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NONEXISTENCE OF ALMOST-QUATERNION 
SUBSTRUCTURES ON THE COMPLEX PROJECTIVE SPACE 

BY 

TURGUT ÔNDER 

ABSTRACT. It is shown that there are no almost-quaternion sub
structures on the complex projective space Pn(C). 

In [2], we have shown that there are no almost-quaternion substructures on even 
dimensional projective spaces P2n(C) for n =£ 1. In [1], which appeared after the 
submission of our paper [2], the following theorem was proved: 

THEOREM 1. (Glover, Homer and Stong): Ifn is even, the tangent bundle T ( P „ ( C ) ) 

does not split into a nontrivial Whitney sum of complex subbundles. If n is odd, 
T ( P „ ( C ) ) splits only into a complex line bundle and its complement. 

In the light of Theorem 1, the nonexistence of almost-quaternion substructures can 
be proved for all projective spaces, odd or even dimensional. Thus, we have the 
following theorem: 

THEOREM 2. There are no almost-quaternion substructures on the complex projective 
space Pn(C). 

It is the purpose of this note to prove Theorem 2. As in [2], by an almost-quaternion 
^-substructure on P„(C) we mean a 4&-dimensional subbundle £ of the tangent bundle 
T ( P „ ( C ) ) which is invariant under the standard almost-complex structure of P„(C), 
together with two orthogonal (continuous) almost-complex substructure maps F, G 
defined on the total space of £, satisfying the extra condition F G = —GF, and such 
that F is the restriction of the standard almost-complex structure map of Pn(C) to the 
total space of £. 

Thus, there exists an almost-quaternion ^-substructure on Pn(C) if and only if the 
structure group of T ( P „ ( C ) ) can be reduced from U(n) to Sp (k) x U(n — 2k). 

To prove Theorem 2 we need the following lemma: 

LEMMA 1. Let K be a CW-complex, and let £ = (£, K, p, C2n) be a complex vector 
bundle with a given Hermitian metric on it. If the structure group U(2n)oft; can be 
reduced to Sp (n), then all odd dimensional Chern classes of è, vanish. 
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PROOF. The proof is similar to that of Corollary 41.9 of [3]. Let a*7 be the associated 
bundle of £ with fibre Sp (n)/Sp (q), and let $2q be the corresponding unitary bundle 
with fibre U(2n)/U(2q) under the imbedding Sp (n) C U(2n). Since Sp 0 ) / S p (q) 
is (4q + 2) - connected, aq has a cross section over the (4q + 3)-skeleton K4q+3 of 
A: by 29.2 of [3]. Then $2q has a cross section over K4q+\ Since U(2n)/U(2q) is 
4^-connected, it follows by 35.5 of [3] that the primary obstruction of $2q is zero. But, 
the primary obstruction of p2<? is precisely the (2q + l)th Chern class of £. This proves 
the lemma. 

PROOF OF THEOREM 2. For n even and « ^ 2 the result has already been proved in 
corollary 5.1 of [2]. For n = 2, the result follows from Lemma 1, because the total 
Chern class of P2(C) is (1 + a)3 where a is a suitably chosen generator H2(Pn(C), Z). 

Assume n = 2m + 1 for some m > 1. Since the existence of an almost-quaternion 
substructure on Pn(C) implies the splitting of the tangent bundle of Pn(C) into non-
trivial Whitney sum of complex subbundles, it follows by Theorem 1 that there are no 
almost-quaternion ^-substructures on P2m+\(C) unless k = m. 

Now, assume there exists an almost-quaternion m-substructure on P2m+\(C). Let a 
be the underlying 4ra-dimensional subbundle of T ( P „ ( C ) ) . The bundle a together with 
the almost-complex structure F defined in the introduction can be considered as a 
complex 2m-bundle £. Its complement in T(P„(C)) is a complex line bundle and by the 
remark after the statement of Theorem 1.1 in [1], it has to be isomorphic to r\ ® T| 
where r\ is the Hopf bundle. Thus we have 

c,(€) + C,(TI ® TO = C,(T) in H*(Pn(C); Z), 

where T is T ( P „ ( C ) ) considered as a complex bundle, and c ^ ) , CI(T] 0 r|), CJ(T) are 

respective first Chern classes. If a = -Ci(nn), then 

(2m + 2\ 
C\(T) = I I a = (2m + 2)fl 

CI(TI 0 TI) = C,(TI) + CJCTI) = -2a 

Therefore, 

c,(Ç) - (2m + 2)a + 2a = (2m + A)a 

which is nonzero. By Lemma 1, this is a contradiction. 
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