , e) are obtained by integrating E and F, locally. We refer the 
reader to [2] and [16] for further discussion. 

Let us examine a prototype more closely. Let ^ 4 = 1 - 1 J and view A as a linear 

isomorphism of IR2. As A preserves the integer lattice Z2, we may pass to a diffeomor­
phism <t> of the quotient IR2/Z2 ^ I 2 = M. Now ,4 has eigenvalues A = (3 - \ /5)/2 < 1 
and A-1 > 1. The decomposition of TM into E © F is obtained by decomposing R2 into 
the eigenspaces of A. The sets Vs(x, e) and ^ ( x , e) can be seen in M as line segments 
through x determined by the eigenvectors. 

3. SOLENOIDS. We describe one specific example only. Regard Sx as the unit circle 
in the complex plane and </>o: Sl —• Sl be the map </>o(z) = z2. Let X be the inverse limit 
of the system 

XQ = S <— X\ = S «— Jf2
 == *S" *— • • •. 

Concretely, we can describe X as 

{(Z0,Z1,Z2,...) |Z; G S ^ J = Z/,/ = 0,1,2, . . .} . 

Let TT.X —* Sl denote the map 7r(zo,zi,z2,...) = ZQ. Also, define </>:Jf —* X by 
</>(z0,zi,z2,...) = (zg,z0,zi,...) so that (/>-1(z0,zi,z2,...) = (zi,z2,z3,...). It is easy 
to see that, for any ZQ in Sx, 

oo 

7T- i{z 0}sn{-i ,+i}=i . 
11=1 

Moreover IT is a fibration; for any (zw)i°, in X, there is a neighbourhood which is home-
omorphic to 

{zeS1 | | z - z 0 | < e } x l . 
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It is also easy to see that TT O </> = </>0 o TT. Fix x = (xn)™ in X, which is identified with 

(xo, (Sn)T) in t n e product space above. Let 

^(jt,e) = { x 0 } x l and 

Vu(x,e) = [z G Sl | \z - x o | < e} x {(gw)°°}. 

(Or rather, Vs(x, e) and K^x, e) are the sets in X identified with these.) We leave it to the 
reader to verify that these sets satisfy the desired properties. 

Let us return to our attempt to define a Smale space in the general setting. If x and 
y are sufficiently close then their local product neighbourhoods will "agree" where they 
overlap. The intersection of Vs(x, e) and Vu(y, e) will be a single point which we denote 
by [x,y] (—having nothing to do with commutators). 

Notice that with this definition, we may characterize Vs(x, e) as those points z such 
that [x, z] = z. The rigourous definition begins by hypothesizing the existence of the map 
[•, •] and obtaining the Vs(x, e) and Vu(x, e) as above. 

We say that (X, d, </>) is a Smale space if there is 0 < Ao < 1, eo > 0 and a continuous 
function 

[, ]: {(x,y) | x,y G X,d(x9y) < e0} ->X 

satisfying the following. First we require 

[X,JC] = x 

[[x,y],z] = [x,z] 

[x9\y,z]] = [x,z] 

for x, y, z in X, whenever both sides of the equation are defined. We let 

Vs(x, e) = {y G X | [x,y] = y and d(x,y) < e}, 

Vu(x, e) = {y G X | \y,x] = y and d(x,y) < e}, 

for any 0 < e < eo- We also require 

whenever both sides of the equation are defined. Finally, we assume that 

</(#y),<Kzj) < Ao d(y,z\ y9z G Vs(x,e) 

d(4>-x{y\cj>-\zj) < \0d(y,z), y,z G Vu(x,e). 

Briefly referring back to example 1, we let eo = j,Ao = \. Note that if */((x/)i, (y/)/) < 
eo, then xo = yo. We define 

^ W l = | » fory>0 
if d(x,y) < e0-
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It follows from the definitions that, for any x in X, 

[,]:Vu(x,e0/2)xVs(x,e0/2)-^X 

is a homeomorphism onto a neighbourhood of x in X. It can also be shown that, for any 
0 < e < e0, 

Vs(x,e) ={yEX\ d{<j>n{x\<j>n(y) < e, for all n = 0,1,2,...} 

Vu(x9e) = {>> G Jf | d(<t)n(x\<l)n(y)) < c, for all/i = 0 , - 1 , - 2 , . . . } 

and that, for x, j with d(x, y) < e0, 

K5(x,6o)nFt/0;,6o)={[x,>;]}. 

These last observations show that [, ], if it exists, depends only on (X, d, </>). 
We will also assume throughout that our Smale space is irreducible in the sense that it 

is topologically mixing; that is, for every pair of open sets U and V, there isN> 1, such 
that for all n > N9 <j)n{U) U V is non-empty. For more on this issue, we refer the reader 
to the discussion of Smale's spectral decomposition in [13]. 

For a Smale space as above, there is a unique ^-invariant probability measure which 
maximizes the entropy of the transformation <j>. We denote this measure by /x and refer 
to it as the Bowen measure [15]. The idea of the proof (which is due to Sinai originally) 
is to "code" the system by using Markov partitions. The existence of Markov partitions 
follows from the definition of Smale space. As shown in Theorem 1 [15], much more is 
true. Fixing x in X, the map [, ] defines a homeomorphism between Vu(x9 e) x Vs (x, e) 
and a neighbourhood of x in X. Restricting /x to this set and identifying the set with 
Vu(x, e) x Vs (x, e) via [, ], the measure /i is a product measure filxfix

s. Here the measures 
//* and /ij depend on x. However, Theorem 1 of [15] asserts that these may be chosen 
such that 

(i) for x and y sufficiently close, and e, ef small, z —•» [y,z] defines a homeomor­
phism from Vs(x, e) into Vs(y, e') which carries /xj to fiy

s. Similarly z —* [z,y] defines a 
homeomorphism from Vu(x9 e) into Vu(y, e') which carries /x£ to fiy

u. 

(ii) 

on the appropriate domain and 

Kr°^¥„, 
where A > 1 and log(A) is the topological entropy of (X, </>) [18]. 

We now describe conjugating homeomorphisms for the Smale space (X,d,<j>). First 
of all, we say x and y in X are conjugate or asymptotic if 

lim dUn(x),$n(y)) = 0. 
\n\—>oo 7 

Fix such a pair (x,y). We will define a map 7 from a neighbourhood of x to one ofy which 
maps x to y and so that z and 7(z) are asymptotic, for all z in the domain of 7. First, find 
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no > 1 so that d(<j>n(x), 4>"(y)) < e0 for all \n\ > «o. Next, choose e sufficiently small 
that Ajj""°e < eo. This means that, for all n = —no,..., «o, 

f{VS(x,ej) C Vs(<f>"(x),e0) 

4>"{VU(x,t)) C ^ " ( x X c o ) . 

Consider the composition of the following three maps: (let n = «o) 

z G Vs(x,e) -» <T"(z) e Fs(«A-"(x),e0), 

*-"(*) € Fs(«/)-"(x),eo) -> [<r"00,<T"00] € Vs(<)>-"(y),e0), 

[<t>-n(y),4>-"(z)] € Fs(</»-"(y),e0) - ^ - " ( ^ " " ( z ) ] € K5(y,£o). 

Each is a homeomorphism onto its image. This is the "stable coordinate" of the map 7. 
The "unstable coordinate" is obtained in a similar way. To write 7, we take z close to 
x, take its stable and unstable coordinates (namely [x,z] and [z,x]) apply these maps to 
both and recover a point near j> from its stable and unstable coordinates. Specifically, 

7(2) = [rn[nz,xl<l>n{y)}An{rnty)A-n[x,A\ 

It is easy to verify that 7 is defined in a neighbourhood of x, that 7(x) = y and that 

lim dUn(l(z))A\z))=0 
\n\—KX> V / 

and the limit is uniform over z in the domain of 7, which we denote 01. 
The following facts are consequences of the hypothesis of topological mixing—proofs 

can be found in [13]. By 7.16(b) of [13], the asymptotic equivalence class of any point in 
Xis countable and dense in X. Also each conjugating homeomorphism leaves invariant 
\i. As noted before, the Smale space structure provides a coding by Markov partitions. 
This means that our Smale space is metrically isomorphic with a subshift of finite type. 
Since the Smale space is topologically mixing, so is the subshift. This implies that the 
subshift, hence the Smale space, are both strong mixing (with respect to ji) [13, 18]. 

In addition to asymptotic equivalence, we will be interested in stable and unstable 
equivalence. Two points x and >> are stably equivalent if 

lim dUn(x),<t>n(yJ)=0 
n-—>+oo v ' 

and unstably equivalent if 

lim dUn{x\<j>n{y)) = 0. 
n—•—oo v 7 

We denote the stable and unstable equivalence classes of JC by Vs(x) and Vu(x). Note that 
it follows from the definitions that Vs(x) Pi Vu(x) is the set of points asymptotic with x, 
which we denote V(x). It is easy to see, using the contracting property of </>, that Vs(x, eo) 
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is contained in Vs(x). In fact, if (j>n(y) is in K5(</>w(x), eo), for some positive n, theny is in 
Vs(x). So we have 

rn(vs{<j>n(x),to))cVs(xl 

for all n = 1,2,3, After taking the union over n above, the reverse inclusion also 
holds. This can be seen most clearly in the case x is a fixpoint of <f>. liy is in Vs(x), it 
means that the forward orbit of y tends to x. For some N, d(<f>n(y\x) < e0, for all n > N. 
Consider the stable and unstable co-ordinates of (j>N(y), [x, <j>N(y)] and [c/>N(y)9x]. If the 
unstable part is not equal to x, then the expanding nature of <j> on Vu(x, eo) will force 
d{<t>n(y\xo) > eo for some n > N, a contradiction. This can be made into a rigourous 
proof that [<t>Niy\ x] = x and hence <j>N(y) is in Vs{x, eo). In general, we have 

Vs(x)=\Jr"(vs(nx),eo)) 
n>0 V ' 

^)=U^HrW,eo)) . 
M>0 

We now have three equivalence relations which we want to consider as groupoids (see 
[11]). Thus, we need topologies on all three and Haar systems for each. 

First define 

GPs={(x,y)eXxX\y£Vs(x,eo)} 

(?u = {{x,y)£XxX\y£Vu(x,e0)} 

and then let 

Gl = (<£ x fl-(Gj) 
GZ = (</» x m&u) 

for each n = 1,2,3, Each G£, GJJ is given the relative topology of X x ^and 

oo 

Gs = U G"s 
n=\ 
oo 

Gu=\jcru 

are given the inductive limit topology. 
As we noted above, these are the stable and unstable equivalence relations. We can 

also define 
G2 = G?riGE, w = 0 , l , 2 , . . . 

and let 

Ga = U G"a, 
«>0 

with each Gn
a given the relative topology ofX x Xand Ga the inductive limit topology. 

The last agrees with the topology on Ga given by Ruelle in [14]. 
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As for Haar systems for Gs, Gu and Ga, we proceed as follows. As in [14], Ga is r-
discrete and counting measure is a Haar system. Let us consider Gs. Fix x in X. Let Sx 

denote point mass at JC. We define a measure on G^ by Sx x fix
s, and then on Gn

s by 

A-"V(x)X/xf( jc)o(«/,x^)«. 

The fact that any two of these measures agree on their common domain of definition 
follows from (c) of Theorem 1 of [15], which is our condition (ii) mentioned earlier. In 
this way we obtain a measure /ij on Gs. It is easy to verify that {//* | JC E X] forms a 
Haar system for Gs and 

^ 0 ( ^ x 0 = A"1 tf. 

The Haar system {/i* | JC G X} for Gu is obtained in a similar way and 

Later, we will need the following technical results. 

LEMMA 2.1. Let 7 be a conjugating homeomorphismfor (X, (j>) with domain 0 7 and 
let e be so that 0 < e < eo. TTie/i there is a positive integer N so that, ifn > N andx,y 
in X lie in (/>_w(07) with y in Vs(x, e), then 

4>-ni4>n(y) = [<t>~n^<t>n(x\yi 

PROOF. First we use the fact that d(</>n7(z), <j>n(z)) tends to zero uniformly for z in 
01. We find N so 

d(ri(z)^n(z))<e0-e 

for all z in 0 7 and \n\ >N.lt follows that, for n>N and z in 0 7 , 

ri(z)eVs(<t>n(z),eo-e) 

rnl(z)eVu(<l>-n(z),eo-e). 

Let x' = <f)~nl(t)n{x\ for n > N fixed. Note that JC' is in ^ ( x , e0 - e) and ^"(x7) is 
in F5((/)2W(JC),€O — e). Let 7' be the conjugating map taking </>"(x) to 4>n{x'). Of course 
l<j>n(x) = <t>n(x'\ by definition of x\ so by the uniqueness property of conjugating maps 
described in [14], 7 = 7' on their common domain. By hypothesis (f>n(y) is in 01; we show 
that (j)n(y) is in O r . Sincey is in Vs(x,e% <f>n(y) is in Vs(<j)n(x\e) and [(/>"(>0,</>"(*)] = 
</>w(x). Also, JC' is in Vu(x, eo — e) and >> is in Vs(x, e) so 

d{x',y) < d(x',x) + d(x,y) < eo 

and so [x',y] exists. Since [x',j] is in Vs(x',eo), ^([x^y]) is in Vs(ftix*), eo) for all / > 

0. A direct computation using the definition of 7 ; shows lf{(j>n(y)) exists and equals 

</>"([*,y]). The conclusion follows at once. • 
The next result shows that for given conjugating maps 7i and 72, the maps </>~w7i</>w 

and 4>ml2<t>~m will commute as w, n tend to plus infinity. This also appears in Krieger's 
work on subshifts of finite type [8]. The difference here is that the conjugating maps 
appear directly from the Smale space structure as well as this property. Secondly, unlike 
the situation for subshifts of finite type, our conjugating maps are only defined locally. 
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LEMMA 2.2. Let l\,l2be conjugating maps and let K\ C 0lx, K2 C Ol2 be com­
pact. Then there is a positive integer N so that for all m,n >Nwe have 

(i) ifx G <t>-n{Kx), <j>-nli<i>n(x) G <t>m{K2), thenx G <j>m(Ol2), <j>ml2<t>-m(x) G 

rn(olx) 
(ii) ifx G <t>m(K2), <t>ml2<t>-m(x) G <jrn(Kx\ thenx G <j>-n{0lx), <j>-nlx<j>n{x) G 

<t>m(o,2) 
and in either case, 

{4>mi2<t>-m\rnii<t>n)(x) = (<t>-nixPx<i>mi2<t>-m){xy 

PROOF. We first choose e > 0 (and e < eo) so that all x with e of Kt are in 0lx, for 
/ = 1,2. We choose N sufficiently large so as to satisfy the conclusion of the previous 
lemma for both 7i and 72 and so that, for \k\ > N 

rf(^7i(zi),0*(zi)) < e 

4 / 7 2 f e ) , / ( z 2 ) ) < e 

for all z\ in 0lx, z2 in Ol2. 
For x, m, n as in (i) it follows that (j>~m(x) is within e of <j>~m<j)~n1\(t>n(x) G K2 and 

so </>~w(jt) G 072. Similarly, 0"<£m727~m(jc) is within e of ^(x) G ^ and so is in 0lx. 
Property (ii) is checked in a similar way. 

Let y = <j>ml2<j)~m{x\ so for all k > 0 

d(cl>k(y)^k(x)) = d(<l>k+mJ2<l>-m(x%(j>k+m<l>-m(x)) < e 

and so y is in Vs(x, e). Therefore, we may apply Lemma 2.1 to compute 

(<i>-nix<i>n)(<t>mi2<i>-m)(x) = irnix<t>n)(y) 
= [rnixnx\y] 
= [(t>'niir(x%ct>m^2<t>-m(x)i 

A similar application of Lemma 2.1 shows 

(<T72<rm)(<r"71</>'')(.*) - [rnii<i>"(x),<t>mi2<t>-m(x)] 
and we are done. • 

3. C*-algebras. From the Smale space (X, d, </>) we have constructed the groupoids 
(of equivalence relations) Ga, Gs and Gu, each with a Haar system. Again, we remark 
that Ga is an r-discrete groupoid; i.e. A = {(x, JC) | X G X} is an open subset of Ga. We let 
A, Sand U denote the C*-algebras associated with Ga, Gs and Gu, respectively [11]. (The 
choice of notation is to suggest "asymptotic," "stable" and "unstable" C*-algebras. There 
is a slight problem since the term "stable C* -algebra" already has a distinct meaning [10]. 
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Caution should be used, for example, when one observes that in all of our examples both 
the stable and unstable C*-algebras are stable. 

For convenience, we regard the convolution algebra of continuous complex-valued 
functions on Ga, denoted Cc(Ga\ as a subalgebra of A. Similarly, we have CC(GS) C S, 
CC(GS) C U. Also, since A is open in Ga, the C*-algebra of continuous complex-valued 
functions onZ, C{X), is a C*-subalgebra of A. 

We remark that in our examples, the groupoids Ga, Gs and Gu are amenable [11]. I 
do not know if this is true in general. By virtue of II.4.6 of [11], and the fact noted in 
Section 2 the Ga-equivalence classes are dense in X, the reduced groupoid C*-algebra, 
Qed {Ga\ is simple. 

We begin with some basic properties of A, S and U. 

THEOREM 3.1. The C-algebras A and S 
®max U are strongly Morita equivalent. 

PROOF. Let H denote the product groupoid Gs x Gu. Then, we have 

C{H) * C{GS)0max C(GU) = S®U. 

The unit space of H is X x Xand the diagonal A is an abstract transversal in the sense of 
Muhly et al. [9]. Using the notation of [9], H* is clearly isomorphic to Ga, so the result 
follows by Theorem 2.8 of [9]. • 

The original homeomorphism <j> preserves the equivalence relations we are consider­
ing and induces *-automorphisms aa, as and au of A, S and U, respectively. Explicitly, 
we note that 

<*«(/) = / ° OT1 x <t>~l% f e Cc(Ga) 
<xs(g) = Ago (0-1 x cf>-]l g e CC(GS) 

au(h) = \~xh o (0-1 x 0-1), h e CC(GU\ 

where log A is the topological entropy of 4> as before. 

THEOREM 3.2. The C*-dynamical system (A, aa) is asymptotically abelian; that is, 
for all a, b in A, 

0 = lim | | [a»,Z>]| | = lim K(a)fc - K ( « ) | | -
|n|—»oo J/jj—>oo 

PROOF. We will show that for a, b in A, 

lim \\[a-\a),cC(b)]\\=0 
m,n—>+oo 

and the conclusion follows. Also, it suffices to consider a = / , b = g in Cc(Ga) which is 
dense in A. We can cover the supports off and g by finitely many open sets of the form 

{(*,7(*))|xe07}, 
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for some conjugating map 7 [ 14]. Then by using a partition of unity, we may express/ and 
g as finite sums of functions each of whose support is contained in a set as above. In this 
way, we see it suffices to consider the case where we have two conjugating maps 71, 72, 
compact sets K\ C 01{,K2 C Ol2 and/andg are supported in {(JC,7I(JC)) | x E K\} 
and {(JC,72(X)) \x eKi], respectively. 

Let e > 0 be given. Choose N sufficiently large so as to satisfy the conclusion of 
Lemma 2.2. Since/ and g are uniformly continuous, there is a 8 > 0 so that for any JC, y 
with d(x9y) < 8, we have 

|/{*,7i(*)) - / ( * 7 i ( y ) ) | < e/2sup|g| 

|g(x,72(*)) -g(y,72(y)) | < c/2sup|/l. 

Also choose N sufficiently large so that 

d(<f>\x\<f>nlx(xj)<8 

d(<t>n(y\ri2(y))<6 
for all \n\ >N,xin 0lx and>> in Ol2. 

Let us compute the products a~n(f)a£(g) and a%(g)a~n(f) at a point (JC, J ) in Ga, for 
n>N.We denote the respective values by c\ and c2 for convenience. So we have 

= £/(<m<m)g(r^),rm(y)) 
where the sum is taken over all z in V(x). Immediately, we see the sum reduces to a 

single term, whenz = <j>~nl\<j)n(x). More precisely c\ = 0 unless x is in </>~n(K\), z = 

(j>-nlx<t)n(x) is in (/>m(#2)
 a n d > ; = ((/>m720~m)(0~w7i</)n)W. Similarly, c2 = 0 unless JC is 

in<£m(A2),z/ = 0m72</>"mWisin</)-w(A:i)and7 = <j>-n1x<l>n<t>ml2<t>~n(x). By Lemma 2.2, 

we need only compare c\ and c2 for x in <j>~n(0lx) and <j>m(Ol2\ </>~n7i</>n(jc) in (j)m(Ol2), 

and </>ml2<l>~m(x) in <j>~n(0lx). For such JC, we have 

rf(0n(jc),(/>w(/>m72(/>~mW) = t/(^+m0-m(jc),(/>w+m72</>"mW)< « 

since m + n>N9 (j)~m(x) G 0 7 2 and our choice of TV. Similarly, we also have 

4(/)-W(JC),(/>-W(/>-W7I(/>W(JC))<5. 

Finally, we can compute, using z = <j>~nl\<j)n(x) andz ' = <j)ml2<t)~m(x), 

ki - c2| = |f(<m^(z))g(«rm(z);«rm(y)) 
- g(rmix\ f V ) ) / t m 0"(y))| 

+ |/-(0"(A^"O'))^-"(z),r"(y)) 
-f(<fr"(z'W(y)W-n(x),rm(z'))\ 

< sup|g| |f(*"(x),7i*"(*)) - / (^(z ' ) ,7 , r (z ' ) ) | 

+sup i/i |g(<rm(z),72r
m(z)) -g(</»-mw,72rmw)| < e. 
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We have shown that, for a given x, there is at most one y for which either c\ or ci is 
non-zero and in either case \c\ — ci\ < e. So for fixed x, 

E \l*anV)*<%m?,y)\<* 
yeV(x) 

and so 

l|[aJ"(OXfe)]|lw<« 
—see page 50 of [11]. A similar argument deals with the /, r-norm and so by definition 

IIK-"(/),<te)]||<e 
as desired. • 

Some of the following is already in [14] (see Lemmas 2.1 and 2.2) but we provide a 
proof for completeness. 

THEOREM 3.3. The formula 

Tr(f) = J/(x,x)dti(x) 

defines a trace on the algebras Cc{Ga), CC(GS) and CC{GU). This extends to a bounded 
trace on A. 

Moreover, we have 

Tr oas = A Tr 

Troaw = A-1 Tr and 

Troaa = Tr. 

PROOF. The last three formulas follow from the definitions. The fact that Tr extends 
to a linear functional on A can be seen by realizing it as the composition of two maps 

the first given by restriction to A (which is identified with X) and the second by integra­
tion. Proposition II.4.8 of [11] asserts that the first map extends to a continuous map on 
A and we are done. 

It remains for us to verify the trace properties. First, we consider Cc{Ga). Arguing as 
in the proof of Theorem 3.2, we may assume tha t / and g are of the form considered 
there. Then, we have 

Tr( /*g)= / v E f(x,z)g(z,x)dn(x). 
JxeX z(EV(x) 

The sum is zero except for those x in K\ with l\(x) in K2 and 7271W = x> We denote 
this setbyLj and so 

Tr(fe) = J ffc^i(x))g(li(*),*) dn(x). 
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Similarly, let L2 denote the set of x in K2 with 72(x) in K\ and 7i72(*) = x and we have 

Trfe/) = JL2g(x9l2(x))f(l2(x)9x)dfi(x). 

It is straightforward to verify that 1\(L{) = L2 and 7f* = 72 and then Tr(fg) = Tr(g/) 
follows from the invariance of // under the conjugating homeomorphisms as noted in 
Section 2. 

Let us now deal with CC(GS) and since Tr oas = A Tr, we can replace/ and g by 
(as)

n(f) and (as)
n(g), for any n. Therefore, without loss of generality we may assume 

that the support of/ is contained in 

^o = {(x,y) G Gs | d(x,y) < e} 

where e > 0 is any fixed constant. Further, for any xo in X the map 

K ^ W o / 2 ) x Vs(x0,e0/2) x K5(x0,e0/2)-> Gs 

defined by sending (x\,x2,x$) to ([JCI,X2], [XI,*3]) is a homeomorphism onto a neighbour­
hood of (xo, JCO) in Gs. By compactness, we may cover A by finitely many such neighbour­
hoods, then choose e small enough so that KQ is also covered by these neighbourhoods. 
Finally using a partition of unity we can reduce to the case where/ is supported in such 
a neighbourhood. In this case, we may rewrite the integral for Tr(/£) changing variables 
via the homeomorphism above so that 

Tr(fe) = Jjjf(xux2,x3)g(xux3,x2)dfiu(xi)dfis(x2)dfis(x3) 

where the integral is over 

(xi,X29x3) G Vu(x0,e0/2) x Vs(x0,e0/2) x Vs(x09e0/2). 

We have used the fact that under [, ], \i becomes \iu x \is. A similar computation can be 
made for Tr(g/) and it is clear that they are equal. • 

There is one more important relation between A, S and U\ there are natural *-homo-
morphisms from A into the multiplier algebras M(S) and M(U). We refer the reader to 
[10] for a treatment of multiplier algebras. 

THEOREM 3.4. Forf in Cc(Ga), g in CC(GS) andh in CC{GU), define 

(Ps(f)g)(x,y)= E fix9z)giz9y) 
zev(x) 

{gPs(f))(x,y) = E g(x,zY(z9y) 
z£V(x) 

for (x,y) in Gs and 

(pu(f)h)(x,y)= i; f(x,z)h(z,y) 
z€V(x) 

(hPu{f))(x,y)= £ h(x,zY(z,x) 
z£V(x) 
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for{x,y) in Gu. Then, ps and pu extend to *-homomorphisms 

ps:A^M{S) 

pu:A^M(U). 

PROOF. This is actually shown in II.2.4 of [11]. While it is not true that Ga is a closed 
subgroupoid of Gs and Gu, the inclusion maps Ga C Gs and Ga C Gu are continuous 
and proper and that is all that is required in II.2.4. • 

If we let as and au also denote the natural extensions of as and au to M(S) and M(U), 
respectively, then it is easy to verify that 

ps o aa = as o ps 

pu o aa = au o pu. 

We will not prove the following—its proof is similar to that of Theorem 3.2. Note 
though, that the limits are one-sided. 

THEOREM 3.5. For a in A, b in S and c in U, we have 

^JPs{a-\a)),b]\ = Q 

We introduce yet another C* -algebra which will be important for our later discussion 
involving is-theory. We denote this by Ca and define it to be the mapping cylinder for 
{A, a); specifically, 

Ca = {/: [0,1] —• A | / i s continuousand/(l) = aa(f(0))}. 

There is a natural action of R on C, also denoted by or, defined by 

(a,n(x) = ctr*l(f{t + s-\t + s\j), 

for/ in C, / in R and s in [0,1], where [ • J denotes the greatest integer function. 

THEOREM 3.6. The system (Ca, a) is asymptotically abelian; that is, for f, g in C 

0 = lim ||[a,(/),g]||. 
M—oo 

PROOF. Let e > 0 be given. Since/and g are uniformly continuous, we may partition 
the interval [0,1] by points 0 = so < s\ < - - < sm = I so that, for s in |>,,.s;+i], 
/ = 0,. ,.,/w — 1, 

\\f(s)-f(si)\\<e/5\\g\\ 

I|g(*)-g0/)ll<e/5|[/1|. 
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Since (A, aa) is asymptotically abelian, we may find N so that, for \n\ >N, 

|K^,)),g(^)]||<e/5 

for all ij = 0, l , . . . ,m. 
For any \t\ > N + 1 and s in [0,1], let k denote [t + s\ ands' denote t + s - [t + s\. 

Note that |A:| > Af and for some i,j, s G [st,Si+\] ands' G [SJ,SJ+\] so we have 

l|[«,(/),g](5)|| = |K^')),g(.)]| 

<|a5(«^)^)-«£(K^)s<*)l 
+ HW))&,)-c£(f(sj))g(si)\ 
+ IB(M)),g(*)] | 
+ js(*)a*(%)) -g(*)<4 (/•(*')) II 

There is a natural trace on Cfl, which we denote by Tr, defined by 

TT{f) = ^Tr{f(s))ds. 

Note that Tr is a-invariant. Also, iff is a projection in Ca (or M„(Ca)), then {/{.s) | 
0 < s < l } i s a continuous path of projections in A which are therefore all unitarily 
equivalent and so all have the same trace. Hence, we have 

Ti(/) = jJITr(^(5))ds = 1V^(0)). 

4. A'-theory and ̂ -theory. In this section, we discuss the AT-theory of the C*-alge-
bras constructed in Section 3. One of the principal tools will be the ^-theory of Connes 
and Higson [5]. 

Let us make some preliminary remarks about K*(Ca). There is an obvious map e§\ 
Ca—>A defined by eo(f) =/(0) , for/ in Cfl, and we have a short exact sequence 

0 —> C0(0,1) ® A —> Ca - ^ A - • 0. 

The six-term exact sequence for ^-groups can be used to produce the following exact 
sequence [4]. 

Ko{A)
 {dI^* KQ(A) _ > Kl(Ca) 

K0(Ca) <— KX{A) <— KM) 
id-(aa)* 

We also remark that 

Ki(Ca) = Ki+l(Ca xR)^ Ki+M x Z); 
aa aa 

the first isomorphism being Connes' analogue of the Thorn isomorphism [4] and the 
second resulting from Ca x R and A x Z being strongly Morita equivalent [9]. 
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THEOREM 4.1. K*(Ca) has a natural Ti-graded ring structure. In particular, Ko(Ca) 
is an ordered ring. 

PROOF. The asymptotically abelian action of Theorem 3.5 provides the ring structure 
as described in [5]. • 

Since we will require it later, let us explicitly write the formula for the product on 
Ko(Ca). Suppose p = (ptj) is a projection in Mm(Ca) and q = (qki) is a projection in 
M„(Ca). For each t in R, we will construct at in Mmn(Ca). Rather than indexing the ma­
trices in the conventional way, it will be more convenient to use pairs of entries from 
{l,. . . , /w} x {1 , . . . ,«} . We define (at\hkxm = at(pij)qu. It follows from at being 
asymptotically abelian that 

lim \\a] - at\\ = 0. 

Let x denote the following function on C, 

1 if Re(z) > \ 

0 i fRe(z)< 2 . *(z)={n ; ^ ^ / I 
For t sufficiently large, the spectrum of at lies in the domain of x and x(at) is a projection 
in Mmn(Ca). Moreover, the function sending t to x(at) (for t large) is continuous so by 
the homotopy invariance of AT-theory 

lim [x(at)]0 
t—*+oo 

exists in K0(Ca) and this is the product of the classes of p and q. 
The trace on Ca induces a group homomorphism Tr: Ko(Ca) —> R which we wish to 

show is actually a ring homomorphism. 

LEMMA 4.2. Forf, g in CC(G), we have 

\imTr(an
a{f)g) = Tvif)Tv(g). 

PROOF. AS in the proof of Theorem 3.2, it suffices to consider/ and g as there, arising 
from K\,l\,K2,li. First suppose 72 i1 id. Then we have suppg D A = 0 and so 

Trfe) = Jg(x,x)d^i(x) = 0. 

Also, we have 

T r « ( / ) g ) = / £ f{<t>-"(x),<t>-n(y))g(y,x)dii(x). 
JAyeV(x) 

As before the sum reduces to a single term with jy = </>w7i</>~w(x). Indeed, the integrand 
is zero except on the set 

{x E X | x 6 (t>n{Kx\(j>
nlX(S)-n{x) e K2912ri\<P~n(x) = x}. 

https://doi.org/10.4153/CJM-1996-008-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-008-2


C*-ALGEBRAS FROM SMALE SPACES 191 

We will show that this set is empty for n sufficiently large and so 

T r ( < ( / ) g ) = 0 = Tr(/)Tr(g), 

as desired. 
First, there is 8 > 0 so that d(x,l2(x)) > <S for all x in K2 using the fact that, if 

72 00 = x for some x in K2 then 72 = id. For n sufficiently large 

d{<j>n{z\<j>nlx{z))<8 

for all z in 0ll. Applying this to z = 4>~n{x) we see 

d{x9<t>nlx4Tn(x))<6 

d{l2(j>
nlx<t>-\x\(j>nlX(j>-\x))>d 

and so 1i<i>nl\<lrn(x) = x is impossible. 
In a similar way, we have the result if 7i ^ id and we are left to consider the case 

7i = 72 = id. Here, we have 

Tr(<(Og) = J/{<t>-n(x),<f>-"(x))g(x,x)d^x) 

and as n tends to infinity, this has limit 

jjix^d^x) • Jxg(x,x)dii(x) = Tr(/)Tr(g) 

since <j> is strong mixing with respect to /1 [18]. • 
We remark that an alternate proof would be to show that Tr is a factor state and then 

appeal to 7.13.4of [10]. 

THEOREM 4.3. f r: Ko(Ca) —• R is a ring homomorphism. 

PROOF. It suffices to consider projections p in Mm(Ca) and q in Mn(Ca) and show 
that 

TrMo'[q]o) = Tr(p)-Tr(q). 

Let at be as defined earlier so 

[p]o ' [q]o = lim [x(at)]o-
t—*+oo 

Since \\aj — at\\ tends to zero as t goes to infinity, we have 

lim ||x(fl,)-£i,|| = 0. 

Furthermore, as \{at) is a projection, 

Tr(X(a,)) = Tr(X(a,)(0)) = Tr(X(tf,(0))). 
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Finally, putting this all together with Lemma 4.2, we obtain 

tr(Mo[<7]o)= IimTr(x(«,)) 

= iTr(*M°») 
= JtoTr(fll(0)) 

= lim Tr(a*(0)) 

m « 

= 1™ E E Tr(a*(0)(a),(a)) 

- ^ E T r ( a 2 ( p « ( 0 ) ) f e ( 0 ) ) 

= ^Tr(pii(0))Tr(qkk(0)) 
i,k 

= Tr\p]o-tr[q]0. m 
The choice of letting / go to plus infinity is rather arbitrary; using t tending to minus 

infinity gives the opposite ring structure. Having decided on this, we have several other 
asymptotic homomorphisms. 

(i) Ca®A^Abyf®b->e0(a-t(fj)b,t>0, 

(ii) A <g> Ca —> A by a <g>/ —> ae0(at(f)), t > 0, 
making K*(A) a (graded) £*(C„)-bimodule. Furthermore, we also have 

(iii) Ca ®S->Sbyf®a - * p,(«?o(a-r(/)))fl, t > 0 
making AT* (S) a left A^(Ca)-module and 

(iv) U ®Ca^ Uby b^f ^ bpu^{at{f))),t>0 

making K*(U) a right AT*(Ca)-module. 
We conclude to this section by returning to our examples. 

SUBSHIFTS OF FINITE TYPE. Let A be an n x n matrix with non-negative integer entries 
(slightly more general than we considered earlier). Let (X, </>) be the associated subshift of 
finite type. As described in [6,8], the C*-algebras^, Sand t/are all approximately finite-
dimensional or AF-algebras. Their respective Xo-groups are computed as inductive limits 
of the systems 

z -®z -^z -®z -^ . . . 
AT AT 

Z» JL-> z» JL_> z» — > . . . 

jn _±_> Z -±+ Zn > • • • 

In each case, the groups Tn are given the standard or simplicial order and the limit is taken 
in the category of ordered abelian groups [7]. In the case of Ko(A), we may re-interpret 
the result as follows. Use the natural identification of 

Zn^)Tn^Mn(Z) = Hk for all k = 1,2,3,.. . . 
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Then the map AT ®A from Hk to Hk+\ becomes 

ik(T) = ATA. 

Also define a*: Hk —»/4+1 by 
ak(T)=A2T, 

Letting H denote the limit of the system (Hk, ik\ one can show KQ(A) = H and the ci^'s 
induce an automorphism a of H which coincides with (aa)*. Using the six term exact 
sequence at the start of this section and the fact K\(A) = 0 since it is an AF-algebra, one 
sees that 

K0(Ca)^kev(a:H-^H) 

Kx (Ca) ^ coker(a: H-^H). 

Using standard methods from algebra, one can show that Ko(Ca) can also be described as 
follows. In the ring Mn(l), let Z(A) denote the centralizer of A. Then Ko(Ca) is obtained 
by inverting A in Z(A) (see [12]). In the case 

• 2 1 r 
1 2 1 

.1 1 2. 

the reader can easily verify that Ko(Ca) is non-commutative. (Also, see [7].) 
Let us return to the specific Anosov example of Section 2. The eigenvectors of the 

12 T 
matrix 1 1 

associated with eigenvalues A = (3 — \/5)/2 and A l are (l90) and 

(1, -0-l), where 0 = (1 + \/5)/2. One then sees that the groupoids Gs and Gu are those 
associated with the Kronecker foliations of the two-torus associated with angles 0 and 
—9~l (or rather 2ir0 and — 2n6rl). Thus, we have 

S*A9®K, U^A_e-i®K, 

where AQ, A_e-\ are the irrational rotation C*-algebras associated with 8 and — 0~l and 
K denote the compact operators. 

We remark that the stable manifold theorem [2] asserts that for a general Anosov 
diffeomorphism <j> of M, the stable set, Vs (x), of a point JC is always a one-to-one immersed 
copy of IR* (where k = dim£). So stable equivalence actually gives a foliation of M 
(smoothness is not always present) without holonomy. Thus the foliation C*-algebra [3] 
coincides with the C*-algebra of the equivalence relation. Takai [17] has conjectured 

Kt(S) £* Ki+k(M), Kt(U) * Ki+n~k(M), 

for i = 0,1, where n = dimM, k = dimE, n — k = dimF. In the example above the 
foliations are actually given by flows, so the result is true by virtue of Connes' analogue 
of the Thorn isomorphism [4]. 
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Finally, let us consider the example of the "twice-around" solenoid of Section 2. Let 

D = {exp(2<Kik2-c) \kel,ieN}CSl 

be the dyadic roots of unity. It is easy to check that points x, y in X are stably equivalent 
if and only if 7r(x) = Tr(y)d, for some d in D. From this, one can show that 

S^ (c(Sl)®K(L2(£)y\ xD 

^(C(Sl)xD)®K. 

As for unstable equivalence, there is a natural flow F on X such that IT o Ft(x) = 
exp(27rit)7r(x). The orbits of this flow are exactly the unstable equivalence classes and, 
moreover, 

U^C(X)xFR. 

This flow has a natural transversal TT~1 {1} = I and the first return map, F\, is the 2°°-
odometer [18]. Therefore, using results of Rieffel (which can be found in [9]), we have 

U* C(X) xFR^ (C(Z) xF l Z)®K. 

It is interesting to note that while U and S are *-isomorphic to each other and to the sta­
bilized Bunce-Deddens algebra of type 2°° [1], one seems to be the Fourier transformed 
version of the other—D ^ I , S1 9* Z. 

In [19], Williams gives a more general construction for one-dimensional Smale 
spaces. These are to the "2°°-example" above as shifts of finite type are to the full 2-
shift. 
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