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SEMI-SIMPLICITY RELATIVE TO KERNEL
FUNCTORS

ROBERT A. RUBIN

Introduction. Let A be a ring and ¢ a kernel functor (left exact preradical)
on the category of left A-modules. A left A-module M is called o-semi-simple if
whenever N is a submodule of M with M /N o-torsion, N is a direct summand
of M. In Section 1 we consider alternative characterizations and properties of
o-semi-simplicity for modules. In Section 2 conditions equivalent to the o-
semi-simplicity of the ring are obtained. Section 3 is devoted to the condition,
which frequently arises in Section 2, that every o-torsion module be semi-
simple.

The terminology and notation in this paper are that of Goldman [1], with
which familiarity is assumed. In particular, K (A) (respectively I(A)) denotes
the set of kernel functors (respectively idempotent kernel functors) of the
ring A, and when we have a module M and a submodule N of M with M/N
o-torsion we say that N is c-open in M. Finally, by the term ‘““module’”’ we mean
a left module over the ring in question.

1. s-Semi-simplicity.

Definition. Let ¢ € K(A). A module M is called o-semi-simple if every e-open
submodule of M is a direct summand of M.

Note. Throughout this section ¢ will stand for a fixed but arbitrary kernel
functor.

We begin with some immediate consequences of the definition.

PropoSITION 1.1. A o-torsion module is o-semi-simple if and only if it is
semi-simple.

Proof. Surely any semi-simple module is o-semi-simple. Conversely, if M is
o-torsion, every submodule is o-open. Hence if M is o-semi-simple as well,
every submodule is a direct summand.

ProvrosiTION 1.2. If M s o-semi-simple, and if N is any submodule of M, then
M/N is o-semi-simple.

Proof. Let L/N € M/N be o-open. Then M/L ~ (M/N)/(L/N), so L is
o-open in M. Hence M = L @ T for some submodule 7", from which it follows
that M/N = L/N & (T + N)/N.
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The following concepts are useful for obtaining alternate characterizations of
o-semi-simplicity.

Definitions. A submodule N of a module M is called o-dense in M if for every
g-open submodule P of M, P + N = M. (Note that since s-open submodules
topologize a module, ¢-dense submodules are precisely those that are dense in
the topological sense.)

A submodule L of a module M is called o-essential in M, or M is called a
g-essential extension of L, if L is both ¢-open and essential in M (or equivalent-
ly, for every 0 #x € M, (L:x) €9, and (L:x)x % 0, where (L:x) =
{r € Alrx € L}).

The o-socle of a module M # 0, denoted ., (M), is the intersection of all
o-essential submodules of M. If M = 0 we define M = ., (M).

THEOREM 1.3. For any module M, the following are equivalent:

1) M is o-semi-simple;

(2) If L is g-essential in M, L = M;

(3) M = YV(M);

(4) Every essential submodule of M 1is o-dense in M;

(5) For any submodule N of M, there exists a submodule N' of M with
NNN =0, and N + N’ o-dense;

(6) & (M), the socle of M, is o-dense in M.

Proof. (1) = (2) and (2) = (3) follow immediately from the definitions.
(4) = (5) follows from the definitions and the well-known existence of com-
plements, i.e., given any submodule X of M there is a submodule ¥ such that
XMNY =0and X 4+ Y is essential.

(3) = (4) Let N be essential in M. Then for any o-open P, N + P is both
o-open and essential. Thus M = ¥, (M) C N + P. So N is o-dense.

(5) = (1) Let L be c-open in M, and let N € M be such that N L =0
and N + Liso-dense. Then N+ L = (N + L)+ L =M.ThusM =N ® L.

(1) = (6) Let L be g-open in M and consider .% (M) + L. Suppose that
L (M) + L % M. Then since . (M) + L is o-open, for some submodule
N # 0 we have (¥ (M) + L) ® N = M. But then N is ¢-torsion, and by
Proposition 1.2, N is g-semi-simple. So by Proposition 1.1, N is semi-simple.
Thus N C . (M), which contradicts NV s 0. Therefore . (M) is o-dense.

(6) = (4) Since ¥/ (M) is contained in every essential submodule of M,
this is immediate.

We can consider o-semi-simplicity more closely via the {ollowing concept.

Definition. A module M is called o-simple if for any ¢-open submodule L of
M, either L = M or L = 0.

ProvrositiON 1.4 (1). Every simple module is o-simple;
(2) Every o-simple module is o-semi-simple;
(3) A o-torsion module is o-simple if and only if it is simple;
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(4) A o-torsion-free module is o-simple if and only if it is o-semi-simple;
(5) Any factor module of a o-simple module is a-simple.

Proof. (1) and (2) follow immediately from the definitions, while (3) follows
from Proposition 7.7 and (2). Now if M is o-torsion-free and o-semi-simple,
let P be a o-open submodule of M. Then M = P & X, for some X. But X is
o-torsion and contained in M. Thus X = 0, and P = M; this proves (4).
(5) follows from the fact that if NV is a submodule of M and if L/N is ¢-open
in M/N, then L is o-open in M.

Remarks. (1) 0 € K(A) is defined by 0(M) = 0 for all M. Then every
module is 0-semi-simple, and so by (4) above, 0-simple.

(ii) z € K(A) is defined by z(M) = the singular submodule of M, or equi-
valently. 7, is the set of essential left ideals. If ¢ = 2, the concepts of essential
and o-essential coincide. Hence whenever ¢ = 2, a module is s-semi-simple if
and only if it is semi-simple.

THEOREM 1.5. Let { M.} be a family of o-semi-simple modules. If M = 11,M,,
then M s o-semi-simple.

Proof. Let L be a g-open submodule of M. Then, as usual, there is a sub-
module P of M maximal with respect to P M\ L = 0. Suppose that for some 8,
Mg L P + L. Consider Ng = Mg\ L. Ng is g-open in Mg, hence Mz =
Ng @ X, for some X. Then X is non-zero, o-torsion and ¢-semi-simple, so X is
semi-simple by Proposition 1.1. If X € P + L, then wehave Mg = Ng + X C
L + P, which is not the case. Therefore X &€ L -+ P, and so there is a non-
zero simple submodule S of X with S &€ L + P. Consider (P + S) N L. If
ye P+ S)MNL, wehavey € Landy = s + p for some s € Sand p € P.
Butthens € L 4+ P,andsos = 0 (else S € L + P). Thereforey ¢ LN P =
0. Hence (S + P) M L = 0, which by the maximality of £ implies that S C P,
a contradiction. Thus forall 8, My T P+ L.Since PNL =0, M =P @ L,

and we are done.

It is clear from this theorem and Proposition 1.4 that any direct sum of
o-simple modules is g-semi-simple. We shall later give an example to show that
the converse is false. As we show now, if certain restrictions are imposed, then
a converse is obtained.

THEOREM 1.6. Let p € I(A), and let M be a p-semi-simple module. If p(M) is
Jfinite dimensional (i.e., p(M) contains no infinite collection of submodules
whose sum is direct), then M has d.c.c. on p-open submodules, and so contains a
unique minimal p-open submodule M. Furthermore M, is p-simple, and M =
M, ® X, where X is a p-torsion semi-simple module. Thus M is a direct sum of
p-simple modules.

Proof. Since p(M) is finite dimensional, there is an integer » such that p(M)
contains no family of more than #» submodules whose sum is direct [4, p. 55].
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Let
M=MDMD...

be a descending chain of p-open submodules. Then each M /M is p-torsion and
p-semi-simple, and thus semi-simple. Therefore for each i, there is a semi-
simple X; € p(M) such that M = M; ® X, and since M; D M1, X1 D
X 4, which after n 4 1 steps yields a contradiction. Thus M has d.c.c. on p-open
submodules, and so M has minimal p-open submodules. But the intersection of
any two p-open submodules is again p-open; hence M has a unique smallest
p-open submodule M,. Since M is p-semi-simple M = M, ® X, where X is
semi-simple and p-torsion. It remains to be shown that M, is p-simple. But this
is clear, since the idempotence of p guarantees that a p-open submodule of a
p-open submodule of M is itself p-open in M [1, p. 18].

2. os-semi-simplicity of the ring. In this section we investigate the
condition that the ring A be g-semi-simple with respect to some givena € K(A).
Some preliminaries are needed.

PROPOSITION 2.1. ¢ is an exact functor if and only if for every A € T ,, A +
a(A) = A; i.e. if and only if o(A) is o-dense in A.

Proof. (=) Let A € 7, and consider
0—-A—>A—>A/A—0.
Applying ¢ we obtain 0 = o) — ¢(A) — o (A/A) — 0. Thus
c(A/A) ~a(A)/o(A) = a(A)/(e(A) N A) = (a(A) + A)/A.

But e (A/%A) = A/, s0 o (A) + A = A.

(&) Let 0> N—> M — M/N — 0 be exact, and let x € M be such that
x4+ N € o(M/N). Then for some A € I ,, Ax  N. Now A + o(A) = A, so
therearea € ,ands € s(A) suchthatl = a4+ s.Sox =1-x = ax + sx €
N 4+ o(M). Thus o (M/N) C (¢(M) + N)/N. Since ¢ is a functor the reverse
inclusion is true as well, and so ¢ (M/N) = (¢(M) + N)/N. But

(¢(M) + N)/N = a(M)/(c(M) N N) = a(M)/a(N).
Thus ¢ is exact.

LeEmmMmA 2.2. If o is an exact functor, then o 1s idempotent.

Proof. Let M be a module and consider 0 — ¢(M) > M — M/a (M) — 0.
Applying ¢ we obtain 0—>o(c(M)) > o(M) > o(M/a(M)) — 0. Since
o(o(M)) = o(M), s(M/a(M)) = 0, and ¢ is idempotent.

We can now describe the o-semi-simplicity of A.

THEOREM 2.3. For o € K (A), the following are equivalent:
(1) Ais o-semi-simple;
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(2) every A-module is o-semi-simple;

(3) every A-module is a-injective;

(4) every o-open left ideal is a direct summand;

(5) every o-open left ideal contains a o-open direct summand of A, and every
a-torsion module is semi-simple;

(6) o is an exact functor, and every o-torsion module is semi-simple;

(7) L (A) is o-dense in A.

Proof. The equivalence of (1), (4), and (7) follows from Theorem 1.3.

(1) = (2) From Theorem 1.5, every free module is ¢-semi-simple, and so
by Proposition 1.2, every module is o-semi-simple.

(2) = (3) Since any ¢-open submodule of any module is a direct summand,
any homomorphism from a ¢-open submodule of any module extends to the
whole module.

(3) = (4) The identity map of any c-open left ideal splits the inclusion map
into A.

(4) = (5) The first part of (5) follows trivially from (4), and since (4) < (1),
the second part follows from (2) and Proposition 1.1.

(5) = (6) Let A be a g-open left ideal. Then there is a s-open left ideal B,
with BC Y, and A = B @ 7V, for some V. Since ¥ is s-torsion we have

A+cA) DB +0A) DB+ ¥V =A.

Hence by Proposition 2.1, ¢ is exact.

(6) = (4) Let A be a o-open left ideal. Then by Proposition 2.1, A 4+ ¢(A) =
A. Since o(A) is semi-simple, ¢(A) = (¢(A) N A) ® X for some X. Since
X C o(A), wehave X N A = 0. Now

A=cA)+A=(OA)NA +X+A=X4 9L
Thus A = X @ 9.
From (6) above and Lemma 2.2 it follows that if A is ¢-semi-simple, then ¢ is

idempotent, and thus a ring of quotients Q,(A) exists. The next theorem
describes o-semi-simplicity in terms of this ring.

LemMA 2.4, If o is an exact functor, then o has Property (T).

Proof. As we have just noted, if ¢ is exact, then ¢ is idempotent, and so
Q. (M) exists. Let 7 : A — Q,(A) be the canonical map, and let A be a s-open
left ideal of A. Then by Proposition 2.1, A = o¢(A) + U, and there is a € A
such that 2(a) = 7(1) = 1. Thus 1 € (%), and so Q,(A)z(A) = Q,(A). Hence
by Theorem 4.3 of [1], ¢ has Property (T).

THEOREM 2.5. For o € K(A), the following are equivalent:

(1) A is o-semi-simple;

(2) o 1s idempotent and has Property (T), Q,(A) = A/a(A), and every o-
torsion module 1s semi-simple.

Proof. (1) = (2). From Theorem 2.3 (6) and Lemmas 2.2 and 2.4, ¢ is
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idempotent and has Property (T). That Q,(A) = A/s(A) is a consequence of
Theorem 2.3(3).

(2) = (1) Let A be a s-open left ideal of A. Since ¢ has Property (T),
Q. (A)i(A) = Q,(A), wherez : A — Q,(A). Using the hypotheses, this translates
to AJo(A) = A + o(A)/a(A), whence by Proposition 2.1, ¢ is exact. Thus,
Theorem 2.3(6) holds.

Remarks. (1) If A is o-semi-simple, and if o¢(A) is finite-dimensional, then
Theorem 1.6 gives us some information about the structure of A. In particular
if I is the unique minimal o-open left ideal of A, it is easy to show, using the
idempotence of o, that I is two-sided, idempotent and a direct summand of A.
Furthermore, since A/I is semi-simple, [ is a finite intersection of maximal left
ideals. Conversely, for any ring T, if 4 is a two-sided ideal of T with 4 a direct
summand and T/4 a semi-simple I'-module, then for § € K(T'), defined by
T, is the set of left ideals of T' that contain 4, then T is §-semi-simple.

(ii) Since the left ideal U satisfies % + . (A) = A if and only if A/ is a
semi-simple projective A-module (A +.% @A) = A+ ((A)NA) @ X) =
I ® X, forsome X €. % (A)), theset of left ideals % of A for which % +.(A) =
A defines an idempotent kernel functor, which, according to Theorem 2.3(7),
is the unique largest kernel functor with respect to which A is semi-simple. In
[2], Goldman calls this set of left ideals the inirinsic topology of A, and presents
a structure theorem for rings complete in their intrinsic topologies.

We now give an example of a ring which is o-semi-simple, but without the
above finiteness conditions. This also supplies the promised example of a
o-semi-simple module which is not a direct sum of o-simples. Let & be a field
and let

R=T1] &

where a runs through any fixed infinite set I. Define ¢ € K(R) by, as the
set of ideals that contain Il %, where J is any subset of I with finite com-
plement. Then it is easy to check that Theorem 2.3(7) holds, so that R is
o-semi-simple, and that R is not a direct sum of o-simples.

3. Semi-simple os-torsion modules. Since the condition that every
o-torsion module be semi-simple arises so frequently in Theorem 2.3, we con-
sider that condition somewhat more closely in this section. Many of the results
are straightforward generalizations of results about the singular torsion theory
(the kernel functor z in our language) to be found in [3, Chapter I1I].

Note that if every o-torsion module is semi-simple then every o-open left
ideal is a finite intersection of maximal left ideals, or equivalently, ¢ <.,
where ¥ is the kernel functor that assigns to every module its socle. The
converse of this observation follows from the next proposition.

ProrosiTiON 3.1. For an idempotent kernel functor o, the following are equiva-
lent:
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(1) every a-torsion module is semi-simple;
(2) for every o-open left ideal N, A/ is semi-simple;
(3) every o-torsion module is o-injective.

Proof. That (1) = (2) is clear.

(2) = (3) Let M be a o-torsion module, and let f : % — M be a homomor-
phism from a g-open left ideal. Then % /Ker f is o-torsion, and so by [1, Theorem
2.5], Ker f is g-open. Hence

A/Kerf = U/Kerf @ X/Ker f

for some left ideal X. Then f can be extended to all of A by being 0 on X.
Thus, [1, Proposition 3.2] M is s-injective.

(3) = (1) If M is a o-torsion module, and N is a submodule of M, then M/N
is o-torsion, so the inclusion of N in M splits, and thus N is a summand of M.

PropoSITION 3.2. Let o be an idempotent kernel functor for which every a-
torsion module is semi-simple. Then for any o-open left ideal A, A = 2.

Proof. Let U be a s-open left ideal. Then, since ¢ is idempotent, A2 is also
o-open, and so A/9? is semi-simple. Thus there is a left ideal X, containing A2,
such that A/9% = %/%A2 ® X /A2 In other words, X + A =Aand X N A C
A2. So there exist ¢ € Y and x € X such that a + x = 1. Thus for any
bENb=0b-1=0ba+ bx. Butbx = b — ba. Hence bx ¢ X N A C A2, and
so b € 92

COROLLARY 3.3. Let R be a commutative noetherian ring, and let ¢ € I(R).
Then R is o-semi-simple if and only if every o-torsion module is semi-simple.

Proof. This follows from Proposition 3.2 and the fact that idempotent ideals
in commutative noetherian rings are direct summands.

Remark. In [3], Goodearl notes that if for a non-singular ring A every singular
module is semi-simple, then the Jacobson radical of A, J(A), is contained in
the socle of A, and thus J(A)? = 0. This can be generalized to arbitrary idem-
potent kernel functors. For ¢ € I(A) we define the o-radical, J,(M), of a
module M to be the intersection of the kernels of homomorphisms from M
into ¢-simple modules. It can readily be shown that J,(A) is a two-sided
radical ideal of A. Then if every o-torsion module is semi-simple, J,(A) is
contained in every o-essential left ideal, and thus in ., (A), whence J,(A)? = 0.
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