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SEMI-SIMPLICITY RELATIVE TO KERNEL 
FUNCTORS 

ROBERT A. RUBIN 

Introduction. Let A be a ring and a a kernel functor (left exact preradical) 
on the category of left A-modules. A left A-module M is called a-semi-simple if 
whenever N is a submodule of M with M/N o--torsion, TV is a direct summand 
of M. In Section 1 we consider alternative characterizations and properties of 
a--semi-simplicity for modules. In Section 2 conditions equivalent to the a-
semi-simplicity of the ring are obtained. Section 3 is devoted to the condition, 
which frequently arises in Section 2, that every <7-torsion module be semi-
simple. 

The terminology and notation in this paper are that of Goldman [1], with 
which familiarity is assumed. In particular, K(A) (respectively /(A)) denotes 
the set of kernel functors (respectively idempotent kernel functors) of the 
ring A, and when we have a module M and a submodule N of M with M/N 
(j-torsion we say that N is a-open in M. Finally, by the term l'module" we mean 
a left module over the ring in question. 

1. (7-Semi-simplicity. 

Definition. Let a £ K(A). A module M is called a-semi-simple if every c-open 
submodule of M is a direct summand of M. 

Note. Throughout this section a will stand for a fixed but arbitrary kernel 
functor. 

We begin with some immediate consequences of the definition. 

PROPOSITION 1.1. A a-torsion module is a-semi-simple if and only if it is 
semi-simple. 

Proof. Surely any semi-simple module is o--semi-simple. Conversely, if M is 
a-torsion, every submodule is a-open. Hence if M is a-semi-simple as well, 
every submodule is a direct summand. 

PROPOSITION 1.2. If M is a-semi-simple, and if N is any submodule of M, then 
M/N is a-semi-simple. 

Proof. Let L/N Q M/N be o-open. Then M/L « (M/N)/(L/N), so L is 
o--open in M. Hence M = L © T for some submodule T, from which it follows 
that M/N = L/N © (T + N)/N. 
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The following concepts are useful for obtaining alternate characterizations of 
cr-semi-simplicity. 

Definitions. A submodule N of a module M is called a-dense in M if for every 
o--open submodule P of M, P + N = M. (Note that since cr-open submodules 
topologize a module, cx-dense submodules are precisely those that are dense in 
the topological sense.) 

A submodule L of a module M is called a-essential in ikT, or M is called a 
c-essential extension of L, if L is both cr-open and essential in M (or equivalent-
ly, for every 0 9^ x 6 M, (L : x) 6 J ^ and (L : x)x ^ 0, where (L : x) = 
{r e A|rx G L}). 

The a-socle of a module Af =̂  0, denoted ^^(ikf), is the intersection of all 
cr-essential submodules of M. If M = 0 we define M = y„(M). 

THEOREM 1.3. For any module M, the following are equivalent: 
(1) M is (j-semi-simple; 
(2) If L is a-essential in My L = M; 
(3) M = y.(M); 
(4) Every essential submodule of M is a-dense in M; 
(5) For any submodule N of M, there exists a submodule N' of M with 

N C\ N' = 0, and N + N' a-dense; 
(6) £f(M), the socle of M, is a-dense in M. 

Proof. (1) => (2) and (2) => (3) follow immediately from the definitions. 
(4) => (5) follows from the definitions and the well-known existence of com­
plements, i.e., given any submodule X of M there is a submodule Y such tha t 
X C\ Y = 0 and X + Y is essential. 

(3) =» (4) Let N be essential in M. Then for any o--open P, N + P is both 
cr-open and essential. Thus M = S^ff(M) Q N -{- P. So N is c-dense. 

(5) =» (1) Let L be cr-open in M, and let iV C AT be such that iV H L = 0 
and N + L is cx-dense. Then N + L = (N + L) + L = M. Thus M = N ® L. 

(1) => (6) Let L be cr-open in ikf and consider S^ (M) + L. Suppose that 
Sf\M) + L 9^ M. Then since S^(M) + L is cr-open, for some submodule 
N 5* 0 we have (Sf (M) + L) ® N = M. But then N is cr-torsion, and by 
Proposition 1.2, iV is cr-semi-simple. So by Proposition 1.1, N is semi-simple. 
Thus N Ç 5^(Af), which contradicts iV ^ 0. Therefore S? (M) is cr-dense. 

(6) => (4) Since 5?(M) is contained in every essential submodule of M, 
this is immediate. 

We can consider cr-semi-simplicity more closely via the following concept. 

Definition. A module M is called a-simple if for any cr-open submodule L of 
My either L = M or L = 0. 

PROPOSITION 1.4 (1). Every simple module is a-simple; 
(2) Every a-simple module is a-semi-simple; 
(3) A a-torsion module is a-simple if and only if it is simple; 
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(4) A a-torsion-free module is a-simple if and only if it is a-semi-simple; 
(5) Any factor module of a a-simple module is a-simple. 

Proof. (1) and (2) follow immediately from the definitions, while (3) follows 
from Proposition 7.7 and (2). Now if M is c-torsion-free and a-semi-simple, 
let P be a d-open submodule of AT. Then M = P © X, for some X. But X is 
a-torsion and contained in M. Thus X = 0, and P = AT; this proves (4). 
(5) follows from the fact that if N is a submodule of M and if L/N is cr-open 
in M/N, then L is c-open in AT. 

Remarks, (i) 0 G K(A) is defined by 0(AT) = 0 for all AT. Then every 
module is 0-semi-simple, and so by (4) above, 0-simple. 

(ii) z 6 K(A) is defined by s (AT) = the singular submodule of AT, or equi-
valently^"2 is the set of essential left ideals. If a g: z, the concepts of essential 
and o--essential coincide. Hence whenever a ^ z, a module is cr-semi-simple if 
and only if it is semi-simple. 

THEOREM 1.5. Let {Ma} be a family of a-semi-simple modules. If M = IIaATa, 
then M is a-semi-simple. 

Proof. Let L be a o--open submodule of AT. Then, as usual, there is a sub-
module P of AT maximal with respect to P C\ L = 0. Suppose that for some 0, 
M0 $£ P + L. Consider TV̂  = AT,? Pi L. Np is o--open in AT̂ , hence AT̂  = 
Nfi 0 X, for some X. Then X is non-zero, cr-torsion and o--semi-simple, so X is 
semi-simple by Proposition 1.1. If X C P + L, then we have ATp = N$ + X Ç 
L + P, which is not the case. Therefore X $£ L + P , and so there is a non­
zero simple submodule 5 of X with S $£ L + P. Consider (P + 5) P\ L. If 
y G (P + 5) Pi L, we have y (z L and y = s + £ for some s G S and p £ P. 
But then 5 Ç L + P , and so 5 = 0 (else 5 Ç L + P ) . Therefore y t L C\ P = 
0. Hence (5 + P ) P L = 0, which by the maximality of P implies that 5 Ç P , 
a contradiction. Thus for all 0, A^ C P + L. Since P P L = 0, AT = P © L , 
and we are done. 

It is clear from this theorem and Proposition 1.4 that any direct sum of 
0--simple modules is o--semi-simple. We shall later give an example to show that 
the converse is false. As we show now, if certain restrictions are imposed, then 
a converse is obtained. 

THEOREM 1.6. Let p G /(A), and let M be a p-semi-simple module. If p(M) is 
finite dimensional (i.e., p(M) contains no infinite collection of submodules 
whose sum is direct), then M has d.c.c. on p-open submodules, and so contains a 
unique minimal p-open submodule Mo. Furthermore AT0 is p-simplef and M = 
ATo © X, where X is a p-torsion semi-simple module. Thus M is a direct sum of 
p-simple modules. 

Proof. Since p(AT) is finite dimensional, there is an integer n such that p(AT) 
contains no family of more than n submodules whose sum is direct [4, p. 55]. 
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Let 

M = M O J I f 2 D . . . 

be a descending chain of p-open submodules. Then each M/Mt is p-torsion and 
p-semi-simple, and thus semi-simple. Therefore for each i, there is a semi-
simple Xt C p(M) such that M = Mt © Xu and since if* D Mf+i, X i + i D 
X*, which after n + 1 steps yields a contradiction. Thus M has d.c.c. on p-open 
submodules, and so M has minimal p-open submodules. But the intersection of 
any two p-open submodules is again p-open; hence M has a unique smallest 
p-open submodule M0. Since M is p-semi-simple M = M0 © X, where X is 
semi-simple and p-torsion. It remains to be shown that Mo is p-simple. But this 
is clear, since the idempotence of p guarantees that a p-open submodule of a 
p-open submodule of M is itself p-open in M [1, p. 18]. 

2. c-semi-simplicity of the ring. In this section we investigate the 
condition that the ring A be c-semi-simple with respect to some given a G K(A). 
Some preliminaries are needed. 

PROPOSITION 2.1. a is an exact functor if and only if for every 31 G 3Ta, 31 + 
a (A) = A; i.e. if and only if <J(A) is a-dense in A. 

Proof. (=>) Let 31 G ^~<T, and consider 

0 - > 3 l - * A - + A / 3 l - + 0 . 

Applying a we obtain 0 - • <r(3I) -> <r(A) -> (7(A/31) -> 0. Thus 

* (A/31) « <r(A)/er(A) « a (A)/(ci (A) H 31) « ((7(A) + 30/31. 

But (7 (A/31) = A/31, so (7(A) + 3Ï = A. 
(<=) Let 0 -> iV —> i f —> M/N -> 0 be exact, and let x G M be such that 

x + N £ <r(M/N). Then for some 31 G ^ , Six £ TV. Now 31 + o-(A) = A, so 
there are a G 31, and 5 G o-(A) such that 1 = a + s. So x = 1 - x = ax + sx ^ 
N + <r(M). Thus a (M/N) C (cr(M) + iV)/iV. Since c is a functor the reverse 
inclusion is true as well, and so a (M/N) = (a(M) + N)/N. But 

(a(M) + N)/N « cr(M)/(<r(Af) Pi iV) = <r(M)/a(N). 

Thus (7 is exact. 

LEMMA 2.2. 7/ o- is aw exact functor, £/zen a- is idempotent. 

Proof. Let M be a module and consider 0 —> o-(M) —> jfcf —> M/a(M) —> 0. 
Applying <r we obtain 0 -» c7 (c7 (M) ) —> (7 (M) —> o- (M/cr (Af) ) —> 0. Since 
(r(o-(M)) = (7(if), o-(M/o'(M)) = 0, and a is idempotent. 

We can now describe the <7-semi-simplicity of A. 

THEOREM 2.3. For a G K(A), the following are equivalent: 
(1 ) A is a-semi-simple; 
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(2) every A-module is a-semi-simple; 
(3) every A-module is <J-infective; 

(4) every a-open left ideal is a direct summand; 

(5) every G-open left ideal contains a a-op en direct summand of A, and every 
a-torsion module is semi-simple; 

(6) a is an exact functor•, and every a-torsion module is semi-simple; 
(7) S^ (A) is a-dense in A. 

Proof. The equivalence of (1), (4), and (7) follows from Theorem 1.3. 
(1) => (2) From Theorem 1.5, every free module is cr-semi-simple, and so 

by Proposition 1.2, every module is cr-semi-simple. 
(2) =» (3) Since any o--open submodule of any module is a direct summand, 

any homomorphism from a cr-open submodule of any module extends to the 
whole module. 

(3) => (4) T h e identi ty map of any cr-open left ideal splits the inclusion map 
into A. 

(4) => (5) The first par t of (5) follows trivially from (4), and since (4) <=> (1), 
the second par t follows from (2) and Proposition 1.1. 

(5) => (6) Let 21 be a cr-open left ideal. Then there is a cr-open left ideal 93, 
with 33 Q 21, and A = 33 © F, for some F. Since F is cr-torsion we have 

21 + c(A) 2 S3 + o-(A) 3 S3 + F = A. 

Hence by Proposition 2.1, a is exact. 
(6) =» (4) Let 21 be a cr-open left ideal. Then by Proposition 2.1, 21 + cr(A) = 

A. Since a (A) is semi-simple, <r(A) = (a (A) P\ 21) © X for some X. Since 
X C CT(A), we have X C\ 21 = 0. Now 

A = cr(A) + 21 = (a (A) n 2 I ) + X + 2 I = X + 2I. 

T h u s A = X © 21. 

From (6) above and Lemma 2.2 it follows that if A is cr-semi-simple, then a is 
idempotent , and thus a ring of quotients Q<r(A) exists. The next theorem 
describes cr-semi-simplicity in terms of this ring. 

L E M M A 2.4. If a is an exact functor, then a has Property (T ) . 

Proof. As we have just noted, if a is exact, then a is idempotent , and so 
Qff(A) exists. Let i : A —» Qff(A) be the canonical map, and let 21 be a o--open 
left ideal of A. Then by Proposition 2.1, A = cr(A) + 21, and there is a G 21 
such tha t i(a) = i(l) = 1. Thus 1 G i(2l), and so Qcr(A)i(2I) = Q,(A). Hence 
by Theorem 4.3 of [1], a has Proper ty (T) . 

T H E O R E M 2.5. For a Ç K(A), the following are equivalent: 

(1) À w a-semi-simple; 
(2) a is idempotent and has Property (T) , Q<T(A) = A/cr(A), and every a-

torsion module is semi-simple. 

Proof. (1) =» (2). From Theorem 2.3 (6) and Lemmas 2.2 and 2.4, a is 
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idempotent and has Property (T). That Qff(A) = A/c(A) is a consequence of 
Theorem 2.3(3). 

(2) => (1) Let 31 be a c-open left ideal of A. Since a has Property (T), 
Qa(A)i(3l) = or (A), where i : A —> Ça (A). Using the hypotheses, this translates 
to A/o-(A) = 31 + o-(A)/o-(A), whence by Proposition 2.1, o- is exact. Thus, 
Theorem 2.3(6) holds. 

Remarks, (i) If A is c-semi-simple, and if a (A) is finite-dimensional, then 
Theorem 1.6 gives us some information about the structure of A. In particular 
if I is the unique minimal c-open left ideal of A, it is easy to show, using the 
idempotence of o-, that I is two-sided, idempotent and a direct summand of A. 
Furthermore, since A/I is semi-simple, 7 is a finite intersection of maximal left 
ideals. Conversely, for any ring r , if A is a two-sided ideal of T with A a direct 
summand and T/A a semi-simple T-module, then for ô £ K(T), defined by 
^h is the set of left ideals of V that contain A, then V is ô-semi-simple. 

(ii) Since the left ideal §1 satisfies 31 + «5̂  (A) = A if and only if A/31 is a 
semi-simple projective A-module (3Ï + 5 ^ (A) = 31 + ( (^ (A) Pi 31) 0 X) = 
31 0 X, for some I ç y ( A ) ) , the set of left ideals 31 of A for which SI + y (A) = 
A defines an idempotent kernel functor, which, according to Theorem 2.3(7), 
is the unique largest kernel functor with respect to which A is semi-simple. In 
[2], Goldman calls this set of left ideals the intrinsic topology of A, and presents 
a structure theorem for rings complete in their intrinsic topologies. 

We now give an example of a ring which is c-semi-simple, but without the 
above finiteness conditions. This also supplies the promised example of a 
c-semi-simple module which is not a direct sum of (7-simples. Let k be a field 
and let 

& = n *, 
a 

where a runs through any fixed infinite set I. Define a £ K(R) by 3?~a as the 
set of ideals that contain Tl^jk, where J is any subset of I with finite com­
plement. Then it is easy to check that Theorem 2.3(7) holds, so that R is 
cr-semi-simple, and that R is not a direct sum of a-simples. 

3. Semi-simple <7-torsion modules. Since the condition that every 
(7-torsion module be semi-simple arises so frequently in Theorem 2.3, we con­
sider that condition somewhat more closely in this section. Many of the results 
are straightforward generalizations of results about the singular torsion theory 
(the kernel functor z in our language) to be found in [3, Chapter III] . 

Note that if every cr-torsion module is semi-simple then every cr-open left 
ideal is a finite intersection of maximal left ideals, or equivalently, a ^ S^, 
where S^ is the kernel functor that assigns to every module its socle. The 
converse of this observation follows from the next proposition. 

PROPOSITION 3.1. For an idempotent kernel functor <r, the following are equiva­
lent: 
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(1) every a-torsion module is semi-simple; 
(2) for every a-open left ideal St, A/St is semi-simple; 
(3) every a-torsion module is a-infective. 

Proof. That (1) => (2) is clear. 
(2) => (3) Let M be a o--torsion module, and l e t / : St —> M be a homomor-

phism from a c-open left ideal. Then Sl/Ker/is cr-torsion, and so by [1, Theorem 
2.5], K e r / i s o--open. Hence 

A/Ker / = St/Ker/ 0 Z / K e r / 

for some left ideal X. Then / can be extended to all of A by being 0 on X. 
Thus, [1, Proposition 3.2] M is cr-injective. 

(3) =» (1) If M is a cr-torsion module, and N is a submodule of M, then M/iV 
is a-torsion, so the inclusion of N in M splits, and thus N is a summand of M. 

PROPOSITION 3.2. Let a be an idempotent kernel functor for which every a-
torsion module is semi-simple. Then for any a-open left ideal St, St = St2. 

Proof. Let St be a <r-open left ideal. Then, since a is idempotent, St2 is also 
o--open, and so A/St2 is semi-simple. Thus there is a left ideal X, containing St2, 
such that A/3t2 = St/St2 0 X/Sl2. In other words, X + 3 t = A a n d X P i S t Ç 
St2. So there exist a £ St and x (z X such that a + x = 1. Thus for any 
b e St, b = b • 1 = ba + bx. But bx = b - ha. Hence bx G X C\ St C St2, and 
s o K St2. 

COROLLARY 3.3. Let R be a commutative noetherian ring, and let a Ç I(R)> 
Then R is a-semi-simple if and only if every a-torsion module is semi-simple. 

Proof. This follows from Proposition 3.2 and the fact that idempotent ideals 
in commutative noetherian rings are direct summands. 

Remark. In [3], Goodearl notes that if for a non-singular ring A every singular 
module is semi-simple, then the Jacobson radical of A, /(A), is contained in 
the socle of A, and thus J (A)2 = 0. This can be generalized to arbitrary idem-
potent kernel functors. For a G J (A) we define the a-radical, Ja(M), of a 
module M to be the intersection of the kernels of homomorphisms from M 
into cr-simple modules. It can readily be shown that J*(A) is a two-sided 
radical ideal of A. Then if every cr-torsion module is semi-simple, J* (A) is 
contained in every ^-essential left ideal, and thus in 5^(A), whence J*(A)2 = 0. 
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